
Monte Carlo Generators
based on

Graphical Processing Units

(MC@GPU)

 Gergely Gábor Barnaföldi1& Máté Ferenc Nagy-Egri1,2

1Wigner RCP of the HAS, Budapest Hungary

2Eötvös Loránd University, Budapest, Hungary

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

O U T L I N E

● MC generators in high-energy heavy-ion physics
● The biggest data challenge: LHC & WLCG

● Why do we need GPUs?

● GPU based PRNG for MC generators

● Performance tests by GPU based MC

● What can we learn from pp MC simulations?

● Outlook

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

MC generators in high-energy collisions

Why do we need Monte Carlo generators?

There are problems with no analytical expression,
no closed form, or no deterministic description, like:

● stohastic processes (independent events)
● numerical (multi-D) integration
● optimalization
● ...and many more during the next days :-)

Solution & errors

Random sampling of numerical results

Error estimation by standard devitaion

Fast random numbers → Computing & IT

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

The biggest data challenge: LHC

WLCG – Worldwide LHC Computing GRID:

15-20 Petabytes data per year

...and more after LHC upgrades

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

How to improve the WLCG resources

WLCG:
● Critical points are the number

and performance of the WNs

● There are multicore machines
with single thread.

● If there are free multicores or
GPU resources, improvement
can be made at the sofrware
and middleware level (cheap).

● Certainly, there is a budget
issue as well.

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

Fast computing=parallel computing
● Moore's law:

Every 2nd year the
number of transistors
(integrated circuits) are
doubled in computing
hardwares.

● Amdalh's law:

The theoretical speedup
is given by the portion of
parallelizable program, p,
& number of processors,
N, is:

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

Quick introduction to GPUs

● Tiny supercomputer: Graphical
Processing Unit on your video card.

● Parallel computing

● CPU vs. GPU architecture

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

When is the moment to use GPUs?

No direct answer!
● Pilot study to define parameters to be optimized
● Need for large scale and large-large scale computing
● Have time (5-10 times more code development)
● Manpower high-level (close to hardware) programming
● $$$$$$

What has been done so far to help us? – without CUDA, etc...

● Several libs & toolkits (BLAS, FFTW, CUBLAS, CUFFT)
● Wrappers (C, FORTRAN → CUDA)
● OpenCL standards (Ati, NVidia)
● Mathematica, MatLab (with GPU support)

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

Monte Carlo Simulations on GPUs

Graphical Processing Units
● GPUs are originally not designed for graphics and image

processing, but GPGPU technologies helps us to use them
for parallel computing at ~TFlop level.

● Fast single precision arithmetics, fast data handling, but

→ precision + speed = const.

Simply ALUs can be used for several tasks:

– Image processing
– Lattice calulations
– Subatomic, atomic or molecular dynamics
– Fast Fourier Transformation
– Pseudo-random number generation

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

GPU based PRNG
for

MC event generators

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

GPU based PRNG for MC event generators

● Software frameworks

CERN
● OS: SLC 2.6.32-279.1.1.el6.x86_64
● Graphics: fglrx 9.002 (Catalyst 12.10)
● GCC: 4.4.6 20120305 (Red Hat 4.4.6-4)
● OpenCL: 1.2 AMD APP SDK 2.8

ALICE
● Aliroot: v5-03-73-AN
● Root: v5-34-02
● Geant3: v1-14

PRNG tester
● Dieharder: 3.31.1

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

GPU based PRNG for MC event generators

AliRoot framework for
ALICE data simualtion,
reconstruction, analysis

Math

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

GPU based PRNG for MC event generators

● The tested PRNG codes

Trandom1 (RANLUX)

TRandom2 (Tausworthe)

TRandom3
● Original CPU based Mersenne

Twister) algorithm

TRandom4
● CPU/GPU based SFMT (SIMD-

oriented Fast Mersenne
Twister) algorithm

TRandom5
● CPU/GPU based MWC64X

algorithm

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

GPU based PRNG for MC event generators

● From the user side
– Installation:

Driver + OpenCL (SDK)

Pre-complied modules

– Usage:

TRandomX, can be take
as a regular PRNG.

CPU/GPU run can be
choosen via parameters:

GPU: parameter > 200

CPU: parameter < 200

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

GPU based PRNG for MC event generators

● Behind the scene
– TRandom4 & TRandom5

– No single random number
generation only in 500k
blocks

– RAM buffer is for random
numbers.

