

Monte Carlo Event Generators

in high-energy and astro-particle physics

Leif Lönnblad

Department of Astronomy and Theoretical Physics Lunds University

DESY 2013.02.20

1

Outline

- Particle Physics
- Event Generators
- Parton Showers
- Monte Carlo activities in Lund

in

The Standard Model of Particle Physics

All known matter is built up by quarks and leptons.

- Quarks are bound inside hadrons (eg. protons)
- Protons and neutrons are bound together in nuclei.
- Electrons are bound to nuclei and form atoms
- Atoms bind together and form molecules

. . .

- ► Gravity:
 - $G_{\mu
 u} + g_{\mu
 u} \Lambda = rac{8\pi G}{c^4} T_{\mu
 u}$
- ► Electromagnetism and weak interaction: $\mathcal{L}_{EW} = -\frac{1}{4} W_a^{\mu\nu} W_{\mu\nu}^a - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} + \overline{Q}_i i D Q_i + \overline{L}_i i D L_i$
- Strong interaction:

 $\mathcal{L}_{\rm QCD} = \bar{U}(\delta_{\mu} - ig_s G^a_{\mu} T^a) \gamma^{\mu} U + \bar{D}(\delta_{\mu} - ig_s G^a_{\mu} T^a) \gamma^{\mu} D$

Everything in the microcosm is described by The standard model.

Quantum Field Theory: all paricles are fields, all fields are particles.

- Gravity: $G_{\mu\nu} + g_{\mu\nu}\Lambda = \frac{8\pi G}{c^4}T_{\mu\nu}$
- ► Electromagnetism and weak interaction: $\mathcal{L}_{EW} = -\frac{1}{4} W_a^{\mu\nu} W_{\mu\nu}^a - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} + \overline{Q}_i i \not\!\!{D} Q_i + \overline{L}_i i \not\!\!{D} L_i$
- Strong interaction:

 $\mathcal{L}_{\rm QCD} = \bar{U}(\delta_{\mu} - ig_{s}G_{\mu}^{a}T^{a})\gamma^{\mu}U + \bar{D}(\delta_{\mu} - ig_{s}G_{\mu}^{a}T^{a})\gamma^{\mu}D$

Everything in the microcosm is described by The standard model.

Quantum Field Theory: all paricles are fields, all fields are particles.

4

- ► Gravity:
 - $G_{\mu
 u} + g_{\mu
 u} \Lambda = rac{8\pi G}{c^4} T_{\mu
 u}$
- Electromagnetism and weak interaction: $\mathcal{L}_{EW} = -\frac{1}{4} W_a^{\mu\nu} W_{\mu\nu}^a - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} + \overline{Q}_i i \not\!\!D Q_i + \overline{L}_i i \not\!\!D L_i$
- Strong interaction:

 $\mathcal{L}_{\rm QCD} = \bar{U}(\delta_{\mu} - ig_{s}G_{\mu}^{a}T^{a})\gamma^{\mu}U + \bar{D}(\delta_{\mu} - ig_{s}G_{\mu}^{a}T^{a})\gamma^{\mu}D$

Everything in the microcosm is described by The standard model.

Quantum Field Theory: all paricles are fields, all fields are particles.

4

- ► Gravity:
 - $G_{\mu
 u}+g_{\mu
 u}\Lambda=rac{8\pi G}{c^4}T_{\mu
 u}$
- Electromagnetism and weak interaction: $\mathcal{L}_{EW} = -\frac{1}{4} W_a^{\mu\nu} W_{\mu\nu}^a - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} + \overline{Q}_i i \not\!\!D Q_i + \overline{L}_i i \not\!\!D L_i$
- Strong interaction: $\mathcal{L}_{\text{QCD}} = \bar{U}(\delta_{\mu} - ig_{s}G_{\mu}^{a}T^{a})\gamma^{\mu}U + \bar{D}(\delta_{\mu} - ig_{s}G_{\mu}^{a}T^{a})\gamma^{\mu}D$

Everything in the microcosm is described by The standard model.

Quantum Field Theory: all paricles are fields, all fields are particles.

