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!   TMDs in experiments (weighted cross sections vs convolutions) 



Hadron correlators 

! Hadronic correlators establish 
the diagrammatic link between 
hadrons and partonic hard 
scattering amplitude 

!   Quark, quark + gluon, gluon, … 
 

!   Disentangling a hard process into  
parts involving hadrons, hard 
scattering amplitude and soft 
part is non-trivial 

 

3 

122 5 Libby-Sterman analysis and power-counting
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Fig. 5.17. (a) An important reduced graph for the amplitude for the Drell-Yan
process. (b) Space-time diagram for collinear subgraphs.

In light-front coordinates, we write the momenta as

PA =
(

P+
A , m2

A/2P+
A , 0T

)

, (5.15a)

PB =
(

m2
B/2P−

B , P−
B , 0T

)

, (5.15b)

q =

(

xAP+
A

√

1 + q2
T/Q2, xBP−

B

√

1 + q2
T/Q2, qT

)

. (5.15c)

Here the scaling variables are defined by

xA = Qey/
√

s, xB = Qe−y/
√

s, (5.16)

where y = 1
2 ln q

+
P

−
B

q
−

P
+
A

is the center-of-mass rapidity of the lepton pair, and

Q =
√

q2 is its invariant mass. In the center-of-mass, the large components

of the hadron momenta are P+
A and P−

B , both equal to
√

s/2 up to power-
suppressed corrections. Frequently, the cross section is integrated over qT,
and is presented as d2σ/(dQ2 dy).

We first discuss the DY amplitude. Its reduced graphs are constructed
by an elementary generalization of the construction for DIS. We now have
two collinear subgraphs, A and B, associated with each incoming particle.
As in DIS, we classify the reduced graphs by the number of outgoing
directions of lines from the hard scattering H. Now H has incoming lines
from each of the A and B subgraphs, and has the virtual photon taking
out momentum. This allows the minimal situation, illustrated in Fig. 5.17,
with no extra collinear groups at all going out from H. The soft subgraph
can create particles in the final state that fill in the rapidity gap between
the beam remnants.

This is illustrated by the microscopic view of a collision shown in Fig.
5.18 (which corresponds to Fig. 2.2 for DIS). Here we have shown the
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Hadron correlators 

!   At high energies soft parts combine amplitudes into 
forward matrix elements of parton fields to        
account for distributions and fragmentation 

!   Also needed are multi-parton correlators 

! Correlators usually just will be parametrized 
(nonperturbative physics) 4 

Φij ( p;P) =Φij ( p | p) =
d 4ξ
(2π )4∫ ei p.ξ P ψ j (0)ψi (ξ ) P

ΦA;ij
α ( p− p1, p1 | p) =

d 4ξ d 4η
(2π )8∫ ei ( p−p1).ξ+ip1.η P ψ j (0)A

α (η)ψi (ξ ) P

  Φ(p)   	


ΦΑ(p-p1,p)	




Hard scale 

!   In high-energy processes other momenta available, such that P.P’ ~ s 
with a hard scale s = Q2 >> M2 

!   Additional scale accessible through non-collinearities, e.g. in SIDIS γ*+p 
is not aligned with produced hadron, or momenta inside a jet 

!   Employ light-like vectors P and n, such that P.n = 1 (e.g. n = P’/P.P’) to 
make a Sudakov expansion of parton momentum 

!   Enables importance sampling (twist analysis) for integrated correlators,  
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Tx pp P nµµ µσ= + +

2 2. ~p P xM Mσ = −

. ~ 1x p p n+= =

~ Q ~ M  ~ M2/Q 

Φ( p) =Φ(x, pT , p.P) ⇒ Φ(x, pT ) ⇒ Φ(x) ⇒ Φ



(Un)integrated correlators 

 
!   Time-ordering automatic, allowing interpretation as forward 

anti-parton – target scattering amplitude 
!   Involves operators of twists starting at a lowest value (which 

is usually called the ‘twist’ of a TMD) 

