Universality of TMD distribution functions of definite rank

Piet Mulders

(collaboration with Maarten Buffing \& Asmita Mukherjee)

Content

■ Introducing TMD correlators

■ Moment analysis
■ Single weighting

- Double weighting

■ Universality of TMD correlators and PDFs

■ TMDs in experiments (weighted cross sections vs convolutions)

Hadron correlators

- Hadronic correlators establish the diagrammatic link between hadrons and partonic hard scattering amplitude
■ Quark, quark + gluon, gluon, ...

$$
\langle 0| \psi_{i}(\xi)|p, s\rangle=u_{i}(p, s) e^{-i p . \xi}
$$

$$
\langle X| \psi_{i}(\xi)|P\rangle e^{+i p . \xi}
$$

$$
\langle X| \psi_{i}(\xi) A^{\mu}(\eta)|P\rangle e^{+i\left(p-p_{1}\right) \cdot \xi+i p_{1} \cdot \eta}
$$

Hadron correlators

■ At high energies soft parts combine amplitudes into forward matrix elements of parton fields to account for distributions and fragmentation

$$
\Phi_{i j}(p ; P)=\Phi_{i j}(p \mid p)=\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i p . \xi}\langle P| \bar{\psi}_{j}(0) \stackrel{\overrightarrow{\mathrm{P}}}{\psi_{i}}(\xi)|P\rangle
$$

■ Also needed are multi-parton correlators

$$
\Phi_{A: i j}^{\alpha}\left(p-p_{1}, p_{1} \mid p\right)=\int \frac{d^{4} \xi d^{4} \eta}{(2 \pi)^{8}} e^{i\left(p-p_{1}\right) \cdot \xi+p_{1} \cdot \eta}\langle P| \bar{\psi}_{j}(0) A^{\alpha}(\eta) \psi_{i}(\xi)|P\rangle
$$

■ Correlators usually just will be parametrized (nonperturbative physics)

Hard scale

■ In high-energy processes other momenta available, such that P.P' \sim s with a hard scale $s=Q^{2} \gg M^{2}$
■ Additional scale accessible through non-collinearities, e.g. in SIDIS $\gamma^{*}+p$ is not aligned with produced hadron, or momenta inside a jet
■ Employ light-like vectors P and n, such that P.n $=1$ (e.g. $n=P^{\prime} / P . P^{\prime}$) to make a Sudakov expansion of parton momentum

$$
\begin{array}{rlrl}
p & =x P^{\mu}+p_{T}^{\mu}+\sigma n^{\mu} & x=p^{+}=p \cdot n \sim 1 \\
& \uparrow & & \\
& \sim \mathrm{Q} \sim \mathrm{M} \sim \mathrm{M}^{2} / \mathrm{Q} & \sigma=p . P-x M^{2} \sim M^{2}
\end{array}
$$

■ Enables importance sampling (twist analysis) for integrated correlators,

$$
\Phi(p)=\Phi\left(x, p_{T}, p . P\right) \Rightarrow \Phi\left(x, p_{T}\right) \Rightarrow \Phi(x) \Rightarrow \Phi
$$

(Un)integrated correlators

$\Phi\left(x, p_{T}, p . P\right)=\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i p . \xi}\langle P| \bar{\psi}(0) \psi(\xi)|P\rangle \quad ■$ unintegrated

$$
\Phi\left(x, p_{T} ; n\right)=\int \frac{d(\xi . P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p . \xi}\langle P| \bar{\psi}(0) \psi(\xi)|P\rangle=\text { TMD (light-front) }
$$

■ Time-ordering automatic, allowing interpretation as forward anti-parton - target scattering amplitude

- Involves operators of twists starting at a lowest value (which is usually called the 'twist' of a TMD)

$$
\Phi(x)=\int \frac{d(\xi \cdot P)}{(2 \pi)} e^{i p \cdot \xi}\langle P| \bar{\psi}(0) \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0} \text { or } \xi^{2}=0 \text { collinear (light-cone) }
$$

- Involves operators of a definite twist. Evolution via splitting functions (moments are anomalous dimensions)

$$
\Phi=\langle P| \bar{\psi}(0) \psi(\xi)|P\rangle_{\xi=0} \quad \square \text { local }
$$

- Local operators with calculable anomalous dimension

Large \mathbf{p}_{T}

- p_{T}-dependence of TMDs

Fictitious measurement

Large μ^{2} dependence governed by anomalous dim
(i.e. splitting functions)

■ $\Phi\left(x, p_{T}\right) \underset{\mathrm{p}_{\mathrm{T}}^{2}>\mu^{2}}{\rightarrow} \frac{1}{\pi p_{T}^{2}} \frac{\alpha_{s}\left(p_{T}^{2}\right)}{2 \pi} \int_{x}^{1} \frac{d y}{y} P\left(\frac{x}{y}\right) \Phi\left(y ; p_{T}^{2}\right)$