- Gravity: $G_{\mu\nu} + g_{\mu\nu}\Lambda = \frac{8\pi G}{c^4}T_{\mu\nu}$
- ► Electromagnetism and weak interaction: $\mathcal{L}_{EW} = -\frac{1}{4} W_{a}^{\mu\nu} W_{\mu\nu}^{a} - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} + \overline{Q}_{i} i D Q_{i} + \overline{L}_{i} i D L_{i}$
- Strong interaction:

$$\mathcal{L}_{\text{QCD}} = \bar{U}(\delta_{\mu} - ig_{s}G_{\mu}^{a}T^{a})\gamma^{\mu}U + \bar{D}(\delta_{\mu} - ig_{s}G_{\mu}^{a}T^{a})\gamma^{\mu}D$$

Everything in the microcosm is described by The standard model.

Quantum Field Theory: all paricles are fields, all fields are particles.

- Gravity: $G_{\mu\nu} + g_{\mu\nu}\Lambda = \frac{8\pi G}{c^4}T_{\mu\nu}$
- ► Electromagnetism and weak interaction: $\mathcal{L}_{EW} = -\frac{1}{4} W_{a}^{\mu\nu} W_{\mu\nu}^{a} - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} + \overline{Q}_{i} i D Q_{i} + \overline{L}_{i} i D L_{i}$
- Strong interaction:

$$\mathcal{L}_{\text{QCD}} = \bar{U}(\delta_{\mu} - ig_{s}G_{\mu}^{a}T^{a})\gamma^{\mu}U + \bar{D}(\delta_{\mu} - ig_{s}G_{\mu}^{a}T^{a})\gamma^{\mu}D$$

Everything in the microcosm is described by The standard model.

Quantum Field Theory: all paricles are fields, all fields are particles.

QuarksLeptons $d \ \overline{d} \ u \ \overline{u}$ $e^- e^+ \ \nu_e \ \overline{\nu}_e$ $s \ \overline{s}$ $c \ \overline{c}$ $\mu^- \mu^+ \ \nu_\mu \ \overline{\nu}_\mu$ $b \ \overline{b}$ $t \ \overline{t}$ $\tau^- \tau^+ \ \nu_\tau \ \overline{\nu}_\tau$

Force carriers $\gamma \quad Z^0 \quad W^{\pm} \quad g$

Lund University

in

SE

QuarksLeptons $d \ d \ u \ \bar{u}$ $e^- e^+$ $\nu_e \ \bar{\nu}_e$ $s \ \bar{s}$ $c \ \bar{c}$ $\mu^- \ \mu^+$ $\nu_\mu \ \bar{\nu}_\mu$ $b \ \bar{b}$ $t \ \bar{t}$ $\tau^- \ \tau^+$ $\nu_\tau \ \bar{\nu}_\tau$

Force carriers $\gamma \quad Z^0 \quad W^{\pm} \quad g$

Lund University

in

SI

QuarksLeptons $d \ d \ u \ \bar{u}$ $e^- e^+ \ \nu_e \ \bar{\nu}_e$ $s \ \bar{s}$ $c \ \bar{c}$ $\mu^- \mu^+ \ \nu_\mu \ \bar{\nu}_\mu$ $b \ \bar{b}$ $t \ \bar{t}$ $\tau^- \tau^+ \ \nu_\tau \ \bar{\nu}_\tau$

 γ Force carriers Z^0 W^{\pm} g

QuarksLeptons $d \ d$ $u \ \bar{u}$ $e^- e^+$ $\nu_e \ \bar{\nu}_e$ $s \ \bar{s}$ $c \ \bar{c}$ $\mu^- \ \mu^+$ $\nu_\mu \ \bar{\nu}_\mu$ $b \ \bar{b}$ $t \ \bar{t}$ $\tau^- \ \tau^+$ $\nu_\tau \ \bar{\nu}_\tau$

 γ Force carriers γ Z⁰ W^{\pm} g

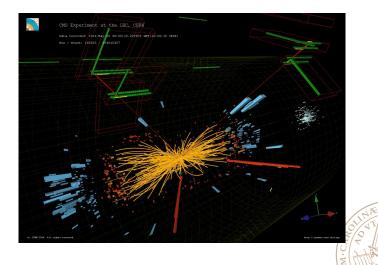
Event Generators

Accelerators and colliders

To study these particles and forces we collide particles together in huge facilities, such as the Large Hadron Collider at CERN, where they recently found *a higgs-like particle*.

