Status of metrology measurements at DESY

Dennis Petschull

Physikalisches Institut Universität Hamburg

December 14, 2007

Outline

- Resume
- Measurements
 - Upper precision hole
 - Precision longhole
 - Fibre gaps
- Results
 - Upper precision hole
 - Precision longhole
 - Fibre gaps
- Summary

Outline

- Resume
- Measurements
 - Upper precision hole
 - Precision longhole
 - Fibre gaps
- Results
 - Upper precision hole
 - Precision longhole
 - Fibre gaps
- Summary

What happend so far?

Results from last meeting

- CERN measurements could be reproduced at DESY
- Precision hole measurement should be improved
- Automation should be implemented to speed up measurement

Outline

- Resume
- 2 Measurements
 - Upper precision hole
 - Precision longhole
 - Fibre gaps
- Results
 - Upper precision hole
 - Precision longhole
 - Fibre gaps
- Summary

- Used as center of coordinate system for all 10 plates
 - ⇒ High precision needed
- Magnification of microscope too large to see whole circle at once
 - ⇒ Find circle edges in different regions → fit whole circle with RFit

Upper precision hole

Upper precision hole - pre-considerations

- Used as center of coordinate system for all 10 plates
 - ⇒ High precision needed
- Magnification of microscope too large to see whole circle at once
 - \Rightarrow Find circle edges in different regions \rightarrow fit whole circle with RFit

Upper precision hole - how it's done

Measurement steps

- Let user position microscope on upper edge of hole
- 2 Let LabView find edge coordinates of circle
 - → write coordinates to textfile
- Move to next region automatically
- Give user chance to correct microscope position
- ...continue with step 2
- Let RFit use final textfile with all edge coordinates to fit center coordinates and radius
- Move microscope to fitted center coordinates and set to (0,0)

How it actualy looks

Precision longhole - pre-considerations

- Used to define direction of coordinate system for all 10 plates
 - ⇒ High precision needed
- Magnification of microscope too large to see whole longhole at once
 - Find straight edges on both sides of hole and calculate the center between edges

Precision longhole - pre-considerations

- Used to define direction of coordinate system for all 10 plates
 - ⇒ High precision needed
- Magnification of microscope too large to see whole longhole at once
 - ⇒ Find straight edges on both sides of hole and calculate the center between edges

Precision longhole - how it's done

Measurement steps

- Move to straight edges automatically
- 2 Let LabView find edge coordinates on both sides
- Fit two parallel lines with found coordinates
- Calculate mid-point between both sides
- Take (0,0) and calculate angle from vertical

How it actualy looks

- Different lightsources effect image quality
 - ⇒ Try to make measurement+results independent from used lightsource
- Change to higher magnification not possible due to error in lense-mechanics of microscope
 - Use same magnification (lowest) as for precision hole measurements
- Use "template picture" of gap for LabView's pattern matching

Fibre gaps

Fibre gaps - pre-considerations

- Different lightsources effect image quality
 - ⇒ Try to make measurement+results independent from used lightsource
- Change to higher magnification not possible due to error in lense-mechanics of microscope
 - Use same magnification (lowest) as for precision hole measurements
- Use "template picture" of gap for LabView's pattern matching

Fibre gaps

Fibre gaps - pre-considerations

- Different lightsources effect image quality
 - ⇒ Try to make measurement+results independent from used lightsource
- Change to higher magnification not possible due to error in lense-mechanics of microscope
 - Use same magnification (lowest) as for precision hole measurements
- Use "template picture" of gap for LabView's pattern matching

Fibre gaps

Fibre gaps - how it's done

Measurement steps

- Move automatically to first gap between two fibres
- 2 Rotate picture 45°
- Let LabView look for "template gap" in right, middle and left area of picture
- Take centers of found gaps as result
- Move to next three gaps automatically

How it actualy looks

Outline

- 1 Resume
- Measurements
 - Upper precision hole
 - Precision longhole
 - Fibre gaps
- Results
 - Upper precision hole
 - Precision longhole
 - Fibre gaps
- Summary

Results for upper precision hole

- ~ 70-200 points found, depending on lightsource
 But: Precision-results from different lightsources vary only insignificantly!
- Precision received after 20 measurements in a row: 2-3 μ m

- ~ 70-200 points found, depending on lightsource
 But: Precision-results from different lightsources vary only insignificantly!
- Precision received after 20 measurements in a row: 2-3 μ m

Results for Precision longhole

- Method seems to work fine
- Further precision studies needed

Results for Precision longhole

- Method seems to work fine
- Further precision studies needed

Preliminary Results:

- LabView finds (almost) all gaps on its own
 - ⇒ Only little user intervention needed!
- Finds three gaps in one picture
 Reduces picture-downloadtime bottleneck
- Even with low magnification: Needed precision seems to be achieved
 - Further precision studies needed

Preliminary Results:

- LabView finds (almost) all gaps on its own
 - ⇒ Only little user intervention needed!
- Finds three gaps in one picture
 - ⇒ Reduces picture-downloadtime bottleneck
- Even with low magnification: Needed precision seems to be achieved
 - Further precision studies needed

Preliminary Results:

- LabView finds (almost) all gaps on its own
 - ⇒ Only little user intervention needed!
- Finds three gaps in one picture
 - ⇒ Reduces picture-downloadtime bottleneck
- Even with low magnification: Needed precision seems to be achieved
 - Further precision studies needed

Outline

- Resume
- Measurements
 - Upper precision hole
 - Precision longhole
 - Fibre gaps
- Results
 - Upper precision hole
 - Precision longhole
 - Fibre gaps
- Summary

Summary

- Q: What has been achieved so far?
 - A: Programming for cirularhole and longhole done. Fibre gaps programming almost done.
- Q: What about the precision?
 - A: A precision of \sim 2-3 μm is possible for the coordinate system.
- Q: What about the overall automation?
 - A: User intervention (measurement-time) already reduced drastically.
- Q: Whats up next?
 - A: Finish programming of fibre gaps + put everything together.

1 × 4 🗇 × 4 🗦 × 4 🗦 ×

