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● GPU based PRNG for MC generators

● Performance tests by GPU based MC

● What can we learn from pp MC simulations?
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MC generators in high-energy collisions

Why do we need Monte Carlo generators?

There are problems with no analytical expression, 
no closed form, or no deterministic description, like: 

● stohastic processes (independent events)
● numerical (multi-D) integration 
● optimalization
● ...and many more during the next days :-)

Solution & errors

Random sampling of numerical results

Error estimation by standard devitaion

Fast random numbers → Computing & IT 
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The biggest data challenge: LHC

WLCG – Worldwide LHC Computing GRID:

15-20 Petabytes data per year

...and more after LHC upgrades
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How to improve the WLCG resources

WLCG:
● Critical points are the number 

and performance of the WNs

● There are multicore machines 
with single thread. 

● If there are free multicores or 
GPU resources, improvement 
can be made at the sofrware  
and middleware level (cheap).

● Certainly, there is a budget 
issue as well.
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Fast computing=parallel computing
● Moore's law: 

Every 2nd  year the 
number of transistors 
(integrated circuits) are 
doubled in computing 
hardwares.

● Amdalh's law:

The theoretical speedup 
is given by the portion of 
parallelizable program, p, 
& number of processors, 
N, is: 
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Quick introduction to GPUs

● Tiny supercomputer: Graphical 
Processing Unit on your video card.

● Parallel computing

● CPU vs. GPU architecture
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When is the moment to use GPUs?

No direct answer! 
● Pilot study to define parameters to be optimized
● Need for large scale and large-large scale computing
● Have time (5-10 times more code development)
● Manpower high-level (close to hardware) programming
● $$$$$$

What has been done so far to help us? – without CUDA, etc... 

● Several libs & toolkits (BLAS, FFTW, CUBLAS, CUFFT)
● Wrappers (C, FORTRAN → CUDA)
● OpenCL standards (Ati, NVidia) 
● Mathematica, MatLab (with GPU support)
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Monte Carlo Simulations on GPUs

Graphical Processing Units
● GPUs are originally not designed for graphics and image 

processing, but GPGPU technologies helps us to use them 
for parallel computing at ~TFlop level. 

● Fast single precision arithmetics, fast data handling, but

→ precision + speed = const.

Simply ALUs can be used for several tasks: 

– Image processing
– Lattice calulations
– Subatomic, atomic or molecular dynamics
– Fast Fourier Transformation
– Pseudo-random number generation
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GPU based PRNG 
for 

MC event generators
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GPU based PRNG for MC event generators

● Software frameworks

CERN
● OS: SLC 2.6.32-279.1.1.el6.x86_64
● Graphics: fglrx 9.002 (Catalyst 12.10)
● GCC: 4.4.6 20120305 (Red Hat 4.4.6-4)
● OpenCL: 1.2 AMD APP SDK 2.8

ALICE 
● Aliroot: v5-03-73-AN
● Root: v5-34-02
● Geant3: v1-14

PRNG tester
● Dieharder: 3.31.1
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GPU based PRNG for MC event generators

AliRoot framework for 
ALICE data simualtion, 
reconstruction, analysis

Math
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GPU based PRNG for MC event generators

● The tested PRNG codes

Trandom1 (RANLUX) 

TRandom2 (Tausworthe)

TRandom3
● Original CPU based Mersenne 

Twister) algorithm 

TRandom4
● CPU/GPU based SFMT (SIMD-

oriented Fast Mersenne 
Twister) algorithm 

TRandom5 
● CPU/GPU based MWC64X 

algorithm
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GPU based PRNG for MC event generators

● From the user side
– Installation:

Driver + OpenCL (SDK)

Pre-complied modules

– Usage:

TRandomX, can be take 
as a regular PRNG.

CPU/GPU run can be 
choosen via parameters: 

GPU: parameter > 200

CPU: parameter < 200
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GPU based PRNG for MC event generators

● Behind the scene 
– TRandom4 & TRandom5

– No single random number 
generation only in 500k 
blocks

– RAM buffer is for random 
numbers. 

– Only speeddown is the 
'stack depth check'. 

