QCD N'12, Bilbao, October 2012

Universality of TMD distribution functions of definite rank

Piet Mulders

(collaboration with Maarten Buffing & Asmita Mukherjee)

nulders@few.vu.nl

- Introducing TMD correlators
- Moment analysis
 - Single weighting
 - Double weighting
- Universality of TMD correlators and PDFs
- TMDs in experiments (weighted cross sections vs convolutions)

Hadron correlators

- Hadronic correlators establish the diagrammatic link between hadrons and partonic hard scattering amplitude
- Quark, quark + gluon, gluon, …

 $\langle 0 | \boldsymbol{\psi}_i(\boldsymbol{\xi}) | p, s \rangle = u_i(p, s) e^{-ip.\boldsymbol{\xi}}$

Н

Disentangling a hard process into parts involving hadrons, hard scattering amplitude and soft part is non-trivial

J.C. Collins, Foundations of Perturbative QCD, Cambridge Univ. Press 2011

 $\langle X | \psi_i(\xi) A^{\mu}(\eta) | P \rangle e^{+i(p-p_1).\xi+ip_1.\eta}$

Hadron correlators

- At high energies soft parts combine amplitudes into forward matrix elements of parton fields to account for distributions and fragmentation p1 p **Φ(p)** $\Phi_{ij}(p;P) = \Phi_{ij}(p \mid p) = \int \frac{d^4\xi}{(2\pi)^4} e^{ip.\xi} \left\langle P \left| \overline{\psi}_j(0) \psi_i(\xi) \right| P \right\rangle$ Also needed are multi-parton correlators p-p₁ p₁ $\Phi_A(p-p_1,p)$ $\Phi_{A;ij}^{\alpha}(p-p_{1},p_{1}|p) = \int \frac{d^{4}\xi d^{4}\eta}{(2\pi)^{8}} e^{i(p-p_{1}).\xi+ip_{1}.\eta} \left\langle P \left| \bar{\psi}_{j}(0) A^{\alpha}(\eta) \psi_{i}(\xi) \right| P \right\rangle$
- Correlators usually just will be parametrized (nonperturbative physics)

Hard scale

- In high-energy processes other momenta available, such that P.P' ~ s with a hard scale s = $Q^2 >> M^2$
- Additional scale accessible through non-collinearities, e.g. in SIDIS γ*+p is not aligned with produced hadron, or momenta inside a jet
- Employ light-like vectors P and n, such that P.n = 1 (e.g. n = P'/P.P') to make a Sudakov expansion of parton momentum

Enables importance sampling (twist analysis) for integrated correlators,

$$\Phi(p) = \Phi(x, p_T, p.P) \implies \Phi(x, p_T) \implies \Phi(x) \implies \Phi(x)$$

(Un)integrated correlators

$$\Phi(x, p_T, p.P) = \int \frac{d^4\xi}{(2\pi)^4} e^{ip.\xi} \left\langle P \left| \overline{\psi}(0) \, \psi(\xi) \right| P \right\rangle \quad \text{unintegrated}$$

$$\Phi(x, p_T; n) = \int \frac{d(\xi.P) d^2 \xi_T}{(2\pi)^3} e^{i p.\xi} \left\langle P \left| \overline{\psi}(0) \psi(\xi) \right| P \right\rangle_{\xi.n=0} \quad \text{TMD (light-front)}$$

- Time-ordering automatic, allowing interpretation as forward anti-parton – target scattering amplitude
- Involves operators of twists starting at a lowest value (which is usually called the 'twist' of a TMD)

$$\Phi(x) = \int \frac{d(\xi.P)}{(2\pi)} e^{ip.\xi} \langle P | \overline{\psi}(0) \psi(\xi) | P \rangle \qquad \text{collinear (light-cone)}$$

- Involves operators of a definite twist. Evolution via splitting functions (moments are anomalous dimensions)
- $\Phi = \left\langle P \left| \overline{\psi}(0) \psi(\xi) \right| P \right\rangle \quad \text{Iocal}$ Local operators with calculable anomalous dimension

■ p_T-dependence of TMDs

Consistent matching to collinear situation: CSS formalism

- Dimensional analysis to determine importance in an expansion in inverse hard scale
- Maximize contractions with n

 $\dim[\overline{\psi}(0) \not n \psi(\xi)] = 2$ $\dim[F^{n\alpha}(0)F^{n\beta}(\xi)] = 2$ $\dim[\overline{\psi}(0) \not n A^{\alpha}_{T}(\eta) \psi(\xi)] = 3$