 
!   Involves operators of a definite twist. Evolution via splitting 

functions (moments are anomalous dimensions) 

!   Local operators with calculable anomalous dimension  

! unintegrated 
 
!   TMD (light-front) 

!   collinear (light-cone) 

!   local 
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Φ(x, pT ;n) =
d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)ψ(ξ ) P

ξ .n=0

Φ = P ψ(0)ψ(ξ ) P
ξ=0

Φ(x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)ψ(ξ ) P

ξ .n=ξT =0 or ξ 2=0

Φ(x, pT , p.P) =
d 4ξ
(2π )4∫ ei p.ξ P ψ(0)ψ(ξ ) P



Large pT 

! pT-dependence of TMDs 

 

 
!      
 

!   Consistent matching to collinear situation: CSS formalism 

!     
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Φ(x,pT)	


d 2 pT
µ

∫ Φ(x, pT ) = Φ(x;µ
2 )

Fictitious 
measurement 

Large µ2 
dependence 
governed by 
anomalous dim 
(i.e. splitting 
functions)	


Φ(x, pT ) →
1

π pT
2

αs ( pT
2 )

2π
dy
y
P x
y

#

$
%

&

'
(

x

1

∫ Φ(y; pT
2 )

pT
2 > µ2 

JC Collins, DE Soper and GF Sterman, NP B 250 (1985) 199 



Twist analysis 

!   Dimensional analysis to determine importance in 
an expansion in inverse hard scale 

!   Maximize contractions with n 

!   … or maximize # of P’s in parametrization of Φ 	


!   In addition any number of collinear n.A(ξ) = An(x) 
fields (dimension zero!), but of course in color 
gauge invariant combinations  
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dim[ψ(0) /nψ(ξ )]= 2
dim[ (0) ( )] 2n nF Fα β ξ =

dim[ψ(0) /n AT
α (η)ψ(ξ )]= 3

Φq (x) = f1
q (x) P

2
⇔ f1

q (x) = dλ
(2π )∫ ei xλ P ψ(0) /nψ(λn) P

n n n ni iD i gA∂ → = ∂ +

T T T Ti iD i gAα α α α∂ → = ∂ +

dim 0:	


dim 1: 



Color gauge invariance 

!   Gauge invariance in a nonlocal situation requires a gauge link U(0,ξ) 

!   Introduces path dependence for Φ(x,pT) 
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0

(0, ) exp ig ds AU
ξ

µ
µξ −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫P

ψ(0)ψ(ξ ) = 1
n!
ξ µ1 ...

n
∑ ξ µNψ(0)∂µ1 ...∂µNψ(0)

ψ(0)U (0,ξ )ψ(ξ ) = 1
n!
ξ µ1 ...

n
∑ ξ µNψ(0)Dµ1

...DµN
ψ(0)

0	

ξ.P	


ξΤ	


ξ	

Φ[U ](x, pT ) ⇒ Φ(x)
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u  Gauge links for TMD correlators process-dependent with simplest cases 

Which gauge links? 

2
[ ] . [ ]

[0, ]3 . 0

( . )( , (0) ( ); )
(2 ) j

q C i p CT
ij T i n

d P dx p n e P U Pξ
ξ ξ

ψ ψ ξ
ξ ξ
π =

Φ = ∫
. [ ]

[0, ] . 0

( . )( ; )
(2 )

(0) ( )ij
T

q i p n
nj i

d Px n e P U Pξ
ξ ξ ξ

ψ ψ ξ
ξ
π = =

Φ = ∫

Φ[-]	
 Φ[+]	


Time reversal 

TMD 

collinear 

… An … 
… An … 

AV Belitsky, X Ji and F Yuan, NP B 656 (2003) 165 
D Boer, PJ Mulders and F Pijlman, NP B 667 (2003) 201 
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Which gauge links? 