■ Consistent matching to collinear situation: CSS formalism

Twist analysis

- Dimensional analysis to determine importance in an expansion in inverse hard scale
■ Maximize contractions with n

$$
\begin{aligned}
& \operatorname{dim}[\bar{\psi}(0) \not \hbar \psi(\xi)]=2 \\
& \operatorname{dim}\left[F^{n \alpha}(0) F^{n \beta}(\xi)\right]=2 \\
& \operatorname{dim}\left[\bar{\psi}(0) \nsucceq A_{T}^{\alpha}(\eta) \psi(\xi)\right]=3
\end{aligned}
$$

- ... or maximize \# of P's in parametrization of Φ

$$
\Phi^{q}(x)=f_{1}^{q}(x) \frac{\not P}{2} \Leftrightarrow f_{1}^{q}(x)=\int \frac{d \lambda}{(2 \pi)} e^{i x \lambda}\langle P| \bar{\psi}(0) \not \hbar \psi(\lambda n)|P\rangle
$$

- In addition any number of collinear $\mathrm{n} . \mathrm{A}(\xi)=\mathrm{A}^{\mathrm{n}}(\mathrm{x})$ fields (dimension zero!), but of course in color gauge invariant combinations
$\operatorname{dim} 0: \quad i \partial^{n} \rightarrow i D^{n}=i \partial^{n}+g A^{n}$
dim 1: $\quad i \partial_{T}^{\alpha} \rightarrow i D_{T}^{\alpha}=i \partial_{T}^{\alpha}+g A_{F}^{\alpha}$

Color gauge invariance

■ Gauge invariance in a nonlocal situation requires a gauge link $U(0, \xi)$

$$
\begin{aligned}
& \bar{\psi}(0) \psi(\xi)=\sum_{n} \frac{1}{n!} \xi^{\mu_{1}} \ldots \xi^{\mu_{N}} \bar{\psi}(0) \partial_{\mu_{1}} \ldots \partial_{\mu_{N}} \psi(0) \\
& U(0, \xi)=\mathcal{P} \exp \left(-i g \int_{0}^{\xi} d s^{\mu} A_{\mu}\right)
\end{aligned}
$$

$$
\bar{\psi}(0) U(0, \xi) \psi(\xi)=\sum_{n} \frac{1}{n!} \xi^{\mu_{1}} \ldots \xi^{\mu_{N}} \bar{\psi}(0) D_{\mu_{1}} \ldots D_{\mu_{N}} \psi(0)
$$

- Introduces path dependence for $\Phi\left(\mathrm{x}, \mathrm{p}_{\mathrm{T}}\right)$

$$
\Phi^{[U]}\left(x, p_{T}\right) \Rightarrow \Phi(x)
$$

Which gauge links?

$$
\begin{aligned}
& \Phi_{i j}^{q[C]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi \cdot P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p . \xi}\langle P| \bar{\psi}_{j}(0) U_{[0, \xi]}^{[C]} \psi_{i}(\xi)|P\rangle_{\xi, n=0} \quad \text { TMD } \\
& \Phi_{i j}^{q}(x ; n)=\int \frac{d(\xi . P)}{(2 \pi)} e^{i p, \xi}\langle P| \bar{\psi}_{j}(0) U_{[0, \xi]}^{[n]} \psi_{i}(\xi)|P\rangle_{\xi, n=\xi_{T}=0} \quad \text { collinear }
\end{aligned}
$$

- Gauge links for TMD correlators process-dependent with simplest cases

AV Belitsky, X Ji and F Yuan, NP B 656 (2003) 165
D Boer, PJ Mulders and F Pijlman, NP B 667 (2003) 201

Which gauge links?

$$
\Phi_{g}^{\alpha \beta\left[C, C^{\prime}\right]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi . P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p . \xi}\langle P| U_{[\xi, 0]}^{[C]} F^{n \alpha}(0) U_{[0, \xi]}^{\left[C^{\prime}\right]} F^{n \beta}(\xi)|P\rangle_{\xi . n=0}
$$

- The TMD gluon correlators contain two links, which can have different paths. Note that standard field displacement involves $\mathrm{C}=\mathrm{C}$

$$
F^{\alpha \beta}(\xi) \rightarrow U_{[\eta, \xi]}^{[C]} F^{\alpha \beta}(\xi) U_{[\xi, \eta]}^{[C]}
$$

- Basic (simplest) gauge links for gluon TMD correlators:

C Bomhof, PJM, F Pijlman; EPJ C 47 (2006) 147
F Dominguez, B-W Xiao, F Yuan, PRL 106 (2011) 022301

Color gauge invariant correlators

■ Matrix elements including multiple possiblities for gauge links
■ Quarks:

$$
\begin{aligned}
& \Phi^{[U]}\left(x, p_{T} ; n\right)=\left\{f_{1}^{[U]}\left(x, p_{T}^{2}\right)-f_{1 T}^{\perp[U]}\left(x, p_{T}^{2}\right) \frac{\epsilon_{T}^{p_{T} S_{T}}}{M}+g_{1 s}^{[U]}\left(x, p_{T}\right) \gamma_{5}\right. \\
& \left.\quad+h_{1 T}^{[U]}\left(x, p_{T}^{2}\right) \gamma_{5} \$_{T}+h_{1 s}^{\perp[U]}\left(x, p_{T}\right) \frac{\gamma_{5} \not p_{T}}{M}+i h_{1}^{\perp[U]}\left(x, p_{T}^{2}\right) \frac{\not p_{T}}{M}\right\} \frac{\not p}{2},
\end{aligned}
$$