 $\mathcal{L}_{H} = -\frac{1}{2} [(\delta_{\mu} - iW_{\mu}^{a}t^{a} - iB_{\mu})\phi]^{2} - \frac{\mu^{2}}{2}\phi^{\star}\phi - \frac{\lambda}{4}(\phi^{\star}\phi)^{2}$

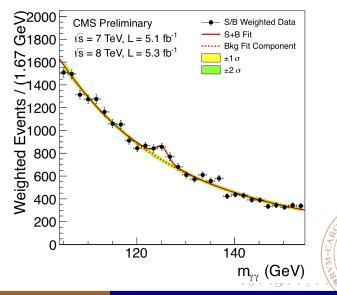
How do you look for a Higgs particle?


Accelerators and colliders

To study these particles and forces we collide particles together in huge facilities, such as the Large Hadron Collider at CERN, where they recently found *a higgs-like particle*.

$$\mathcal{L}_{H} = -\frac{1}{2} [(\delta_{\mu} - iW_{\mu}^{a}t^{a} - iB_{\mu})\phi]^{2} - \frac{\mu^{2}}{2}\phi^{\star}\phi - \frac{\lambda}{4}(\phi^{\star}\phi)^{2}$$

How do you look for a Higgs particle?


Direction of the second s

Lund University

・ロト ・日 ・ ・ ヨ・

* SIC

Event Generators

Lund University

* SIC

- Differences in length scales: 10⁻¹⁸m 10 m
- Differences in time scales: 10⁻²⁶s 10⁻¹²s
- Differences in strengths: Strong force $\sim 10^8 \times$ weak force.
- Differences in probabilities: A Higgs particle is produced in one out of 10¹⁰ proton collisions.
- Differences in numbers: The formulae describe what happens to a hand-full of particles — in each collision there are hundreds.

We need a powerful sumulation machinery to understand what is going on:

- Differences in length scales: 10⁻¹⁸m 10 m
- Differences in time scales: 10⁻²⁶s 10⁻¹²s
- Differences in strengths: Strong force $\sim 10^8 \times$ weak force.
- Differences in probabilities: A Higgs particle is produced in one out of 10¹⁰ proton collisions.
- Differences in numbers: The formulae describe what happens to a hand-full of particles — in each collision there are hundreds.

We need a powerful sumulation machinery to understand what is going on:

Monte Carlo Event Generators

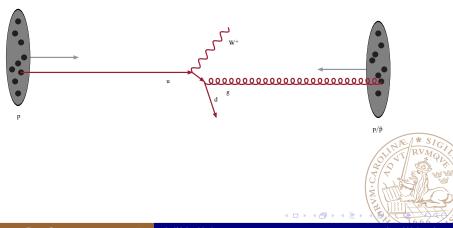
Started in the '80s for simple processes.

Pioneered in Lund, implementing non-perturbative models for *hadronization* (The Lund model).

Today large software frameworks

- PYTHIA (Lund model)
- HERWIG
- SHERPA

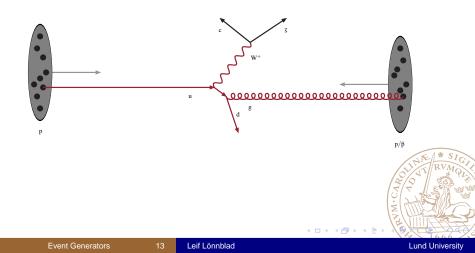
Used in **all** particle physics experiments, also in Astro-particle physics.