Φg
αβ[C ,C '] (x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P U[ξ ,0]

[C ] Fnα (0)U[0,ξ ]
[C '] Fnβ (ξ ) P

ξ .n=0

u  The TMD gluon correlators contain two links, which can have different 
paths. Note that standard field displacement involves C = C’  

u  Basic (simplest) gauge links for gluon TMD correlators: 

[ ] [ ]
[ , ] [ , ]( ) ( )C CF U F Uαβ αβ
η ξ ξ ηξ ξ→

Φg
[+,+]	
 Φg

[-,-]	


Φg
[+,-]	
 Φg

[-,+]	


C Bomhof, PJM, F Pijlman; EPJ C 47 (2006) 147 
F Dominguez, B-W Xiao, F Yuan, PRL 106 (2011) 022301  

   gg è H	


 in gg è QQbar	




Color gauge invariant correlators 

!   Matrix elements including multiple possiblities for gauge links 
!   Quarks: 

!   Gluons: 

!   Note [U] dependence 
12 
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momentum qT of the produced lepton pair,

σ(x1, x2, qT ) =

∫
d2p1T d2p2T δ2(p1T + p2T − qT )

× Φ[−]
1 (x1, p1T )Φ

[−†]
2 (x2, p2T )σ̂(x1, x2, Q), (10)

which involves a convolution of TMDs. What is more important, it is the color flow
in the process, in this case neutralized in initial state, that determines the path in
the gauge link in the TMDs, in this case past-pointing ones. In contrast in semi-
inclusive deep inelastic scattering one finds that the relevant TMD is Φ[+] with a
future-pointing gauge link. In a general process one can find more complex gauge
links including besides Wilson line elements also Wilson loops. In particular when
the transverse momentum of more than one hadron is involved, such as e.g. in the
DY case above, it may be impossible to have just a single TMD for a given hadron
because color gets entangled 5,6.

The correlators including a gauge link can be parametrized in terms of TMD
PDFs 7,8 depending on x and p2

T
,

Φ[U ](x, pT ;n) =

{
f [U ]
1 (x, p2

T
)− f⊥[U ]

1T (x, p2
T
)
εpTST

T

M
+ g[U ]

1s (x, pT )γ5

+ h[U ]
1T (x, p2

T
) γ5 /ST

+ h⊥[U ]
1s (x, pT )

γ5 /p
T

M
+ ih⊥[U ]

1 (x, p2
T
)
/p

T

M

}
/P

2
, (11)

with the spin vector parametrized as Sµ = SLPµ + Sµ
T +M2 SLnµ and shorthand

notations for g[U ]
1s and h⊥[U ]

1s ,

g[U ]
1s (x, pT ) = SLg

[U ]
1L (x, p2

T
)−

pT · ST

M
g[U ]
1T (x, p2

T
). (12)

For quarks, these include not only the functions that survive upon pT -integration,
f q
1 (x) = q(x), gq1(x) = ∆q(x) and hq

1(x) = δq(x), which are the well-known collinear
spin-spin densities (involving quark and nucleon spin) but also momentum-spin den-
sities such as the Sivers function f⊥q

1T (x, p2
T
) (unpolarized quarks in a transversely

polarized nucleon) and spin-spin-momentum densities such as g1T (x, p2T ) (longitu-
dinally polarized quarks in a transversely polarized nucleon).

The parametrization for gluons, following the naming convention in Ref. 9, is
given by

2xΓµν[U ](x,pT ) = −gµνT fg[U ]
1 (x,p2

T
) + gµνT

εpTST

T

M
f⊥g[U ]
1T (x,p2

T
)

+ iεµνT gg[U ]
1s (x,pT ) +

(
pµT p

ν
T

M2
− gµνT

p2
T

2M2

)
h⊥g[U ]
1 (x,p2

T
)

−
εpT {µ
T pν}T
2M2

h⊥g[U ]
1s (x,pT )−

εpT {µ
T Sν}

T +εST {µ
T pν}T

4M
hg[U ]
1T (x,p2

T
). (13)
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× Φ[−]
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2 (x2, p2T )σ̂(x1, x2, Q), (10)
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in the process, in this case neutralized in initial state, that determines the path in
the gauge link in the TMDs, in this case past-pointing ones. In contrast in semi-
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future-pointing gauge link. In a general process one can find more complex gauge
links including besides Wilson line elements also Wilson loops. In particular when
the transverse momentum of more than one hadron is involved, such as e.g. in the
DY case above, it may be impossible to have just a single TMD for a given hadron
because color gets entangled 5,6.