■ Gluons:

$$
\begin{aligned}
& 2 x \Gamma^{\mu \nu[U]}\left(x, p_{T}\right)=-g_{T}^{\mu \nu} f_{1}^{g[U]}\left(x, p_{T}^{2}\right)+g_{T}^{\mu \nu} \frac{\epsilon_{T}^{p_{T} S_{T}}}{M} f_{1 T}^{\perp g[U]}\left(x, p_{T}^{2}\right) \\
& \quad+i \epsilon_{T}^{\mu \nu} g_{1 s}^{g[U]}\left(x, p_{T}\right)+\left(\frac{p_{T}^{\mu} p_{T}^{\nu}}{M^{2}}-g_{T}^{\mu \nu} \frac{p_{T}^{2}}{2 M^{2}}\right) h_{1}^{\perp g[U]}\left(x, p_{T}^{2}\right) \\
& \quad-\frac{\epsilon_{T}^{p_{T}\{\mu} p_{T}^{\nu\}}}{2 M^{2}} h_{1 s}^{\perp g[U]}\left(x, p_{T}\right)-\frac{\epsilon_{T}^{p_{T}\{\mu} S_{T}^{\nu\}}+\epsilon_{T}^{S_{T}\{\mu} p_{T}^{\nu\}}}{4 M} h_{1 T}^{g[U]}\left(x, p_{T}^{2}\right)
\end{aligned}
$$

■ Note [U] dependence

Fermionic structure of TMDs

Which gauge links?

- With more (initial state) hadrons color gets entangled, e.g. in pp

■ Outgoing color contributes future pointing gauge link to $\Phi\left(p_{2}\right)$ and future pointing part of a loop in the gauge link for $\Phi\left(p_{1}\right)$
T.C. Rogers, PJM, PR D81 (2010) 094006

■ Can be color-detangled if only p_{T} of one correlator is relevant (using polarization, ...) but include Wilson loops in final U

MGAB, PJM, JHEP 07 (2011) 065

Operator structure in collinear case (reminder)

- Collinear functions and x -moments

$$
\begin{aligned}
& \Phi^{q}(x)=\int \frac{d(\xi \cdot P)}{(2 \pi)} e^{i p \cdot \xi}\langle P| \bar{\psi}(0) U_{[0, \xi]}^{[n]} \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0} \\
& x^{N-1} \Phi^{q}(x)=\int \frac{d(\xi \cdot P)}{(2 \pi)} e^{i p . \xi}\langle P| \bar{\psi}(0)\left(\partial^{n}\right)^{N-1} U_{[0, \xi]}^{[n]} \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0} \\
&=\int \frac{d(\xi \cdot P)}{(2 \pi)} e^{i p . \xi}\langle P| \bar{\psi}(0) U_{[0, \xi]}^{[n]}\left(D^{n}\right)^{N-1} \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0}
\end{aligned}
$$

■ Moments correspond to local matrix elements with calculable anomalous dimensions, that can be Mellin transformed to splitting functions

$$
\Phi^{(N)}=\langle P| \bar{\psi}(0)\left(D^{n}\right)^{N-1} \psi(0)|P\rangle
$$

■ All operators have same twist since $\operatorname{dim}\left(D^{n}\right)=0$

Operator structure in TMD case

- For TMD functions one can consider transverse moments

$$
\begin{aligned}
& \Phi\left(x, p_{T} ; n\right)=\int \frac{d(\xi \cdot P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}(0) U^{[\pm]} \psi(\xi)|P\rangle_{\xi, n=0} \\
& p_{T}^{\alpha} \Phi^{[\pm]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi \cdot P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}(0) U D_{T}^{\alpha}(\pm \infty) U \psi(\xi)|P\rangle_{\xi, n=0}
\end{aligned}
$$

- Transverse moments involve collinear twist-3 multi-parton correlators Φ_{D} and Φ_{F} built from non-local combination of three parton fields

$$
\begin{aligned}
& \Phi_{F}^{\alpha}\left(x-x_{1}, x_{1} \mid x\right)=\int \frac{d \xi \cdot P d \eta \cdot P}{(2 \pi)^{2}} e^{i\left(p-p_{1}, \xi+\xi p_{1}, \eta\right.}\langle P| \bar{\psi}(0) F^{n \alpha}(\eta) \psi(\xi)|P\rangle_{\xi, n=\xi_{r}=0} \\
& \Phi_{D}^{\alpha}(x)=\int d x_{1} \Phi_{D}^{\alpha}\left(x-x_{1}, x_{1} \mid x\right) \\
& \Phi_{A}^{\alpha}(x)=P V \int d x_{1} \frac{1}{x_{1}} \Phi_{F}^{n \alpha}\left(x-x_{1}, x_{1} \mid x\right)
\end{aligned}
$$

T-invariant definition

Operator structure in TMD case

- For TMD functions one can consider transverse moments

$$
\begin{aligned}
& \Phi\left(x, p_{T} ; n\right)=\int \frac{d(\xi \cdot P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}(0) U^{[\pm]} \psi(\xi)|P\rangle_{\xi, n=0} \\
& p_{T}^{\alpha} \Phi^{[\pm]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi \cdot P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}(0) U D_{T}^{\alpha}(\pm \infty) U \psi(\xi)|P\rangle_{\xi, n=0}
\end{aligned}
$$