... or maximize # of P's in parametrization of Φ

$$\Phi^{q}(x) = f_{1}^{q}(x)\frac{\not P}{2} \iff f_{1}^{q}(x) = \int \frac{d\lambda}{(2\pi)} e^{ix\lambda} \langle P | \overline{\psi}(0) / \!\!/ \psi(\lambda n) | P \rangle$$

In addition any number of collinear n.A(ξ) = Aⁿ(x) fields (dimension zero!), but of course in color gauge invariant combinations

dim 0:
$$i\partial^n \rightarrow iD^n = i\partial^n + gA^n$$

dim 1: $i\partial^\alpha_T \rightarrow iD^\alpha_T = i\partial^\alpha_T + gA^\alpha_T$

Color gauge invariance

Gauge invariance in a nonlocal situation requires a gauge link $U(0,\xi)$

$$\overline{\psi}(0)\psi(\xi) = \sum_{n} \frac{1}{n!} \xi^{\mu_{1}} \dots \xi^{\mu_{N}} \overline{\psi}(0) \partial_{\mu_{1}} \dots \partial_{\mu_{N}} \psi(0)$$
$$U(0,\xi) = \mathcal{P} \exp\left(-ig \int_{0}^{\xi} ds^{\mu} A_{\mu}\right)$$
$$\overline{\psi}(0)U(0,\xi)\psi(\xi) = \sum_{n} \frac{1}{n!} \xi^{\mu_{1}} \dots \xi^{\mu_{N}} \overline{\psi}(0) D_{\mu_{1}} \dots D_{\mu_{N}} \psi(0)$$

Introduces path dependence for $\Phi(x,p_T)$

$$\Phi^{[\boldsymbol{U}]}(\boldsymbol{x},\boldsymbol{p}_{T}) \Rightarrow \Phi(\boldsymbol{x}) \qquad \qquad \boldsymbol{\xi}_{T} \qquad \qquad \boldsymbol{\xi} \qquad \boldsymbol{\xi}_{T} \qquad \qquad \boldsymbol{\xi}_{T} \qquad \qquad \boldsymbol{\xi}_{T} \qquad \qquad \boldsymbol{\xi}_{T} \qquad \qquad \boldsymbol{\xi}_{T}$$

Which gauge links?

$$\Phi_{ij}^{q[C]}(x, p_T; n) = \int \frac{d(\xi \cdot P) d^2 \xi_T}{(2\pi)^3} e^{i p \cdot \xi} \langle P | \bar{\psi}_j(0) U_{[0,\xi]}^{[C]} \psi_i(\xi) | P \rangle_{\xi.n=0}$$
TMD
$$\Phi_{ij}^q(x; n) = \int \frac{d(\xi \cdot P)}{(2\pi)} e^{i p \cdot \xi} \langle P | \bar{\psi}_j(0) U_{[0,\xi]}^{[n]} \psi_i(\xi) | P \rangle_{\xi.n=\xi_T=0}$$
Collinear

Gauge links for TMD correlators process-dependent with simplest cases

D Boer, PJ Mulders and F Pijlman, NP B 667 (2003) 201

10

Which gauge links?

gg → H

$$\Phi_{g}^{\alpha\beta[C,C']}(x,p_{T};n) = \int \frac{d(\xi.P)d^{2}\xi_{T}}{(2\pi)^{3}} e^{ip.\xi} \left\langle P \left| U_{[\xi,0]}^{[C]} F^{n\alpha}(0) U_{[0,\xi]}^{[C']} F^{n\beta}(\xi) \right| P \right\rangle_{\xi.n=0}$$

The TMD gluon correlators contain two links, which can have different paths. Note that standard field displacement involves C = C'

$$F^{\alpha\beta}(\xi) \to U^{[C]}_{[\eta,\xi]} F^{\alpha\beta}(\xi) U^{[C]}_{[\xi,\eta]}$$

Basic (simplest) gauge links for gluon TMD correlators:

Color gauge invariant correlators

Matrix elements including multiple possiblities for gauge links
 Quarks:

$$\Phi^{[U]}(x, p_T; n) = \left\{ f_1^{[U]}(x, p_T^2) - f_{1T}^{\perp [U]}(x, p_T^2) \frac{\epsilon_T^{p_T S_T}}{M} + g_{1s}^{[U]}(x, p_T) \gamma_5 \right. \\ \left. + h_{1T}^{[U]}(x, p_T^2) \gamma_5 \, \$_T + h_{1s}^{\perp [U]}(x, p_T) \frac{\gamma_5 \, \rlap{p}_T}{M} + i h_1^{\perp [U]}(x, p_T^2) \frac{\rlap{p}_T}{M} \right\} \frac{\not p}{2},$$