The structure of a proton collision

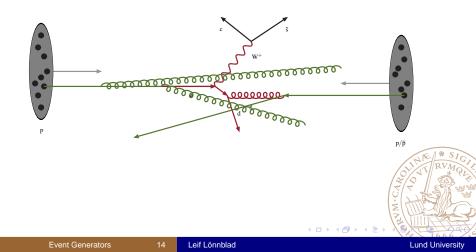
Event Generators

Leif Lönnblad

The hard/primary scattering

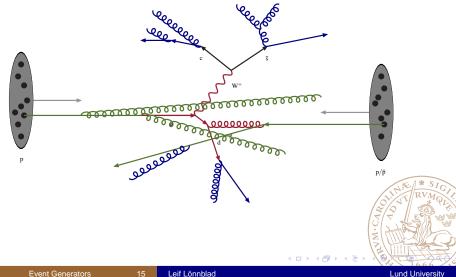


Event Generators


12 Leif L

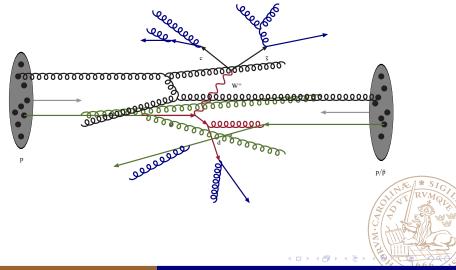
Leif Lönnblad

Immediate decay of unstable elementary particles

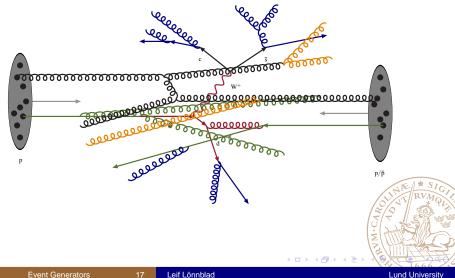


Radiation from particles before primary interaction

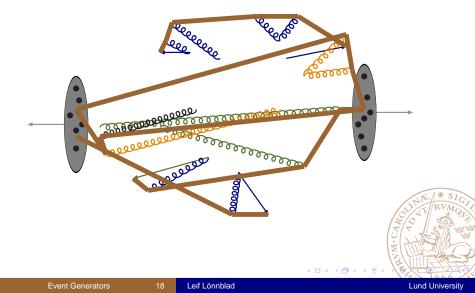
Event Generators

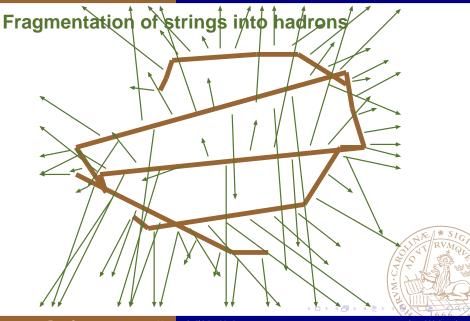

Radiation from produced particles

Event Generators

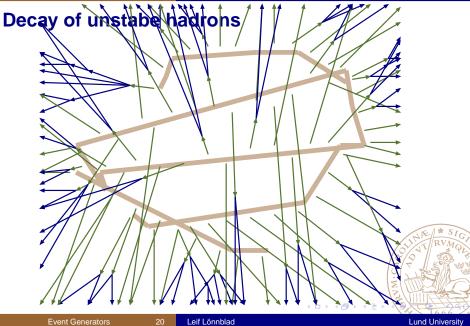

Event Generators

Additional sub-scatterings




Event Generators

... with accompanying radiation



Formation of *colour strings*

Event Generators

We can easily calculate the probability (cross section) of one *parton* from each proton scattering against eachother, and ending up going in certain directions with some energies

$$d\sigma_{ab} \propto \sum_{ij} \int dx_i dx_j f_i(x_i) f_j(x_j) \left| \mathcal{M}_{ij
ightarrow ab}
ight|^2 d\Phi_{ab}$$

- $f_i(x_i)$ are (measured) parton densities
- dΦ is the phase space density
- M_{ij→ab} are matrix elements calculable for up to n ≤ 5 outgoing partons.

Event Generators Parton Showers Compute!