- Transverse moments involve collinear twist-3 multi-parton correlators Φ_{D} and Φ_{F} built from non-local combination of three parton fields

$$
\begin{aligned}
& \Phi_{D}^{\alpha}\left(x-x_{1}, x_{1} \mid x\right)=\int \frac{d \xi \cdot P d \eta \cdot P}{(2 \pi)^{2}} e^{i\left(p-p_{1}, \xi+\xi+p_{l}, \eta\right.}\langle P| \bar{\psi}(0) D_{T}^{\alpha}(\eta) \psi(\xi)|P\rangle_{\xi, n=\xi_{T}=0} \\
& \Phi_{D}^{\alpha}(x)=\int d x_{1} \Phi_{D}^{\alpha}\left(x-x_{1}, x_{1} \mid x\right) \\
& \Phi_{A}^{\alpha}(x)=P V \int d x_{1} \frac{1}{x_{1}} \Phi_{F}^{n \alpha}\left(x-x_{1}, x_{1} \mid x\right)
\end{aligned}
$$

T-invariant definition

Operator structure in TMD case

- Transverse moments can be expressed in these particular collinear multi-parton twist-3 correlators
■ $\Phi_{\partial}^{\alpha[U]}(x)=\int d^{2} p_{T} p_{T}^{\alpha} \Phi^{[U]}\left(x, p_{T} ; n\right)=\tilde{\Phi}_{\partial}^{\alpha}(x)+C_{G}^{[U]} \pi \Phi_{G}^{\alpha}(x)$

$$
\tilde{\Phi}_{\partial}^{\alpha}(x)=\Phi_{D}^{\alpha}(x)-\Phi_{A}^{\alpha}(x) \quad \Phi_{G}^{\alpha}(x)=\Phi_{F}^{n a}(x, 0 \mid x)
$$

■ This gives rise to process dependence in PDFs, for unpolarized case

$$
\frac{1}{M} \Phi_{\partial}^{\alpha[U]}(x)=\ldots h_{1}^{\perp(1)[U]}(x)=\ldots C_{G}^{[U]} h_{1}^{\perp(1)}(x)
$$

■ Weightings defined as

$$
h_{1}^{\perp(n)}(x)=\int d^{2} p_{T}\left(-\frac{p_{T}^{2}}{2 M^{2}}\right)^{n} h_{1}^{\perp}\left(x, p_{T}^{2}\right)
$$

Operator structure in TMD case

■ Transverse moments can be expressed in these particular collinear multi-parton twist-3 correlators
■ $\Phi_{\partial}^{\alpha[U]}(x)=\int d^{2} p_{T} p_{T}^{\alpha} \Phi^{[U]}\left(x, p_{T} ; n\right)=\tilde{\Phi}_{\partial}^{\alpha}(x)+C_{G}^{[U]} \pi \Phi_{G}^{\alpha}(x)$

$$
\tilde{\Phi}_{\partial}^{\alpha}(x)=\Phi_{D}^{\alpha}(x)-\Phi_{A}^{\alpha}(x) \Phi_{G}^{\text {T-even }}(x)=\Phi_{F}^{n \alpha}(x, 0 \mid x){ }^{\text {T-odd (gluonic pole or ETQS m.e.) }}
$$

■ For a polarized nucleon:

$$
\frac{1}{M} \Phi_{\partial}^{\alpha[U]}(x)=\left(\ldots g_{1 T}^{\perp(1)}(x)+\ldots h_{1 L}^{\perp(1)}(x)\right)+\ldots C_{G}^{[U]}{\underset{\text { T-even }}{\perp(1)}(x)}_{\uparrow}^{\uparrow-\text { odd }}
$$

Distributions versus fragmentation

■ Operators:

$$
\begin{aligned}
& \Phi^{[\pm]}(p \mid p) \sim\langle P| \bar{\psi}(0) U_{ \pm} \psi(\xi)|P\rangle \\
& \Phi_{\partial}^{\alpha}(x)=\tilde{\Phi}_{\partial}^{\alpha}(x) \pm \pi \Phi_{G}^{\alpha}(x)
\end{aligned}
$$

T-even T-odd (gluonic pole)

$$
\Phi_{G}^{\alpha}(x)=\Phi_{F}^{n \alpha}(x, 0 \mid x) \neq 0
$$

■ Operators:

$$
\Delta(k \mid k)
$$

$$
\sim \sum_{X}\langle 0| \psi(\xi)\left|K_{h} X\right\rangle\left\langle K_{h} X\right| \bar{\psi}(0)|0\rangle
$$

$$
\Delta_{G}^{\alpha}(x)=\Delta_{F}^{n \alpha}\left(\frac{1}{Z}, 0 \left\lvert\, \frac{1}{Z}\right.\right)=0
$$

$$
\Delta_{\partial}^{\alpha[U]}(x)=\tilde{\Delta}_{\hat{\jmath}}^{\alpha}(x)
$$

T-even operator combination, but no T-constraints!