Gluons:

$$2x \Gamma^{\mu\nu[U]}(x,p_T) = -g_T^{\mu\nu} f_1^{g[U]}(x,p_T^2) + g_T^{\mu\nu} \frac{\epsilon_T^{p_T S_T}}{M} f_{1T}^{\perp g[U]}(x,p_T^2) + i\epsilon_T^{\mu\nu} g_{1s}^{g[U]}(x,p_T) + \left(\frac{p_T^{\mu} p_T^{\nu}}{M^2} - g_T^{\mu\nu} \frac{p_T^2}{2M^2}\right) h_1^{\perp g[U]}(x,p_T^2) - \frac{\epsilon_T^{p_T \{\mu} p_T^{\nu\}}}{2M^2} h_{1s}^{\perp g[U]}(x,p_T) - \frac{\epsilon_T^{p_T \{\mu} S_T^{\nu\}} + \epsilon_T^{S_T \{\mu} p_T^{\nu\}}}{4M} h_{1T}^{g[U]}(x,p_T^2).$$

Note [U] dependence

Fermionic structure of TMDs

Which gauge links?

With more (initial state) hadrons color gets entangled, e.g. in pp

- Outgoing color contributes future pointing gauge link to Φ(p₂) and future pointing part of a loop in the gauge link for Φ(p₁)
- Can be color-detangled if only p_T of one correlator is relevant (using polarization, ...) but include Wilson loops in final U

T.C. Rogers, PJM, PR D81 (2010) 094006

MGAB, PJM, JHEP 07 (2011) 065

Operator structure in collinear case (reminder)

Collinear functions and x-moments

$$\Phi^{q}(x) = \int \frac{d(\xi.P)}{(2\pi)} e^{ip.\xi} \left\langle P \middle| \overline{\psi}(0) U_{[0,\xi]}^{[n]} \psi(\xi) \middle| P \right\rangle_{\xi.n=\xi_{T}=0}$$

$$x^{N-1} \Phi^{q}(x) = \int \frac{d(\xi.P)}{(2\pi)} e^{ip.\xi} \left\langle P \middle| \overline{\psi}(0) (\partial^{n})^{N-1} U_{[0,\xi]}^{[n]} \psi(\xi) \middle| P \right\rangle_{\xi.n=\xi_{T}=0}$$

$$= \int \frac{d(\xi.P)}{(2\pi)} e^{ip.\xi} \left\langle P \middle| \overline{\psi}(0) U_{[0,\xi]}^{[n]} (D^{n})^{N-1} \psi(\xi) \middle| P \right\rangle_{\xi.n=\xi_{T}=0}$$

Moments correspond to local matrix elements with calculable anomalous dimensions, that can be Mellin transformed to splitting functions

$$\Phi^{(N)} = \left\langle P \left| \overline{\psi}(0) (D^n)^{N-1} \psi(0) \right| P \right\rangle$$

All operators have same twist since dim(Dⁿ) = 0

For TMD functions one can consider transverse moments

$$\Phi(x, p_T; n) = \int \frac{d(\xi.P) d^2 \xi_T}{(2\pi)^3} e^{ip.\xi} \left\langle P \Big| \overline{\psi}(0) U^{[\pm]} \psi(\xi) \Big| P \right\rangle_{\xi.n=0}$$

$$p_T^{\alpha} \Phi^{[\pm]}(x, p_T; n) = \int \frac{d(\xi.P) d^2 \xi_T}{(2\pi)^3} e^{ip.\xi} \left\langle P \Big| \overline{\psi}(0) U D_T^{\alpha}(\pm \infty) U \psi(\xi) \Big| P \right\rangle_{\xi.n=0}$$

Transverse moments involve collinear twist-3 multi-parton correlators Φ_D and Φ_F built from non-local combination of three parton fields

$$\Phi_{F}^{\alpha}(x-x_{1},x_{1} | x) = \int \frac{d\xi P d\eta P}{(2\pi)^{2}} e^{i(p-p_{1})\xi+ip_{1}\eta} \left\langle P \left| \overline{\psi}(0) F^{n\alpha}(\eta) \psi(\xi) \right| P \right\rangle_{\xi.n=\xi_{T}=0}$$

$$\Phi_{D}^{\alpha}(x) = \int dx_{1} \Phi_{D}^{\alpha}(x - x_{1}, x_{1} | x)$$

$$\Phi_{A}^{\alpha}(x) = PV \int dx_{1} \frac{1}{x_{1}} \Phi_{F}^{n\alpha}(x - x_{1}, x_{1} | x)$$