Parton Showers

The dominant contribution of high-multiplicities of partons comes from the strong interaction (QCD). And we know approximately how to calculate

$$\frac{\left|\mathcal{M}_{\textit{ij}\rightarrow\textit{n}+1}\right|^{2}}{\left|\mathcal{M}_{\textit{ij}\rightarrow\textit{n}}\right|^{2}} \propto \alpha_{\rm s} \sum_{\textit{a}} \textit{P}_{\textit{a}\rightarrow\textit{bc}}(\textit{z}) \frac{\textit{d}q^{2}}{q^{2}} \textit{d}\textit{z}\textit{d}\phi$$

► $P_{a \rightarrow bc}$ are simple splitting functions, some of them proportional to 1/z or 1/(1-z)

• α_s is the coupling constant ~ 1/10 (cf. $\alpha_{EM} = 1/137$)

- z ~ the energy sharing between b and c.
 Q² ~ their transverse momentum relative to a.
- Allowed splittings: $q \rightarrow qg$, $g \rightarrow q\bar{q}$, $g \rightarrow gg$.

There is a factorization theorem stating that the total cross section is given by $|\mathcal{M}_{ij\rightarrow 2}|^2$, with corrections of $\mathcal{O}(\alpha_s)$.

But the probability of emitting another parton diverges for collinear splittings.

What we see in the detector is a *jet* of hadrons in the (approximate) direction of an energetic quark.

We use jet-algorithms to obtain observables which can be calculated in perturbation theory. These will always depend on a resolution scale.

Jet calculations

Even if the total cross section can be calculated in a convergent perurbative series

$$\sigma_{ab} = C_0 + C_1 \alpha_s + C_2 \alpha_s^2 + \dots$$

any jet observable will contain a resolution scale Q_0 and if the transverse momentum of the original parton is Q we have

$$C_n = c_{n,2n} \log \left(\frac{\mathsf{Q}}{\mathsf{Q}_0}\right)^{2n} + c_{n,2n-1} \log \left(\frac{\mathsf{Q}}{\mathsf{Q}_0}\right)^{2n-1}$$

from the integration of subsequent splittings.

So if Q₀ is small and Q is large, the series does not converge.

+ . . .

We know the coefficients of the leading and next-to-leading logarithms to all orders, so we can *resum* the series, either analytically, or using a **parton shower**.

The latter is needed if we also want to take into account effects of the hadronization process.

Leif Lönnblad

The Sudakov Form Factor

When we simulate a parton shower, we organize the splittings so that they are **ordered** in time — or rather in decreasing transverse momentum.

In each step we then generate the *next* splitting. The naive splitting probability then gets modifies by the probability of no other splitting happening before.

$$lpha_{
m s} P_{
m a}(z) rac{dq^2}{q^2} dz
ightarrow lpha_{
m s} P_{
m a}(z) rac{dq^2}{q^2} \Delta_{
m S}(q_{
m prev}^2,q^2)$$

 Δ_S is the Sudakov form factor

$$\Delta_{\mathcal{S}}(q_0^2, q_1^2) = \exp\left(-\sum_{a} \int_{q_1^2}^{q_0^2} \frac{dq^2}{q^2} \int dz \, \alpha_{\rm s} P_a(z)\right)$$

So, even if the splitting functions are divergent, the probability density for the momentum distribution of the next splitting is finite.

The Sudakov factorizes for all possible splitting possibilities: we can generate one splitting for each possibility and simply select the one with largest q^2 .

The integration limits of the *z*-integral are often non-trivial, and it is not always possible to calculate Δ_S analytically.

The Sudakov veto algorithm

We can use a modification of the standard *hit-and-miss* veto algorithm.

- Start with the previous splitting scale, q_0^2 .
- find a simple $\hat{\Gamma}(q^2) \leq \Gamma(q^2) = \frac{\alpha_s}{q^2} \int dz P(z)$
- Generate a q^2 of a next emission using $\hat{\Gamma}(q^2)\hat{\Delta}_{S}(q_0^2, q^2)$
 - If $\Gamma(q^2) > R \times \hat{\Gamma}(q^2)$, accept the emission
 - if not, set $q_0 = q$ and start over.