The correlators including a gauge link can be parametrized in terms of TMD
PDFs 7,8 depending on x and p2

T
,

Φ[U ](x, pT ;n) =

{
f [U ]
1 (x, p2

T
)− f⊥[U ]

1T (x, p2
T
)
εpTST

T

M
+ g[U ]

1s (x, pT )γ5

+ h[U ]
1T (x, p2

T
) γ5 /ST

+ h⊥[U ]
1s (x, pT )

γ5 /p
T

M
+ ih⊥[U ]

1 (x, p2
T
)
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T

M
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1s (x, pT ) = SLg
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1L (x, p2
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)−
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g[U ]
1T (x, p2

T
). (12)

For quarks, these include not only the functions that survive upon pT -integration,
f q
1 (x) = q(x), gq1(x) = ∆q(x) and hq

1(x) = δq(x), which are the well-known collinear
spin-spin densities (involving quark and nucleon spin) but also momentum-spin den-
sities such as the Sivers function f⊥q

1T (x, p2
T
) (unpolarized quarks in a transversely

polarized nucleon) and spin-spin-momentum densities such as g1T (x, p2T ) (longitu-
dinally polarized quarks in a transversely polarized nucleon).

The parametrization for gluons, following the naming convention in Ref. 9, is
given by

2xΓµν[U ](x,pT ) = −gµνT fg[U ]
1 (x,p2

T
) + gµνT

εpTST

T

M
f⊥g[U ]
1T (x,p2

T
)

+ iεµνT gg[U ]
1s (x,pT ) +

(
pµT p

ν
T

M2
− gµνT

p2
T

2M2

)
h⊥g[U ]
1 (x,p2

T
)

−
εpT {µ
T pν}T
2M2

h⊥g[U ]
1s (x,pT )−

εpT {µ
T Sν}

T +εST {µ
T pν}T

4M
hg[U ]
1T (x,p2

T
). (13)



unpolarized quark 
distribution 

helicity or chirality 
distribution 

transverse spin distr. 
or transversity 

with pT 

with pT 

with pT 

with pT 

with pT 

T-odd 

Fermionic structure of TMDs 

f1q(x) = q(x) 

g1
q(x) = Δq(x)  

h1
q(x) = δq(x)  



Which gauge links? 

!   With more (initial state) hadrons 
color gets entangled, e.g. in pp 

 
!   Outgoing color contributes future 

pointing gauge link to Φ(p2) and 
future pointing part of a loop in 
the gauge link for Φ(p1) 

 
!   Can be color-detangled if only pT 

of one correlator is relevant 
(using polarization, …) but 
include Wilson loops in final U 
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1 1( ) (0 )ψ ξ ψ

1[ ,0 ]−∞

2[ , ]ξ −∞ 2[ ,0 ]−∞

1[ , ]ξ −∞

1 2[ , ][ , ]ξ ξ+∞ +∞

2 2( ) (0 )ψ ξ ψ

1 2[0 , ][0 , ]+∞ +∞

T.C. Rogers, PJM, PR D81 (2010) 094006 MGAB, PJM, JHEP 07 (2011) 065 



Operator structure in collinear case (reminder) 

!   Collinear functions and x-moments 

!   Moments correspond to local matrix elements with calculable anomalous 
dimensions, that can be Mellin transformed to splitting functions 

!   All operators have same twist since dim(Dn) = 0  
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Φq (x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)U[0,ξ ]