T-invariant definition

For TMD functions one can consider transverse moments

$$\Phi(x, p_T; n) = \int \frac{d(\xi.P) d^2 \xi_T}{(2\pi)^3} e^{i p.\xi} \left\langle P \left| \overline{\psi}(0) U^{[\pm]} \psi(\xi) \right| P \right\rangle_{\xi.n=0}$$

$$p_T^{\alpha} \Phi^{[\pm]}(x, p_T; n) = \int \frac{d(\xi.P) d^2 \xi_T}{(2\pi)^3} e^{i p.\xi} \left\langle P \left| \overline{\psi}(0) U D_T^{\alpha}(\pm \infty) U \psi(\xi) \right| P \right\rangle_{\xi.n=0}$$

Transverse moments involve collinear twist-3 multi-parton correlators Φ_D and Φ_F built from non-local combination of three parton fields

$$\Phi_{D}^{\alpha}(x-x_{1},x_{1} | x) = \int \frac{d\xi P d\eta P}{(2\pi)^{2}} e^{i(p-p_{1})\xi+ip_{1}\eta} \left\langle P \left| \overline{\psi}(0) D_{T}^{\alpha}(\eta) \psi(\xi) \right| P \right\rangle_{\xi.n=\xi_{T}=0}$$

$$\Phi_{D}^{\alpha}(x) = \int dx_{1} \Phi_{D}^{\alpha}(x - x_{1}, x_{1} | x)$$

$$\Phi_{A}^{\alpha}(x) = PV \int dx_{1} \frac{1}{x_{1}} \Phi_{F}^{n\alpha}(x - x_{1}, x_{1} | x)$$

T-invariant definition

 Transverse moments can be expressed in these particular collinear multi-parton twist-3 correlators

$$\Phi_{\partial}^{\alpha[U]}(x) = \int d^2 p_T p_T^{\alpha} \Phi^{[U]}(x, p_T; n) = \tilde{\Phi}_{\partial}^{\alpha}(x) + C_G^{[U]} \pi \Phi_G^{\alpha}(x)$$

$$\uparrow$$

$$T-even$$

$$T-even$$

$$T-odd (gluonic pole or ETQS m.e.)$$

$$\tilde{\Phi}_{\partial}^{\alpha}(x) = \Phi_D^{\alpha}(x) - \Phi_A^{\alpha}(x)$$

$$\Phi_G^{\alpha}(x) = \Phi_F^{n\alpha}(x, 0 | x)$$

This gives rise to process dependence in PDFs, for unpolarized case $\frac{1}{M} \Phi_{\partial}^{\alpha[U]}(x) = \dots h_{1}^{\perp(1)[U]}(x) = \dots C_{G}^{[U]} h_{1}^{\perp(1)}(x)$

Weightings defined as

$$h_1^{\perp(n)}(x) = \int d^2 p_T \left(-\frac{p_T^2}{2M^2}\right)^n h_1^{\perp}(x, p_T^2)$$

 Transverse moments can be expressed in these particular collinear multi-parton twist-3 correlators

$$\Phi_{\partial}^{\alpha[U]}(x) = \int d^2 p_T p_T^{\alpha} \Phi^{[U]}(x, p_T; n) = \tilde{\Phi}_{\partial}^{\alpha}(x) + C_G^{[U]} \pi \Phi_G^{\alpha}(x)$$

$$T-even$$

$$T-even$$

$$\tilde{\Phi}_{\partial}^{\alpha}(x) = \Phi_D^{\alpha}(x) - \Phi_A^{\alpha}(x)$$

$$\Phi_G^{\alpha}(x) = \Phi_F^{n\alpha}(x, 0 | x)$$

For a polarized nucleon:

Distributions versus fragmentation

Operators:

 $\Phi^{[\pm]}(p \mid p) \sim \left\langle P \mid \overline{\psi}(0) U_{\pm} \psi(\xi) \mid P \right\rangle$

$$\Phi_{\partial}^{\alpha}(x) = \tilde{\Phi}_{\partial}^{\alpha}(x) \pm \pi \Phi_{G}^{\alpha}(x)$$
T-even
T-odd (gluonic pole)
$$\Phi_{G}^{\alpha}(x) = \Phi_{F}^{n\alpha}(x, 0 \mid x) \neq 0$$

Operators: $\Delta(k \mid k)$ $\sim \sum_{X} \langle 0 \mid \psi(\xi) \mid K_{h}X \rangle \langle K_{h}X \mid \overline{\psi}(0) \mid 0 \rangle$ $\Delta_{G}^{\alpha}(x) = \Delta_{F}^{n\alpha}(\frac{1}{Z}, 0 \mid \frac{1}{Z}) = 0$ $\Delta_{\partial}^{\alpha[U]}(x) = \tilde{\Delta}_{\partial}^{\alpha}(x)$ T-even operator combination, but no T-constraints!