– Only speeddown is the
'stack depth check'.

– Copy work from buffer is
by the CPU.

– Due to OpenCL platform
this works on both CPU/GPU

● Constructor
– It contains all tasks

● Platform check
● Context creation
● Device info
● Kernel compilation
● Command queue
● Buffer allocation
● Sending random

seeds to devices
● Tread ID settings

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

The PRNG quality test

How good is a PRNG?
● 1st simply randomness tests can be

carried out via taking the numbers and
calculation mometns, etc.

● 2nd test is the autocorrelation

● 3rd Complex test where PRNGs can die
hared is the „Diehard test“:

R.G. Brown, D. Eddelbüttel, D. Bauer:
Diehard 3.31.1 a Kolmogorov-Smirov
test based open source random
number statistical test suite
package, based on G. Marsaglia
„Diehard battery of test of
randomness“.

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

The PRNG quality test

TRandom3 TRandom4 TRandom5

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

The PRNG quality test

● Summary of the DieHard quality tests of PRNGs

TRandom3 – Original CPU based Mersenne Twister

TRandom4 – CPU/GPU based SFMT (SIMD-oriented Fast MT)

TRandom5 – CPU/GPU based MWC64X algorithm

P
er

fo
rm

a n
ce

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

Performance tests by GPU based MC

● Hardware framework

gpu001 at GPU Laboratory of the Wigner RCP
● MB: ASUS P6T6 PCIExpress 2.0x16
● CPU: Core i7 920 (2.76 Ghz, 8 KB cache)
● Memory: 12GB DDR3 (1333 MHz)
● HDD: 1 TB
● GPU: 3 pcs. ATi Radeon HD5970

(2 GPUs, 735 MHz, 1+1 GB GDDR, 4.64 TFlop)

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

● Hardware framework

gpu001 at GPU Laboratory of the Wigner RCP
● MB: ASUS P6T6 PCIExpress 2.0x16
● CPU: Core i7 920 (2.76 Ghz, 8 KB cache)
● Memory: 12GB DDR3
● HDD: 1 TB
● GPU: 3 pcs. ATi Radeon HD5970 (735 MHz 2GB VRAM)

Performance tests by GPU based MC

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

The main question is: How about SPEED?

● Levels of speedtest

Kernel speed
● Real geneation time of a

PRNG in CPU or in GPU.

Total speed
● Generation time of the PRNGs

within the proper program
framework

Real speed
● The above two, but with real

(V)RAM usage.

Here we used a 200
million event sample!

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

SPEED without writing (V)RAM

Kernel time Full calculation

C
P

U
G

P
U

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

SPEED without writing (V)RAM

Kernel time Full calculation

C
P

U
G

P
U

42
x

+
30

%

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

SPEED with writing (V)RAM

C
P

U
G

P
U

Kernel time Full calculation

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

SPEED with writing (V)RAM

C
P

U
G

P
U

Kernel time Full calculation

-5
%

-1
4%

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

So, how about SPEED test?
+

10
x

+
10

x

+
3x

+
3x

● For this setup (Core i7 vs. ATi Radeon HD5970)

TRandom3 < TRandom4 < Trandom5

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

So, how about SPEED test?

+45x +30%

+
10

x
+

10
x

+
3x

+
3x

● For this setup (Core i7 vs. ATi Radeon HD5970)

TRandom3 < TRandom4 < Trandom5

Kernel calculation is faster (NW)

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

So, how about SPEED test?

-5% -14%

+45x +30%

+
10

x
+

10
x

+
3x

+
3x

● For this setup (Core i7 vs. ATi Radeon HD5970)

TRandom3 < TRandom4 < Trandom5

Kernel calculation is faster (NW), but real speed (RW) is slower

Note
1
: New GPU cards are 2-5 times faster

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

So, how about SPEED test?

● For this setup (Core i7 vs. ATi Radeon HD5970)

TRandom3 < TRandom4 < Trandom5

Kernel calculation is faster (NW), but real speed is slower

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

So, how about SPEED test?

+2x faster+2x faster

● For this setup (Core i7 vs. ATi Radeon HD5970)

TRandom3 < TRandom4 < Trandom5

Kernel calculation is faster (NW), but real speed is slower

Note
2
: Parallel computing (OpenCL) improves speed!

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

Some Physics: proton-proton collisions

● Theoretical model of a pp collisions

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

Some Physics: proton-proton collisions

● A reconstructed pp event in the ALICE experiment

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

Some Physics: pp collisions at GPU
● 400k TRandom5 PRNG

Transverse momentum spectrum

dN/dp
T
(Tsallis distr.)