– Copy work from buffer is 
by the CPU.

– Due to OpenCL platform 
this works on both CPU/GPU 

● Constructor 
– It contains all tasks

● Platform check
● Context creation
● Device info
● Kernel compilation
● Command queue
● Buffer allocation
● Sending random 

seeds to devices
● Tread ID settings
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The PRNG quality test

How good is a PRNG?
● 1st simply randomness tests can be 

carried out via taking the numbers and 
calculation mometns, etc.

● 2nd test is the autocorrelation

● 3rd Complex test where PRNGs can die 
hared is the „Diehard test“: 

R.G. Brown, D. Eddelbüttel, D. Bauer: 
Diehard 3.31.1 a Kolmogorov-Smirov 
test based open source random 
number statistical test suite 
package, based on G. Marsaglia 
„Diehard battery of test of 
randomness“.
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The PRNG quality test

TRandom3 TRandom4 TRandom5
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The PRNG quality test

● Summary of the DieHard quality tests of PRNGs

TRandom3 – Original CPU based Mersenne Twister

TRandom4 – CPU/GPU based SFMT (SIMD-oriented Fast MT) 

TRandom5 – CPU/GPU based MWC64X algorithm
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Performance tests by GPU based MC

● Hardware framework

gpu001 at GPU Laboratory of the Wigner RCP
● MB: ASUS P6T6 PCIExpress 2.0x16
● CPU: Core i7 920 (2.76 Ghz, 8 KB cache)
● Memory: 12GB DDR3 (1333 MHz)
● HDD: 1 TB
● GPU: 3 pcs. ATi  Radeon HD5970

(2 GPUs, 735 MHz, 1+1 GB GDDR, 4.64 TFlop)
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● Hardware framework

gpu001 at GPU Laboratory of the Wigner RCP
● MB: ASUS P6T6 PCIExpress 2.0x16
● CPU: Core i7 920 (2.76 Ghz, 8 KB cache)
● Memory: 12GB DDR3
● HDD: 1 TB
● GPU: 3 pcs. ATi  Radeon HD5970 (735 MHz 2GB VRAM)

Performance tests by GPU based MC
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The main question is: How about SPEED?

● Levels of speedtest

Kernel speed
● Real geneation time of a 

PRNG in CPU or in GPU. 

Total speed
● Generation time of the PRNGs 

within the proper program 
framework

Real speed 
● The above two, but with real 

(V)RAM usage.

Here we used a 200 
million event sample! 
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SPEED without writing (V)RAM

Kernel time Full calculation
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SPEED without writing (V)RAM
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SPEED with writing (V)RAM
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SPEED with writing (V)RAM
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So, how about SPEED test?
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● For this setup (Core i7 vs. ATi Radeon HD5970) 

TRandom3 < TRandom4 < Trandom5
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So, how about SPEED test?
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● For this setup (Core i7 vs. ATi Radeon HD5970) 

TRandom3 < TRandom4 < Trandom5

Kernel calculation is faster (NW)
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So, how about SPEED test?
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● For this setup (Core i7 vs. ATi Radeon HD5970) 

TRandom3 < TRandom4 < Trandom5

Kernel calculation is faster (NW), but real speed (RW) is slower

Note
1
: New GPU cards are 2-5 times faster
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So, how about SPEED test?

● For this setup (Core i7 vs. ATi Radeon HD5970) 

TRandom3 < TRandom4 < Trandom5

Kernel calculation is faster (NW), but real speed is slower
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So, how about SPEED test?

+2x faster+2x faster

● For this setup (Core i7 vs. ATi Radeon HD5970) 

TRandom3 < TRandom4 < Trandom5

Kernel calculation is faster (NW), but real speed is slower

Note
2
: Parallel computing (OpenCL) improves speed!



G.G. Barnaföldi: Monte Carlo Generators based on GPUs

Some Physics: proton-proton collisions

● Theoretical model of a pp collisions
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Some Physics: proton-proton collisions

● A reconstructed pp event in the ALICE experiment
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Some Physics: pp collisions at GPU
● 400k TRandom5 PRNG 

Transverse momentum spectrum

dN/dp
T 
(Tsallis distr.)