Collins, Metz; Meissner, Metz; Gamberg, M, Mukherjee, PR D 83 (2011) 071503

Double transverse weighting

The double transverse weighted distribution function contains multiple 4-parton matrix elements

Separation in T-even and T-odd parts is no longer enough to isolate process dependent parts → also Pretzelocity function is non-universal
 although C_{GG}^[+] = C_{GG}^[-] = 1 (so not different in DY and SIDIS)

MGA Buffing, A Mukherjee, PJM, PRD2012, Arxiv: 1207.3221 [hep-ph]

Double transverse weighting

Pretzelocity type of correlations come actually in three matrix elements and have to be parametrized using three functions

$$\Phi_{\partial\partial}^{\alpha\beta[U]}(x) = \tilde{\Phi}_{\partial\partial}^{\alpha\beta}(x) + C_{GG,c}^{[U]}\pi^2 \Phi_{GG,c}^{\alpha\beta}(x) + C_G^{[U]}\pi \left(\tilde{\Phi}_{\partial G}^{\alpha\beta}(x) + \tilde{\Phi}_{G\partial}^{\alpha\beta}(x)\right)$$

$$\mathsf{Tr}_{\mathsf{c}}(\mathsf{GG}\ \psi\psi) \qquad \mathsf{Tr}_{\mathsf{c}}(\mathsf{GG})\ \mathsf{Tr}_{\mathsf{c}}(\psi\psi)$$

$$h_{1T}^{\perp(2)[U]}(x) = h_{1T}^{\perp(2)(A)}(x) + C_{GG,1}^{[U]} h_{1T}^{\perp(2)(B1)}(x) + C_{GG,2}^{[U]} h_{1T}^{\perp(2)(B2)}(x)$$

U	$U^{[\pm]}$	$U^{[+]} U^{[\Box]}$	$\frac{1}{N_c} \operatorname{Tr}_c(U^{[\Box]}) U^{[+]}$
$\Phi^{[U]}$	$\Phi^{[\pm]}$	$\Phi^{[+\Box]}$	$\Phi^{[(\Box)+]}$
$C_G^{[U]}$	±1	3	1
$C_{GG,1}^{\left[U ight]}$	1	9	1
$C^{[U]}_{GG,2}$	0	0	4

MGA Buffing, A Mukherjee, PJM, PRD2012 , Arxiv: 1207.3221 [hep-ph]

The next step: TMDs of definite rank

Expansion into TMDs of definite rank

$$\begin{split} \Phi^{[U]}(x,p_{T}) &= \tilde{\Phi}(x,p_{T}^{2}) + C_{G}^{[U]}\pi p_{Ti}\tilde{\Phi}_{G}^{i}(x,p_{T}^{2}) + C_{GG,c}^{[U]}\pi^{2}p_{Tij}\tilde{\Phi}_{GG,c}^{ij}(x,p_{T}^{2}) + \dots \\ &+ p_{Ti}\tilde{\Phi}_{\partial}^{i}(x,p_{T}^{2}) + C_{G}^{[U]}\pi p_{Tij}\tilde{\Phi}_{\{\partial G\}}^{ij}(x,p_{T}^{2}) + \dots \\ &+ p_{Tij}\tilde{\Phi}_{\partial\partial}^{ij}(x,p_{T}^{2}) + \dots \\ &+ \end{split}$$

Depending on spin and type of operators, only a finite number neededExample 1: quarks in an unpolarized target

$$\tilde{\Phi}(x,p_T^2) = \left(f_1(x,p_T^2)\right)\frac{\not P}{2} \qquad \pi \tilde{\Phi}_G^\alpha(x,p_T^2) = \left(ih_1^\perp(x,p_T^2)\frac{\gamma_T^\alpha}{M}\right)\frac{\not P}{2}$$

Rank expansion of TMDs

$\tilde{\Phi}(x,p_T^2)$	$C_G^{[U]}\pi p_{Ti}\tilde{\Phi}_G^i(x,p_T^2)$	$C^{[U]}_{GG,c}\pi^2 p_{Tij}\tilde{\Phi}^{ij}_{GG,c}(x,p_T^2)$	•••
$p_{Ti}\tilde{\Phi}^i_{\partial}(x,p_T^2)$	$C^{[U]}_{_G}\pi p_{_{Tij}} ilde{\Phi}^{ij}_{_{\{\partial G\}}}(x,p_{_T}^2)$	•••	
$p_{\scriptscriptstyle Tij} \tilde{\Phi}_{\scriptscriptstyle \partial\partial}^{ij}(x,p_{\scriptscriptstyle T}^2)$	•••		
•••			