Double transverse weighting

■ The double transverse weighted distribution function contains multiple 4-parton matrix elements

$$
\begin{aligned}
& \Phi_{\partial \partial}^{\alpha \beta[U]}(x)=\tilde{\Phi}_{\partial \partial}^{\alpha \beta}(x)+C_{G G}^{[U]} \pi^{2} \Phi_{G G}^{\alpha \beta}(x)+C_{G}^{[U]} \pi\left(\tilde{\Phi}_{\partial G}^{\alpha \beta}(x)+\tilde{\Phi}_{G \partial}^{\alpha \beta}(x)\right) \\
& \Phi_{\partial \partial}^{\alpha \beta[U\}}(x)=\ldots h_{1 T}^{\perp(2)[U]}(x) \\
& h_{1 T}^{\perp(2)[U]}(x)=h_{1 T}^{\perp(2)(A)}(x)+C_{G G}^{[U]} h_{1 T}^{\perp(2)(B 1)}(x)
\end{aligned}
$$

- Separation in T-even and T-odd parts is no longer enough to isolate process dependent parts \longrightarrow also Pretzelocity function is non-universal
■ although $\mathrm{C}_{\mathrm{GG}}{ }^{[+]}=\mathrm{C}_{\mathrm{GG}}{ }^{[-]}=1$ (so not different in DY and SIDIS)

Double transverse weighting

■ Pretzelocity type of correlations come actually in three matrix elements and have to be parametrized using three functions

$$
\begin{aligned}
& \Phi_{\partial \partial}^{\alpha \beta[U]}(x)=\tilde{\Phi}_{\partial \partial}^{\alpha \beta}(x)+C_{G G, c}^{[U]} \pi^{2} \Phi_{G G, c}^{\alpha \beta}(x)+C_{G}^{[U]} \pi\left(\tilde{\Phi}_{\partial G}^{\alpha \beta}(x)+\tilde{\Phi}_{G \partial}^{\alpha \beta}(x)\right) \\
& \operatorname{Tr}_{\mathrm{c}}(\mathrm{GG} \psi \bar{\psi}) \quad \operatorname{Tr}_{\mathrm{c}}(\mathrm{GG}) \operatorname{Tr}_{\mathrm{c}}(\psi \bar{\psi}) \\
& h_{1 T}^{\perp(2)[U]}(x)=h_{1 T}^{\perp(2)(A)}(x)+C_{G G, 1}^{[U]} h_{1 T}^{\perp(2)(B 1)}(x)+C_{G G, 2}^{[U]} h_{1 T}^{\perp(2)(B 2)}(x)
\end{aligned}
$$

The next step: TMDs of definite rank

- Expansion into TMDs of definite rank

$$
\begin{aligned}
\Phi^{[U]}\left(x, p_{T}\right) & =\tilde{\Phi}\left(x, p_{T}^{2}\right)+C_{G}^{[U]} \pi p_{T i} \tilde{\Phi}_{G}^{i}\left(x, p_{T}^{2}\right)+C_{G G, c}^{[U]} \pi^{2} p_{T i j} \tilde{\Phi}_{G G, c}^{i j}\left(x, p_{T}^{2}\right)+\ldots \\
& +p_{T i} \tilde{\Phi}_{\partial \partial}^{i}\left(x, p_{T}^{2}\right)+C_{G}^{[U]} \pi p_{T i j} \tilde{\Phi}_{\{\partial G\}}^{i j}\left(x, p_{T}^{2}\right)+\ldots \\
& +p_{T i j} \tilde{\Phi}_{\partial \partial}^{i j}\left(x, p_{T}^{2}\right)+\ldots \\
& +\ldots
\end{aligned}
$$

■ Depending on spin and type of operators, only a finite number needed
■ Example 1: quarks in an unpolarized target

$$
\tilde{\Phi}\left(x, p_{T}^{2}\right)=\left(f_{1}\left(x, p_{T}^{2}\right)\right) \frac{\not P}{2} \quad \pi \tilde{\Phi}_{G}^{\alpha}\left(x, p_{T}^{2}\right)=\left(i h_{1}^{\perp}\left(x, p_{T}^{2}\right) \frac{\gamma_{T}^{\alpha}}{M}\right) \frac{\not P}{2}
$$

Examples

■ Rank expansion of TMDs

$\tilde{\Phi}\left(x, p_{T}^{2}\right)$	$C_{G}^{[U]} \pi p_{T i} \tilde{\Phi}_{G}^{i}\left(x, p_{T}^{2}\right)$	$C_{G G, c}^{[U]} \pi^{2} p_{T i j} \tilde{\Phi}_{G G, c}^{i j}\left(x, p_{T}^{2}\right)$	\cdots
$p_{T i} \tilde{\Phi}_{\partial \partial}^{i}\left(x, p_{T}^{2}\right)$	$C_{G}^{[U]} \pi p_{T i j} \tilde{\Phi}_{\{\partial G\}}^{i j}\left(x, p_{T}^{2}\right)$	\cdots	
$p_{T i j} \tilde{\Phi}_{\partial \partial}^{i j}\left(x, p_{T}^{2}\right)$	\cdots		
\cdots	\cdots		

