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Session outline

What is pricing
Pricing by replication
Binomial tree
Risk-Neutral pricing
Monte Carlo simulation
Risks
An example in commodity
American type options
LSM algorithm and the bias correction



What is and what isn’t derivative pricing

Pricing is NOT forecasting

Example: pricing real estates
Current prices of estates in a neighborhood help you figure out the
current price for a particular estate,
but give no information about future prices.

Example: pricing liquid instruments
Your decision whether to buy/sell a particular stock may be governed by
your expectation of its future price, but the price on which you will buy or
sell is determined by current market price.

The fair price of an instrument is the price
which rules out arbitrage
allows a static or dynamic replication portfolio with the same payoff
is an inter- / extrapolation of market prices of related products.
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Assumptions

No transaction costs
We can borrow and lend arbitrary amounts of money at the same rate
Underlying products are infinitely divisible (e.g. we can buy sin(e/π)
number of shares)
Underlying products can be selled short (selling without owning)
Market is liquid

prices can be observed,
underlying can be bought / sold at the currently observed market price,
our trades do not influence market prices.

⇒ Owning an instrument or owning its current market value in cash is
equivalent in value.
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Fair strike of a forward contract

Party A and B agree on the following deal: a year from now A will give
one share of CCC Corp. to B, in return B will give S dollars to A.
What is the “fair” value of S?

Market info:
Current price of CCC is 30 dollars
Analysts expect CCC to trade at 39 dollars in a year from now
The risk free interest rate is 10%

Replication strategy for B
Borrow 30 dollars for 1 year
Buy the share
After 1 year pay back 33 dollars. ⇒ S ≤ 33

Replication strategy for A
Short (sell) the share
Lend the 30 dollars for 1 year
After 1 year receive 33 dollars. ⇒ S ≥ 33
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Eliminating risk by hedging

1 Enter into the same (similar) contract from the other side
Common practice, market makers charge some fee on top of the fair
price.

2 Perform the opposite replication strategy
Hedging may be partial



Trading derivatives – case study

Derivatives may be bought / sold before expiry

6 months after the trade the price of CCC Corp increases to 31
dollars. The interest rate remains 10%. B decides to sell its position
to Q. What will the price be?
The fair strike (based on today’s data) would be 32.55, but Q will
need to pay 33, so Q will loose 45 cents in 6 months if it enters the
trade. B needs to compensate Q for a future loss of 45 cents.
Present value of 45 cents paid in 6 months time is ~ 42.86 cents
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Call option – binomial model

Consider the following economy:

0 1 t

r = 0%

100

S

200

50

0
2/3 · 50− 100/3 = 0

50%

50%

100
−1/3 · 200 + 100− 100/3 = 0

Fair price of a call option strike at 100 ?

Call option payoff = ?
max(S1 − 100,0)

Replication by stock and cash
Ask 100/3 for the option and
borrow 100/3 at t = 0.
Buy 2/3 number of shares at
t = 0.
Give back the borrowed 100/3 at
time t = 1.
No loss or gain on any trajectory.
Perfect replication!
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Explanation of pricing equation

As we have seen all replication portfolio consists of stock and cash

Value at T = 0 is V0

Assuming option payoffs V1,V2 are given. Then

V1 = V0 + b(S1 − S0)

V2 = V0 + b(S2 − S0)

We get:

V0 =
S0 − S2

S1 − S2
V1 +

S1 − S0

S1 − S2
V2

This is an expectation under a new measure!
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Risk neutral measure

0 1 t

r = 10%

100

S

150

9050%

50%

Investors need to be compensated for risk

If we change transition probabilities . . .

. . . expectation of share price equals value of risk-less
investment.

Expectation of option payoff equals value of risk-less
investment of the option price.

Using risk-neutral probabilities derivative prices can be
written as

V (0) = E[V (T )]D(0, T )

V (T ) is the payoff at T , unknown at t < T

D(0, T ) < 1 is the deterministic discount factor
Derivative payoff is replicated by a combination of stock and cash.
Under risk-neutral measure both grow in average at the risk-free rate, so their combination,
which is the option value also grows at the risk-free rate.
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Multi-period binomial model

What is the price of a call option (strike = 100) expiring at T = 2?
(r = 10%)
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7.42
19.37

Unique price exists because there is perfect replication.

At t = 1 replication portfolio has to be rebalanced based on outcome.

Portfolio is self-financing: no need to add money/no money is gained at t = 1.

Price depends on set of available paths
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What is the price of a call option (strike = 100) expiring at T = 2?
(r = 10%)

180

120

110

80

150

90

100

80

20

10

0

59.1

5.76
21.4

180

120

110

80

140

95

100

80

20

10

0

49.09

7.42
19.37

Unique price exists because there is perfect replication.

At t = 1 replication portfolio has to be rebalanced based on outcome.

Portfolio is self-financing: no need to add money/no money is gained at t = 1.

Price depends on set of available paths



Using V (0)E[V (T )]D(0, T ) to price derivatives

Pricing a forward

VFW(0) = E[S(T )−K ]D(0,T ) = E[S(T )]D(0,T )−KD(0,T ) = S(0)−KD(0,T )

No assumptions needed⇒ price is unique and unambiguous.

Pricing a call option

VCALL(0) = E[max(S(T )− K ,0)]D(0,T ) =?

Need to have some assumptions, a MODEL⇒Model for the possible
trajectories!
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Continuous-time models

Bt = exp(rt)
dSt = Stµ(t ,St )dt + Stσ(t ,St )dWt

where r is the riskless interest rate, σ is the volatility, and µ is the drift of
the stock. Both instruments are freely and instantaneously tradable either
long or short at the price quoted.