Rapidity distribution

dN/dy (Gaussian distr.)

Angular distribution

dN/dφ (Isotropy)
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● To check the validity of the 'physics':

Compare calulated distributions to the original Trandom3 CPU

TRandomX/TRandom3 must be ~1 depending on statistics

 

Some Physics: pp collisions at GPU
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● To check the validity of the 'physics':

Compare calulated distributions to the original Trandom3 CPU

TRandomX/TRandom3 must be ~1 depending on statistics

10% agreement 5% agreement 5% agreement

up to p
T
<6 GeV/c in |y|<5 in the whole φ

 

Some Physics: pp collisions at GPU
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S U M M A R Y
● Aim

● Faster MC event generation for HIC

● Resuts for pp MC @ GPUs 
● Diehard test of open source PRNGs: (SFMT, MWC64X) 

on GPUs
●  Implementation of new GPU based modules 

(TRandom4, TRandom5) to Root/AliRoot framework
● Tests: simulation of high-energy pp collisions

● Take away message
● GPUs can be used for Monte Carlo generators in HIC
● One needs more programming (CUDA/OpenCL/...)
● Need to optimize (price/speed) since other 

technologies available (e.g. Intel Xeon Phi)
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O U T L O O K
● The presented results are on

● AliRoot, especially AliPYTHIA for proton-proton
● CPU/GPU SIMD-oriented Fast MT & MWC64X
● Standalone machine (with ATi Radeon HD5970)

● How to improve?
● Ongoing: HIJING calculations (need for more PRNGs), 

so might be more efficient, faster
● Trivial: Buy new fast cards and re-test – we are on it 

and we hope the funging agency on it as well.
● The framework is almost ready to test in the GRID 

using JDL (required HW: GPUs, SW: OpenCL/CUDA/...) 
● More faster PRNGs on CPUs/GPUs (Tiny MT, MTGP), 

but note, faster PRNG less randomness quality. 
● Further modules can be moved to GPU



  B A C K U P
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The PRNG quality test

Some DieHard tests by George Marsaglia
Birthday spacings: Choose random points on a large interval. The spacings between the points should be asymptotically exponentially 
distributed. The name is based on the birthday paradox.

Overlapping permutations: Analyze sequences of five consecutive random numbers. The 120 possible orderings should occur with 
statistically equal probability.

Ranks of matrices: Select some number of bits from some number of random numbers to form a matrix over {0,1}, then determine the 
rank of the matrix. Count the ranks.

Monkey tests: Treat sequences of some number of bits as "words". Count the overlapping words in a stream. The number of "words" 
that don't appear should follow a known distribution. The name is based on the infinite monkey theorem.

Count the 1s: Count the 1 bits in each of either successive or chosen bytes. Convert the counts to "letters", and count the occurrences 
of five-letter "words".

Parking lot test: Randomly place unit circles in a 100 x 100 square. If the circle overlaps an existing one, try again. After 12,000 tries, 
the number of successfully "parked" circles should follow a certain normal distribution.

Minimum distance test: Randomly place 8,000 points in a 10,000 x 10,000 square, then find the minimum distance between the pairs. 
The square of this distance should be exponentially distributed with a certain mean.

Random spheres test: Randomly choose 4,000 points in a cube of edge 1,000. Center a sphere on each point, whose radius is the 
minimum distance to another point. The smallest sphere's volume should be exponentially distributed with a certain mean.

The squeeze test: Multiply 231 by random floats on [0,1) until you reach 1. Repeat this 100,000 times. The number of floats needed to 
reach 1 should follow a certain distribution.

Overlapping sums test: Generate a long sequence of random floats on [0,1). Add sequences of 100 consecutive floats. The sums should 
be normally distributed with characteristic mean and sigma.

Runs test: Generate a long sequence of random floats on [0,1). Count ascending and descending runs. The counts should follow a 
certain distribution.

The craps test: Play 200,000 games of craps, counting the wins and the number of throws per game. Each count should follow a certain 
distribution.)
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