Example 1: quarks in an unpolarized target

Examples

General identification for quarks in a nucleon (spin ¹/₂)

$$\begin{split} \Phi(x,p_{T}^{2}) &= \left\{ f_{1}(x,p_{T}^{2}) + S_{L} g_{1}(x,p_{T}^{2})\gamma_{5} + h_{1}(x,p_{T}^{2})\gamma_{5} \,\$_{T} \right\} \frac{p}{2}, \\ \frac{p_{Ti}}{M} \,\tilde{\Phi}_{\partial}^{i}(x,p_{T}^{2}) &= \left\{ h_{1L}^{\perp}(x,p_{T}^{2}) \,S_{L} \frac{\gamma_{5} \not p_{T}}{M} - g_{1T}(x,p_{T}^{2}) \, \frac{p_{T} \cdot S_{T}}{M} \gamma_{5} \right\} \frac{p}{2}, \\ \frac{p_{Ti}}{M} \,\Phi_{G}^{i}(x,p_{T}^{2}) &= \left\{ -f_{1T}^{\perp}(x,p_{T}^{2}) \, \frac{\epsilon_{T}^{\rho\sigma} p_{T\rho} S_{T\sigma}}{M} + ih_{1}^{\perp}(x,p_{T}^{2}) \, \frac{\not p_{T}}{M} \right\} \frac{p}{2}, \\ \frac{p_{Tij}}{M^{2}} \tilde{\Phi}_{\partial\partial}^{ij}(x,p_{T}^{2}) &= h_{1T}^{\perp(A)}(x,p_{T}^{2}) \, \frac{p_{Tij} S_{T}^{i} \gamma_{5} \gamma_{T}^{j}}{M^{2}} \, \frac{p}{2}, \\ \frac{p_{Tij}}{M^{2}} \Phi_{GG,1}^{ij}(x,p_{T}^{2}) &= \frac{1}{\pi^{2}} h_{1T}^{\perp(B1)}(x,p_{T}^{2}) \, \frac{p_{Tij} S_{T}^{i} \gamma_{5} \gamma_{T}^{j}}{M^{2}} \, \frac{p}{2}, \\ \frac{p_{Tij}}{M^{2}} \Phi_{GG,2}^{ij}(x,p_{T}^{2}) &= \frac{1}{\pi^{2}} h_{1T}^{\perp(B2)}(x,p_{T}^{2}) \, \frac{p_{Tij} S_{T}^{i} \gamma_{5} \gamma_{T}^{j}}{M^{2}} \, \frac{p}{2}, \\ \frac{p_{Tij}}{M^{2}} \tilde{\Phi}_{GG,2}^{ij}(x,p_{T}^{2}) &= 0. \\ \end{split}$$

Rank expansion of TMDs

$\tilde{\Phi}(x,p_T^2)$	$C_G^{[U]}\pi p_{Ti}\tilde{\Phi}_G^i(x,p_T^2)$	$C^{[U]}_{GG,c}\pi^2 p_{Tij}\tilde{\Phi}^{ij}_{GG,c}(x,p_T^2)$	•••
$p_{Ti}\tilde{\Phi}^i_{\partial}(x,p_T^2)$	$C_G^{[U]}\pi p_{Tij} ilde{\Phi}^{ij}_{\{\partial G\}}(x,p_T^2)$	•••	
$p_{\scriptscriptstyle Tij} \tilde{\Phi}_{\scriptscriptstyle \partial\partial}^{ij}(x,p_{\scriptscriptstyle T}^2)$	•••		
•••			

Example 2: TMD PDFs for a longitudinally (L) polarized spin ¹/₂ target

g_1	_	_
h_{1L}^{\perp}	_	—
_	_	_

Expansion

$\tilde{\Phi}(x,p_T^2)$	$C_G^{[U]}\pi p_{Ti}\tilde{\Phi}_G^i(x,p_T^2)$	$C^{[U]}_{GG,c}\pi^2 p_{Tij}\tilde{\Phi}^{ij}_{GG,c}(x,p_T^2)$	•••
$p_{Ti}\tilde{\Phi}^i_{\partial}(x,p_T^2)$	$C_G^{[U]}\pi p_{Tij} ilde{\Phi}^{ij}_{\{\partial G\}}(x,p_T^2)$	•••	
$p_{Tij}\tilde{\Phi}^{ij}_{\partial\partial}(x,p_T^2)$	•••		
•••			