[n] ψ(ξ ) P
ξ .n=ξT =0

xN−1Φq (x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)(∂n )N−1U[0,ξ ]

[n] ψ(ξ ) P
ξ .n=ξT =0

=
d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)U[0,ξ ]

[n] (Dn )N−1ψ(ξ ) P
ξ .n=ξT =0

Φ(N ) = P ψ(0)(Dn )N−1ψ(0) P



Operator structure in TMD case 

!   For TMD functions one can consider transverse moments 

 

 

!   Transverse moments involve collinear twist-3 multi-parton correlators 
ΦD and ΦF built from non-local combination of three parton fields  
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pT
αΦ[±](x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)UDT

α (±∞)Uψ(ξ ) P
ξ .n=0

ΦF
α (x − x1,x1 | x) =

dξ .Pdη.P
(2π )2∫ ei ( p−p1).ξ+ip1.η P ψ(0)Fnα (η)ψ(ξ ) P

ξ .n=ξT =0

Φ(x, pT ;n) =
d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)U [±] ψ(ξ ) P

ξ .n=0

ΦF(p-p1,p)	

ΦA

α (x) = PV dx1∫ 1
x1
ΦF
nα (x − x1,x1 | x)

ΦD
α (x) = dx1∫ ΦD

α (x − x1,x1 | x)

T-invariant definition 



Operator structure in TMD case 

!   For TMD functions one can consider transverse moments 

 

 

!   Transverse moments involve collinear twist-3 multi-parton correlators 
ΦD and ΦF built from non-local combination of three parton fields  
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pT
αΦ[±](x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)UDT

α (±∞)Uψ(ξ ) P
ξ .n=0

ΦD
α (x − x1,x1 | x) =

dξ .Pdη.P
(2π )2∫ ei ( p−p1).ξ+ip1.η P ψ(0) DT

α (η) ψ(ξ ) P
ξ .n=ξT =0

Φ(x, pT ;n) =
d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)U [±] ψ(ξ ) P

ξ .n=0

ΦF(p-p1,p)	

ΦA

α (x) = PV dx1∫ 1
x1
ΦF
nα (x − x1,x1 | x)

ΦD
α (x) = dx1∫ ΦD

α (x − x1,x1 | x)

T-invariant definition 



Operator structure in TMD case 

!   Transverse moments can be expressed in these particular collinear 
multi-parton twist-3 correlators 

!     

 

!   This gives rise to process dependence in PDFs, for unpolarized case 

 
!   Weightings defined as 
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Φ
∂
α (x) = ΦD

α (x)−ΦA
α (x)

Φ
∂
α[U ](x) = d 2 pT∫ pT

αΦ[U ](x, pT ;n) = Φ∂
α (x)+CG

[U ]πΦG
α (x)

ΦG
α (x) =ΦF

nα (x,0 | x)
T-even T-odd (gluonic pole or ETQS m.e.) 

h1
⊥(n) (x) = d 2 pT −

pT
2

2M 2

#

$
%%

&

'
((

n

h1
⊥(x, pT

2 )∫

1
M
Φ

∂
α[U ](x) = ... h1

⊥(1)[U ](x) = ...CG
[U ] h1

⊥(1) (x)



Operator structure in TMD case 

!   Transverse moments can be expressed in these particular collinear 
multi-parton twist-3 correlators 

!     

 

 
!   For a polarized nucleon: 
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1
M
Φ

∂
α[U ](x) = ...g1T

⊥(1) (x)+ ...h1L
⊥(1) (x)( )+ ...CG[U ] f1T⊥(1) (x)

T-even T-odd 

Φ
∂
α (x) = ΦD

α (x)−ΦA
α (x)

Φ
∂
α[U ](x) = d 2 pT∫ pT

αΦ[U ](x, pT ;n) = Φ∂
α (x)+CG

[U ]πΦG
α (x)

ΦG
α (x) =ΦF

nα (x,0 | x)
T-even T-odd (gluonic pole or ETQS m.e.) 