■ Example 1: quarks in an unpolarized target

$f_{1}\left(x, p_{T}^{2}\right)$	$h_{1}^{\perp}\left(x, p_{T}^{2}\right)$	-
-	-	-
-	-	-

Examples

■ General identification for quarks in a nucleon (spin $1 / 2$)

$$
\begin{aligned}
& \Phi\left(x, p_{T}^{2}\right)=\left\{f_{1}\left(x, p_{T}^{2}\right)+S_{L} g_{1}\left(x, p_{T}^{2}\right) \gamma_{5}+h_{1}\left(x, p_{T}^{2}\right) \gamma_{5} \$_{T}\right\} \frac{\not P}{2}, \\
& \frac{p_{T i}}{M} \widetilde{\Phi}_{\partial}^{i}\left(x, p_{T}^{2}\right)=\left\{h_{1 L}^{\perp}\left(x, p_{T}^{2}\right) S_{L} \frac{\gamma_{5} \not p_{T}}{M}-g_{1 T}\left(x, p_{T}^{2}\right) \frac{p_{T} \cdot S_{T}}{M} \gamma_{5}\right\} \frac{P}{2}, \\
& \frac{p_{T i}}{M} \Phi_{G}^{i}\left(x, p_{T}^{2}\right)=\left\{-f_{1 T}^{\perp}\left(x, p_{T}^{2}\right) \frac{\epsilon_{T}^{\rho \sigma} p_{T \rho} S_{T \sigma}}{M}+i h_{1}^{\perp}\left(x, p_{T}^{2}\right) \frac{\not p_{T}}{M}\right\} \frac{\not P}{2}, \\
& \frac{p_{T i j}}{M^{2}} \widetilde{\Phi}_{\partial \partial}^{i j}\left(x, p_{T}^{2}\right)=h_{1 T}^{\perp(A)}\left(x, p_{T}^{2}\right) \frac{p_{T i j} S_{T}^{i} \gamma_{5} \gamma_{T}^{j}}{M^{2}} \frac{p}{2}, \\
& \frac{p_{T i j}}{M^{2}} \Phi_{G G, 1}^{i j}\left(x, p_{T}^{2}\right)=\frac{1}{\pi^{2}} h_{1 T}^{\perp(B 1)}\left(x, p_{T}^{2}\right) \frac{p_{T i j} S_{T}^{i} \gamma_{5} \gamma_{T}^{j}}{M^{2}} \frac{p p}{2}, \quad \operatorname{Tr}_{\mathrm{C}}(\mathrm{GG} \psi \bar{\psi}) \\
& \frac{p_{T i j}}{M^{2}} \Phi_{G G, 2}^{i j}\left(x, p_{T}^{2}\right)=\frac{1}{\pi^{2}} h_{1 T}^{\perp(B 2)}\left(x, p_{T}^{2}\right) \frac{p_{T i j} S_{T}^{i} \gamma_{5} \gamma_{T}^{j}}{M^{2}} \frac{p p}{2}, \\
& \frac{p_{T i j}}{M^{2}} \widetilde{\Phi}_{\{\partial G\}}^{i j}\left(x, p_{T}^{2}\right)=0 \text {. }
\end{aligned}
$$

Examples

■ Rank expansion of TMDs

$\tilde{\Phi}\left(x, p_{T}^{2}\right)$	$C_{G}^{[U]} \pi p_{T i} \tilde{\Phi}_{G}^{i}\left(x, p_{T}^{2}\right)$	$C_{G G, c}^{[U]} \pi^{2} p_{T i j} \tilde{\Phi}_{G G, c}^{i j}\left(x, p_{T}^{2}\right)$	\cdots
$p_{T i} \tilde{\Phi}_{\partial \partial}^{i}\left(x, p_{T}^{2}\right)$	$C_{G}^{[U]} \pi p_{T i j} \tilde{\Phi}_{\{\partial G\}}^{i j}\left(x, p_{T}^{2}\right)$	\cdots	
$p_{T i j} \tilde{\Phi}_{\partial \partial}^{i j}\left(x, p_{T}^{2}\right)$	\cdots		
\cdots	\cdots		

■ Example 2: TMD PDFs for a longitudinally (L) polarized spin $1 / 2$ target

g_{1}	-	-
$h_{1 L}^{\perp}$	-	-
-	-	-

Examples

■ Expansion

$\tilde{\Phi}\left(x, p_{T}^{2}\right)$	$C_{G}^{[U]} \pi p_{T i} \tilde{\Phi}_{G}^{i}\left(x, p_{T}^{2}\right)$	$C_{G G, c}^{[U]} \pi^{2} p_{T i j} \tilde{\Phi}_{G G, c}^{i j}\left(x, p_{T}^{2}\right)$	\cdots
$p_{T i} \tilde{\Phi}_{\partial}^{i}\left(x, p_{T}^{2}\right)$	$C_{G}^{[U]} \pi p_{T i j} \tilde{\Phi}_{\{\partial G\}}^{i j}\left(x, p_{T}^{2}\right)$	\cdots	
$p_{T i j} \tilde{\Phi}_{\partial \partial}^{i j}\left(x, p_{T}^{2}\right)$	\ldots		
\ldots	\ldots		