Example 3: TMD PDFs for a transversely (T) polarized spin ¹/₂ target

Rank expansion

$\tilde{\Phi}(x,p_T^2)$	$C_G^{[U]}\pi p_{Ti}\tilde{\Phi}_G^i(x,p_T^2)$	$C^{[U]}_{GG,c}\pi^2 p_{Tij}\tilde{\Phi}^{ij}_{GG,c}(x,p_T^2)$	•••
$p_{Ti}\tilde{\Phi}^i_{\partial}(x,p_T^2)$	$C_G^{[U]} \pi p_{Tij} \tilde{\Phi}^{ij}_{\{\partial G\}}(x, p_T^2)$	•••	
$p_{Tij}\tilde{\Phi}^{ij}_{\partial\partial}(x,p_T^2)$	•••		
•••			

Example 4: TMD PFFs for spin ¹/₂ fragment

Summarizing quark TMDs up to spin 1 targets

GLUONIC POLE RANK						
0	1	2	3			
$\Phi(x, p_T^2)$	$\pi C_G^{[U]} \Phi_G$	$\pi^2 C^{[U]}_{GG,c} \Phi_{GG,c}$	$\pi^3 C^{[U]}_{GGG,c} \Phi_{GGG,c}$			
$\widetilde{\Phi}_{\partial}$	$\pi C_G^{[U]} \widetilde{\Phi}_{\{\partial G\}}$	$\pi^2 C^{[U]}_{GG,c} \widetilde{\Phi}_{\{\partial GG\},c}$	•••			
$\widetilde{\Phi}_{\partial\partial}$	$\pi C_G^{[U]} \widetilde{\Phi}_{\{\partial \partial G\}}$		•••			
$\widetilde{\Phi}_{\partial\partial\partial}$			•••			

PDFs FOR SPIN 0 HADRONS		PDFs FC	OR SPIN 1	1/2 HADRONS	
f_1	h_1^\perp		g_1,h_1	f_{1T}^{\perp}	$h_{1T}^{\perp(B1)}, h_{1T}^{\perp(B2)}$
			g_{1T},h_{1L}^\perp		
			$h_{1T}^{\perp(A)}$		-

PDFs FOR TENSOR POLARIZED SPIN 1 HADRONS					
$f_{1LL}, \mathcal{I}_{TLF}$	$h_{1LL}^\perp,g_{1LT},h_{1TT}$	$f_{1TT}^{(Bc)}$	$h_{1TT}^{\perp(Bc)}$		
f_{1LT}	h_{1LT}^{\perp},g_{1TT}				
$f_{1TT}^{(A)}$	$h_{1TT}^{\perp(A)}$				
		•			

MGA Buffing, A Mukherjee, PJM, PRD2012 , Arxiv: 1207.3221 [hep-ph]

Time reversal constraints

After all a 'forbidden' TMD because of time reversal symmetry: h_{1LT}

PDFs FOR TENSOR POLARIZED SPIN 1 HADRONS					
$f_{1LL}, \mathcal{I}_{TLF}$	$h_{1LL}^{\perp}, g_{1LT}, h_{1TT}$	$f_{1TT}^{(Bc)}$	$h_{1TT}^{\perp(Bc)}$		
f_{1LT}	h_{1LT}^{\perp},g_{1TT}				
$f_{1TT}^{(A)}$	$h_{1TT}^{\perp(A)}$				
		-			

• H_{1LT} is allowed, D_{1TT} is unique, ...

PFFs FOR TENSOR POLARIZED SPIN 1 HADRONS					
D_{1LL}, H_{1LT}					
$D_{1LT}, H_{1LL}^{\perp}, G_{1LT}, H_{1TT}$					
$D_{1TT}, H_{1LT}^{\perp}, G_{1TT}$					
H_{1TT}^{\perp}		-			

Gluon TMDs in a nucleon

■ For gluons one can have rank 0 – 3

GLUONIC POLE RANK						
0	1	2	3			
$\Gamma(x, p_T^2)$	$\Gamma^{[U]}_{G,c}$	$\Gamma^{[U]}_{GG,c}$	$\Gamma^{[U]}_{GGG,c}$			
$\widetilde{\Gamma}_{\partial}$	$\widetilde{\Gamma}^{[U]}_{\{\partial G\},c}$	$\widetilde{\Gamma}^{[U]}_{\{\partial GG\},c}$	•••			
$\widetilde{\Gamma}_{\partial\partial}$	$\widetilde{\Gamma}^{[U]}_{\{\partial\partial G\},c}$		• • •			
$\widetilde{\Gamma}_{\partial\partial\partial}$		• • •	• • •			