Let X be a payout at time T (e.g. call option: X = (ST − K )+)

What is the price today?
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Continuous-time models

Although mathematically more challenging, the theory works!

The price of the claim can be computed as an expectation under an
artificial new measure (risk neutral measure)

exp(−rT )EQ(X )

Price of the call option: (if X = (ST − K )+) is

exp(−rT )EQ((ST − K )+)
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Black-Scholes model

Bt = exp(rt)
dSt = Stµdt + StσdWt

with constant r , µ, σ, then the appropriate integral can be computed
analytically since ST is log-normally distributed under the risk-neutral
measure Q.

The price of the call option paying X = (ST − K )+ is

exp(−rT )EQ ((ST − K )+) = S0Φ

(
log S

K +(r+ 1
2σ

2)T

σ
√
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−
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The world is not as simple, the dynamics is more complex!

We need MONTE CARLO simulation!
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Monte Carlo simulation

The task is:
Generate Monte Carlo paths for the underlying

Evaluate the cashflows on every path

The price is the average value (Calculate expected value)

Standard techniques
For path generation: Euler Scheme, Milstein Scheme, Euler scheme
with predictor corrector

Variance reduction

Random generator

Sampling

Weighting
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Risks

After evaluating the expected value, we also need its sensitivity to different
market data and model parameter.

Hedging

Risk management

We need the partial derivatives (GREEKS)!

But with the same random source.
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An example in Commodity

The cashflows of an option on electricity future price is very complex
(think of e.g peak and off-peak periods).

Even if we generate a single path with a relatively simple dynamics,
evaluation step is computationally expensive.

Can we avoid regenerating and reevaluating paths to compute partial
derivatives?

The answer is yes!
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Likelihood ratio weighting

Assume we know the joint distribution function of the underlyings with a
density function

fP1×...×PL (p1, . . . ,pL)

and the cashflow function is C (p1, . . . ,pL)

The price is

V̂ =
1

Nω

Nω∑
k=1

C (p1 (ωk ) , . . . ,pL (ωk ))
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Likelihood ratio weighting

Since
∂

∂θ
E [C (p1, . . . ,pL)] =

ˆ
C (p1, . . . ,pL)

∂
∂θ fP1×...×PL (p1, . . . ,pL)

fP1×...×PL (p1, . . . ,pL)
fP1×...×PL (p1, . . . ,pL) dp1 . . . dpL,

The partial derivatives (greeks) can be computed as

V̂ =
1

Nω

Nω∑
k=1

C (p1 (ωk ) , . . . ,pL (ωk ))
∂
∂θ fP1×...×PL (p1, . . . ,pL)

fP1×...×PL (p1, . . . ,pL)

If dynamics is simple (e.g. lognormal), then weights can be computed
fast
We have to evaluate function C only once!
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American option

Option pricing
European option

a contract that provides the right but not the obligation to engage in
transaction on an asset at a reference price at maturity

American option
a contract that provides the right but not the obligation to engage in
transaction on an asset at a reference price any time before or at
maturity

Many American type option in practice
Bermudian option
Callable bond
Loan



Monte Carlo simulation

Stochastic calculus
Determining the underlying dynamics

Black-Scholes dynamics: dS(t) = r · S(t)dt + σ · S(t)dW (t)
the discounted stock price dynamics under the risk neutral measure:
dS̃(t) = σ · S̃(t)dW̃ (t)

No arbitrage asset pricing theory
the true value of an asset is the expectation of all future discounted cash
flows with respect to the risk neutral measure



Brute-Force algorithm

A natural approach to pricing
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Figure: Brute-Force algorithm

Pros: simple, flexible and transparent
Cons: computationally intractable



LSM algorithm

The least squares method by Longstaff and Schwartz (2001)
Objective

determine the exercise policy which maximizes the value of the option

The algorithm works backwards
determines the expected value of continuation by regression
regression: spot price (S)→ cash flow (y)
exercise if intrinsic value is equal or greater than the expected value of
continuation
average for all ω paths



Least squares regression

Analysis of the regression model
Using a set of basis functions those form a basis
Regression value: Ŷ = X β̂ = X (X T X )−1Xy = Vy
The theoretical value of the regression Y
Errors are ε = y − Y ∼ N(0, σ2I)

Residuals are r = y − Ŷ ∼ N(0, σ2(I − V ))

Paths removed from the bulk of the cases are biased



Implications for LSM algorithm

At-the money American option values
LSM algorithm and independent path method respectively

Figure: Biased and unbiased approximations



Theoretical solution

At-the money American option values
Theoretical solution is to increase the number of paths to infinity

Figure: Convergence of the methods



The true value of the option at a given time t

Fries (2006) suggests to consider:

E (max((K − Si )
+,Yi )|F(t)) = E(max((K − Si )

+, Ŷi + ei )|F(t))

where: ei
.

= ri − εi ∼ N(0, δ2
i )

One can derive that the above equals to:(
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Bias correction

Kovacs - MSG (2012)
r = y − Ŷ

ε = (I − V )−1 · r

σ2 ≈
Pn
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2
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exercise if (K − Si )
+ ≥ Ŷi + bi

no exercise else
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+ ≥ Ŷi + bi

no exercise else



Bias correction

Kovacs - MSG (2012)
r = y − Ŷ
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+−Ŷi

δi

)
+ δi · ϕ

(
(K−Si )

+−Ŷi
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+−Ŷi

δi

)
+ δi · ϕ

(
(K−Si )

+−Ŷi
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Test results

At-the-money American option values
The strike is 100 and volatility is 0.2 and 0.4 respectively
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Figure: Comparison of the four introduced methods
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