■ Example 3: TMD PDFs for a transversely (T) polarized spin $1 / 2$ target

h_{1}	$f_{1 T}^{\perp}$	$h_{1 T}^{\perp(B 1)}, h_{1 T}^{\perp(B 2)}$
$g_{1 T}$	-	-
$h_{1 T}^{\perp(A)}$	-	-

Examples

■ Rank expansion

$\tilde{\Phi}\left(x, p_{T}^{2}\right)$	$C_{G}^{[U]} \pi p_{T i} \tilde{\Phi}_{G}^{i}\left(x, p_{T}^{2}\right)$	$C_{G G, c}^{[U]} \pi^{2} p_{T i j} \tilde{\Phi}_{G G, c}^{i j}\left(x, p_{T}^{2}\right)$	\cdots
$p_{T i} \tilde{\Phi}_{\partial}^{i}\left(x, p_{T}^{2}\right)$	$C_{G}^{[U]} \pi p_{T i j} \tilde{\Phi}_{\{\partial G\}}^{i j}\left(x, p_{T}^{2}\right)$	\cdots	
$p_{T i j} \tilde{\Phi}_{\partial \partial}^{i j}\left(x, p_{T}^{2}\right)$	\ldots		
\ldots	\cdots		

■ Example 4: TMD PFFs for spin $1 ⁄ 2$ fragment

D_{1}, G_{1}, H_{1}		
$H_{1}^{\perp}, H_{1 L}^{\perp}, G_{1 T}, D_{1 T}^{\perp}$		
$H_{1 T}^{\perp}$		

Summarizing quark TMDs up to spin 1 targets

GLUONIC POLE RANK			
0	1	3	
$\Phi\left(x, p_{T}^{2}\right)$	$\pi C_{G}^{[U]} \Phi_{G}$	$\pi^{2} C_{G G, c}^{[U]} \Phi_{G G, c}$	$\pi^{3} C_{G G G, c}^{[U]} \Phi_{G G G, c}$
$\widetilde{\Phi}_{\partial}$	$\pi C_{G}^{[U]} \widetilde{\Phi}_{\{\partial G\}}$	$\pi^{2} C_{G G, c}^{U U} \widetilde{\Phi}_{\{\partial G G\}, c}$	\cdots
$\widetilde{\Phi}_{\partial \partial}$	$\pi C_{G}^{[U]} \widetilde{\Phi}_{\{\partial \partial G\}}$	\ldots	\cdots
$\widetilde{\Phi}_{\partial \partial \partial}$	\ldots	\cdots	\cdots

PDFs FOR SPIN 0 HADRONS		
f_{1}	h_{1}^{\perp}	

PDFs FOR SPIN $1 / 2$ HADRONS		
g_{1}, h_{1}	$f_{1 T}^{\perp}$	$h_{1 T}^{\perp(B 1)}, h_{1 T}^{\perp(B 2)}$
$g_{1 T}, h_{1 L}^{\perp}$		
$h_{1 T}^{\perp(A)}$		

PDFs FOR TENSOR POLARIZED SPIN 1 HADRONS			
$f_{1 L L}$,	$h_{1 L L}^{\perp}, g_{1 L T}, h_{1 T T}$	$f_{1 T T}^{(B c)}$	$h_{1 T T}^{\perp(B c)}$
$f_{1 L T}$	$h_{1 L T}^{\perp}, g_{1 T T}$		
$f_{1 T T}^{(A)}$	$h_{1 T T}^{\perp(A)}$		

Time reversal constraints

■ After all a 'forbidden' TMD because of time reversal symmetry: $\mathrm{h}_{1 L T}$

PDFs FOR TENSOR POLARIZED SPIN 1 HADRONS			
$f_{1 L L}$,	$h_{1 L L}^{\perp}, g_{1 L T}, h_{1 T T}$	$f_{1 T T}^{(B c)}$	$h_{1 T T}^{\perp(B c)}$
$f_{1 L T}$	$h_{1 L T}^{\perp}, g_{1 T T}$		
$f_{1 T T}^{(A)}$	$h_{1 T T}^{\perp(A)}$		

- $H_{1 L T}$ is allowed, $D_{1 T T}$ is unique, ...

PFFs FOR TENSOR POLARIZED SPIN 1 HADRONS			
$D_{1 L L}, H_{1 L T}$			
$D_{1 L T}, H_{1 L L}^{\perp}, G_{1 L T}, H_{1 T T}$			
$D_{1 T T}, H_{1 L T}^{\perp}, G_{1 T T}$			
$H_{1 T T}^{\perp}$			

Gluon TMDs in a nucleon

■ For gluons one can have rank 0-3

GLUONIC POLE RANK			
0	1	2	3
$\Gamma\left(x, p_{T}^{2}\right)$	$\Gamma_{G, c}^{[U]}$	$\Gamma_{G G, c}^{[U]}$	$\Gamma_{G G G, c}^{[U]}$
$\widetilde{\Gamma}_{\partial}$	$\widetilde{\Gamma}_{\{\partial G\}, c}^{[U G}$	$\widetilde{\Gamma}_{\{\partial G G\}, c}^{[U]}$	\cdots
$\widetilde{\Gamma}_{\partial \partial}$	$\widetilde{\Gamma}_{\{\partial \partial G\}, c}^{[U]}$	\ldots	\cdots
$\widetilde{\Gamma}_{\partial \partial \partial}$	\ldots	\ldots	\cdots