Color structure GG,c includes a.o. Tr_c([G,F][G,F]) and Tr_c({G,F}{G,F})
 PDFs:

PDFs FOR GLUONS			
f_1^g, g_{1L}^g	$f_{1T}^{\perp g(Ac)}, h_{1T}^{g(Ac)}$	$h_1^{\perp g(Bc)}$	$h_{1T}^{\perp g(Bc)}$
g_{1T}^g	$h_{1L}^{\perp g(Ac)}$		
$h_1^{\perp g(A)}$	$h_{1T}^{\perp g(Ac)}$		
		-	

MGA Buffing, A Mukherjee, PJM, PRD2012, in preparation

The universal TMDs of definite rank are natural objects that can be studied in impact parameter space

$$\frac{p_{Ti_1\dots i_m}}{M^m} \widetilde{\Phi}^{i_1\dots i_m}_{\dots}(x, p_T^2) \quad \text{or} \quad \widetilde{\Phi}^{(m/2)}_{\dots}(x, p_T^2) e^{\pm im\varphi_p}$$

Bessel transforms for rank m involve (m/2)-moments

$$\widetilde{f}_{...}^{(m/2)}(x,|p_T|) = \int_0^\infty db \,\sqrt{|p_T|b} \,J_m(|p_T|b) \,f_{...}^{(m/2)}(x,b)$$

Process dependent complications (preliminary)

There are remaining process-dependent complications in convolutions

$$\begin{split} \sigma_{DY}(x_{1},x_{2},q_{T}) &= \frac{1}{N_{c}}Conv\left\{\Phi(x_{1},p_{1T}^{2})\Phi(x_{2},p_{2T}^{2})\hat{\sigma}\right\} \\ &+ \frac{1}{N_{c}}Conv\left\{p_{1T\alpha}\tilde{\Phi}_{\partial}^{\alpha}(x_{1},p_{1T}^{2})\Phi(x_{2},p_{2T}^{2})\hat{\sigma}\right\} \\ &+ \frac{1}{N_{c}}Conv\left\{C_{G}^{[-]}p_{1T\alpha}\Phi_{G}^{\alpha}(x_{1},p_{1T}^{2})\Phi(x_{2},p_{2T}^{2})\hat{\sigma}\right\} \\ &+ \frac{1}{N_{c}}Conv\left\{\Phi(x_{1},p_{1T}^{2})p_{2T\alpha}\tilde{\Phi}_{\partial}^{\alpha}(x_{2},p_{2T}^{2})\hat{\sigma}\right\} \\ &+ \frac{1}{N_{c}}Conv\left\{\Phi(x_{1},p_{1T}^{2})C_{G}^{[-]}p_{2T\alpha}\Phi_{G}^{\alpha}(x_{2},p_{2T}^{2})\hat{\sigma}\right\} \\ &+ \frac{1}{N_{c}}Conv\left\{C_{GG}^{[-]}p_{1T\alpha\beta}\Phi_{GG}^{\alpha\beta}(x_{1},p_{1T}^{2})\Phi(x_{2},p_{2T}^{2})\hat{\sigma}\right\} \\ &+ \frac{1}{N_{c}}Conv\left\{C_{GG}^{[-]}p_{1T\alpha\beta}\Phi_{GG}^{\alpha\beta}(x_{1},p_{1T}^{2})\Phi(x_{2},p_{2T}^{2})\hat{\sigma}\right\} \\ &+ \frac{1}{N_{c}}(N_{c}^{2-1})Conv\left\{C_{G}^{[-]}p_{1T\alpha}\Phi(x_{1},p_{1T}^{2})C_{G}^{[-]}p_{2T\alpha}\Phi_{G}^{\alpha}(x_{2},p_{2T}^{2})\hat{\sigma}\right\} \\ &+ \dots \end{split}$$

but these complications are not worse than collinear twist-3 squared

MGA Buffing, PJM, JHEP 07 (2011) 065

(Generalized) universality using definite rank functions

- Rank m is coupled to $cos(m\phi)$ and $sin(m\phi)$ azimuthal asymmetries
- Multiple distribution functions showing up in azimuthal asymmetries (depending on color structure of operators), e.g. three pretzelocities.
- In principle distinguishable in different experiments (with different color flow in tree-level diagrams)
- Factorization is the next step