Rapidity distribution

dN/dy (Gaussian distr.)

Angular distribution

dN/dφ (Isotropy)

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

● To check the validity of the 'physics':

Compare calulated distributions to the original Trandom3 CPU

TRandomX/TRandom3 must be ~1 depending on statistics

Some Physics: pp collisions at GPU

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

● To check the validity of the 'physics':

Compare calulated distributions to the original Trandom3 CPU

TRandomX/TRandom3 must be ~1 depending on statistics

10% agreement 5% agreement 5% agreement

up to p
T
<6 GeV/c in |y|<5 in the whole φ

Some Physics: pp collisions at GPU

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

S U M M A R Y
● Aim

● Faster MC event generation for HIC

● Resuts for pp MC @ GPUs
● Diehard test of open source PRNGs: (SFMT, MWC64X)

on GPUs
● Implementation of new GPU based modules

(TRandom4, TRandom5) to Root/AliRoot framework
● Tests: simulation of high-energy pp collisions

● Take away message
● GPUs can be used for Monte Carlo generators in HIC
● One needs more programming (CUDA/OpenCL/...)
● Need to optimize (price/speed) since other

technologies available (e.g. Intel Xeon Phi)

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

O U T L O O K
● The presented results are on

● AliRoot, especially AliPYTHIA for proton-proton
● CPU/GPU SIMD-oriented Fast MT & MWC64X
● Standalone machine (with ATi Radeon HD5970)

● How to improve?
● Ongoing: HIJING calculations (need for more PRNGs),

so might be more efficient, faster
● Trivial: Buy new fast cards and re-test – we are on it

and we hope the funging agency on it as well.
● The framework is almost ready to test in the GRID

using JDL (required HW: GPUs, SW: OpenCL/CUDA/...)
● More faster PRNGs on CPUs/GPUs (Tiny MT, MTGP),

but note, faster PRNG less randomness quality.
● Further modules can be moved to GPU

 B A C K U P

G.G. Barnaföldi: Monte Carlo Generators based on GPUs

The PRNG quality test

Some DieHard tests by George Marsaglia
Birthday spacings: Choose random points on a large interval. The spacings between the points should be asymptotically exponentially
distributed. The name is based on the birthday paradox.

Overlapping permutations: Analyze sequences of five consecutive random numbers. The 120 possible orderings should occur with
statistically equal probability.

Ranks of matrices: Select some number of bits from some number of random numbers to form a matrix over {0,1}, then determine the
rank of the matrix. Count the ranks.

Monkey tests: Treat sequences of some number of bits as "words". Count the overlapping words in a stream. The number of "words"
that don't appear should follow a known distribution. The name is based on the infinite monkey theorem.

Count the 1s: Count the 1 bits in each of either successive or chosen bytes. Convert the counts to "letters", and count the occurrences
of five-letter "words".

Parking lot test: Randomly place unit circles in a 100 x 100 square. If the circle overlaps an existing one, try again. After 12,000 tries,
the number of successfully "parked" circles should follow a certain normal distribution.

Minimum distance test: Randomly place 8,000 points in a 10,000 x 10,000 square, then find the minimum distance between the pairs.
The square of this distance should be exponentially distributed with a certain mean.

Random spheres test: Randomly choose 4,000 points in a cube of edge 1,000. Center a sphere on each point, whose radius is the
minimum distance to another point. The smallest sphere's volume should be exponentially distributed with a certain mean.

The squeeze test: Multiply 231 by random floats on [0,1) until you reach 1. Repeat this 100,000 times. The number of floats needed to
reach 1 should follow a certain distribution.

Overlapping sums test: Generate a long sequence of random floats on [0,1). Add sequences of 100 consecutive floats. The sums should
be normally distributed with characteristic mean and sigma.

Runs test: Generate a long sequence of random floats on [0,1). Count ascending and descending runs. The counts should follow a
certain distribution.

The craps test: Play 200,000 games of craps, counting the wins and the number of throws per game. Each count should follow a certain
distribution.)

	Dia 1
	Folie 1
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24
	Dia 25
	Dia 26
	Dia 27
	Dia 28
	Dia 29
	Dia 30
	Dia 31
	Dia 32
	Dia 33
	Dia 34
	Dia 35
	Dia 36
	Dia 37
	Dia 38
	Dia 39