■ Color structure GG,c includes a.o. $\operatorname{Tr}_{\mathrm{c}}([\mathrm{G}, \mathrm{F}][\mathrm{G}, \mathrm{F}])$ and $\operatorname{Tr}_{\mathrm{c}}(\{\mathrm{G}, \mathrm{F}\}\{\mathrm{G}, \mathrm{F}\})$
■ PDFs:

PDFs FOR GLUONS			
$f_{1}^{g}, g_{1 L}^{g}$	$f_{1 T}^{\perp g(A c)}, h_{1 T}^{g(A c)}$	$h_{1}^{\perp g(B c)}$	$h_{1 T}^{\perp g(B c)}$
$g_{1 T}^{g}$	$h_{1 L}^{\perp g(A c)}$		
$h_{1}^{\perp g(A)}$	$h_{1 T}^{\perp g(A c)}$		

Bessel transforms

■ The universal TMDs of definite rank are natural objects that can be studied in impact parameter space

$$
\frac{p_{T i_{1} \ldots i_{m}}}{M^{m}} \widetilde{\Phi}_{\ldots}^{i_{1} \ldots i_{m}}\left(x, p_{T}^{2}\right) \quad \text { or } \quad \widetilde{\Phi}_{\ldots}^{(m / 2)}\left(x, p_{T}^{2}\right) e^{ \pm i m \varphi_{p}}
$$

■ Bessel transforms for rank m involve ($\mathrm{m} / 2$)-moments

$$
\widetilde{f}_{\ldots}^{(m / 2)}\left(x,\left|p_{T}\right|\right)=\int_{0}^{\infty} d b \sqrt{\left|p_{T}\right| b} J_{m}\left(\left|p_{T}\right| b\right) f_{\ldots}^{(m / 2)}(x, b)
$$

Process dependent complications (preliminary)

■ There are remaining process-dependent complications in convolutions

$$
\begin{aligned}
\sigma_{D Y}\left(x_{1}, x_{2}, q_{T}\right) & =\frac{1}{N_{c}} \operatorname{Conv}\left\{\Phi\left(x_{1}, p_{1 T}^{2}\right) \Phi\left(x_{2}, p_{2 T}^{2}\right) \hat{\sigma}\right\} \\
& +\frac{1}{N_{c}} \operatorname{Conv}\left\{p_{1 T \alpha} \tilde{\Phi}_{\partial}^{\alpha}\left(x_{1}, p_{1 T}^{2}\right) \Phi\left(x_{2}, p_{2 T}^{2}\right) \hat{\sigma}\right\} \\
& +\frac{1}{N_{c}} \operatorname{Conv}\left\{C_{G}^{[-]} p_{1 T \alpha} \Phi_{G}^{\alpha}\left(x_{1}, p_{1 T}^{2}\right) \Phi\left(x_{2}, p_{2 T}^{2}\right) \hat{\sigma}\right\} \\
& +\frac{1}{N_{c}} \operatorname{Conv}\left\{\Phi\left(x_{1}, p_{1 T}^{2}\right) p_{2 T \alpha} \tilde{\Phi}_{\partial}^{\alpha}\left(x_{2}, p_{2 T}^{2}\right) \hat{\sigma}\right\} \\
& +\frac{1}{N_{c}} \operatorname{Conv}\left\{\Phi\left(x_{1}, p_{1 T}^{2}\right) C_{G}^{[-]} p_{2 T \alpha} \Phi_{G}^{\alpha}\left(x_{2}, p_{2 T}^{2}\right) \hat{\sigma}\right\} \\
& +\frac{1}{N_{c}} \operatorname{Conv}\left\{C_{G G}^{[-]} p_{1 T \alpha \beta} \Phi_{G G}^{\alpha \beta}\left(x_{1}, p_{1 T}^{2}\right) \Phi\left(x_{2}, p_{2 T}^{2}\right) \hat{\sigma}\right\} \\
& +\frac{1}{N_{c}\left(N_{c}^{2}-1\right)} \operatorname{Conv}\left\{C_{G}^{[-]} p_{1 T \alpha} \Phi\left(x_{1}, p_{1 T}^{2}\right) C_{G}^{[-]} p_{2 T \alpha} \Phi_{G}^{\alpha}\left(x_{2}, p_{2 T}^{2}\right) \hat{\sigma}\right\} \\
& +\ldots
\end{aligned}
$$

■ ... but these complications are not worse than collinear twist-3 squared

Conclusions

■ (Generalized) universality using definite rank functions

■ Rank m is coupled to $\cos (m \phi)$ and $\sin (m \phi)$ azimuthal asymmetries

■ Multiple distribution functions showing up in azimuthal asymmetries (depending on color structure of operators), e.g. three pretzelocities.

- In principle distinguishable in different experiments (with different color flow in tree-level diagrams)

■ Factorization is the next step