The probability of having no emission (not even one that was thrown away)

$$\mathcal{P}_0 = \hat{\Delta}_{\mathcal{S}}(q_0^2, q^2)$$

The probability of having thrown away one emission

$$\begin{aligned} \mathcal{P}_{1} &= \int_{q^{2}}^{q_{0}^{2}} dq_{1}^{2} \hat{\Gamma}(q_{1}^{2}) \hat{\Delta}_{S}(q_{0}^{2},q_{1}^{2}) \left[1 - \frac{\Gamma(q_{1}^{2})}{\hat{\Gamma}(q_{1}^{2})} \right] \hat{\Delta}_{S}(q_{1}^{2},q^{2}) \\ &= \hat{\Delta}_{S}(q_{0}^{2},q^{2}) \int_{q^{2}}^{q_{0}^{2}} dq_{1}^{2} \left[\hat{\Gamma}(q_{1}^{2}) - \Gamma(q_{1}^{2}) \right] \end{aligned}$$

ż

$$\mathcal{P}_{2} = \int_{q^{2}}^{q_{0}^{2}} dq_{1}^{2} \hat{\Gamma}(q_{1}^{2}) \hat{\Delta}_{S}(q_{0}^{2}, q_{1}^{2}) \left[1 - \frac{\Gamma(q_{1}^{2})}{\hat{\Gamma}(q_{1}^{2})} \right] \\ \times \int_{q^{2}}^{q_{1}^{2}} dq_{2}^{2} \hat{\Gamma}(q_{2}^{2}) \hat{\Delta}_{S}(q_{1}^{2}, q_{2}^{2}) \left[1 - \frac{\Gamma(q_{2}^{2})}{\hat{\Gamma}(q_{2}^{2})} \right] \hat{\Delta}_{S}(q_{2}^{2}, q^{2}) \\ = \hat{\Delta}_{S}(q_{0}^{2}, q^{2}) \frac{1}{2} \left(\int_{q^{2}}^{q_{0}^{2}} dq_{1}^{2} \left[\hat{\Gamma}(q_{1}^{2}) - \Gamma(q_{1}^{2}) \right] \right)^{2}$$

Lund University

Z.M.C

(日)

Total probability of not having any emission is

$$\begin{split} \sum_{n=0}^{\infty} \mathcal{P}_n &= \hat{\Delta}_{\mathcal{S}}(q_0^2, q^2) \sum_{n=0}^{\infty} \frac{1}{n!} \left(\int_{q^2}^{q_0^2} dq_1^2 \left[\hat{\Gamma}(q_1^2) - \Gamma(q_1^2) \right] \right)^n \\ &= \hat{\Delta}_{\mathcal{S}}(q_0^2, q^2) \exp\left(\int_{q^2}^{q_0^2} dq_1^2 \left[\hat{\Gamma}(q_1^2) - \Gamma(q_1^2) \right] \right) \\ &= \Delta_{\mathcal{S}}(q_0^2, q^2) \end{split}$$

Event Generators

V-WZ

Matching Parton Showers with Matrix Elements

How can we systematically increase the precision in a Parton Shower?

Matrix Element	Parton Shower
$ \mathcal{M}_n ^2$	$ \mathcal{M}_2 ^2 \times P_1 \times \cdots \times P_{n-2}$
exact fixed order	approximate all orders
$n \lesssim 5$	$n ightarrow\infty$
inclusive	exclusive
loops	Sudakov
affects total cross section	unitary
$n \lesssim 5$ inclusive loops	$n \to \infty$ exclusive Sudakov

Event Generators

Lund University

VM.C

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Event Generators

Lund University

VM.C

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Lund University

N.C.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

COMPUTE!

PHD-school in the Natural Science Faculty in Lund, bringing together PhD students working on (Monte Carlo) simulations and computations in different areas:

- Astrophysics
- Biochemistry and Structual Biology
- Mathematics
- Computational Biology and Biological Physics
- Experimental Particle Physics
- Mathematical Physics
- Medical Radiation Physics
- Microbial Ecology
- Physical/Theoretical Chemistry
- Physical Geography
- Theoretical High Energy Physics

- Common courses
- Regular Seminars
- Workshops
- ▶ ...

http://cbbp.thep.lu.se/compute

Lund University

That's all folks!

Event Generators

Leif Lönnblad

Lund University