Distributions versus fragmentation 

!   Operators: !   Operators: 
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Φ[±]( p | p) ~ P |ψ(0)U
±
ψ(ξ ) | P Δ(k | k)

~ 0 |ψ(ξ ) | KhX KhX |ψ(0) | 0
X
∑

ΔG
α (x) = ΔF

nα ( 1Z ,0 | 1Z ) = 0

Δ
∂
α[U ](x) = Δ

∂
α (x)

ΦG
α (x) =ΦF

nα (x,0 | x) ≠ 0

Φ
∂
α (x) = Φ

∂
α (x)±πΦG

α (x)

T-even T-odd (gluonic pole) 

T-even operator combination, 
but no T-constraints! 

out state 

Collins, Metz; Meissner, Metz; Gamberg, M, Mukherjee, PR D 83 (2011) 071503 



Double transverse weighting 

!   The double transverse weighted distribution function contains multiple  
4-parton matrix elements 

 

 

 

!   Note: “               ” 

 

 

!   Separation in T-even and T-odd parts is no longer enough to isolate 
process dependent parts       also Pretzelocity function is non-universal 

!   …. although CGG
[+] = CGG

[-] = 1 (so not different in DY and SIDIS) 
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Φ
∂∂
αβ[U}(x) = Φ

∂∂
αβ (x)+CGG

[U ]π 2ΦGG
αβ (x)+CG

[U ]π Φ
∂G
αβ (x)+ ΦG∂

αβ (x)( )
T-even T-odd T-even 

Φ
∂∂
αβ[U}(x) = ...h1T

⊥(2)[U ](x) ∂ = D− A

h1T
⊥(2)[U ](x) = h1T

⊥(2)(A) (x)+CGG
[U ]h1T

⊥(2)(B1) (x)

MGA Buffing, A Mukherjee, PJM, PRD2012 , Arxiv: 1207.3221 [hep-ph] 



Double transverse weighting 

! Pretzelocity type of correlations come actually in three matrix elements 
and have to be parametrized using three functions 

22 MGA Buffing, A Mukherjee, PJM, PRD2012 , Arxiv: 1207.3221 [hep-ph] 

Φ
∂∂
αβ[U ](x) = Φ

∂∂
αβ (x)+CGG ,c

[U ] π 2ΦGG ,c
αβ (x)+CG

[U ]π Φ
∂G
αβ (x)+ ΦG∂

αβ (x)( )

5

U U [±] U [+] U [!] 1
Nc

Trc(U
[!])U [+]

Φ[U ] Φ[±] Φ[+!] Φ[(!)+]

C
[U ]
G ±1 3 1

C
[U ]
GG,1 1 9 1

C
[U ]
GG,2 0 0 4

TABLE I: The values of the gluonic pole prefactors for some gauge links needed in the pT -weighted cases.
Note that the value of C[U ]

G is the same for single and double transverse weighting.

link. In fact there is a universal transverse moment relating all link dependent ones

f⊥(1)[U ]
1T (x) = C [U ]

G f⊥(1)
1T (x). (15)

Although the only difference for the single weighted case is just the numerical prefactor that for simple processes is just
+1 or −1, we will show in the next section that for the double weighted case the situation becomes more complicated
and one actually gains a lot by this different notation. But even for single weighting there is a clear advantage using
Eq. 15, because it states that there is a universal function with calculable process (link) dependent numbers rather
than an infinite number of somehow related functions. For some gauge links, these numbers are shown in Table I.
Here U [!] is the Wilson loop U [−]†U [+].

C. Double transverse weighting

In order to evaluate the double transverse weighting we need to consider matrix elements like

Φαβ
FF (x− x1 − x2, x1, x2|x) =

∫
d ξ·P

2π

d η·P

2π

d η′·P

2π
eix2(η

′·P ) eix1(η·P ) ei(x−x1−x2)(ξ·P )

×〈P, S|ψ(0)U [n]
[0,η′]F

nα
T

(η′)U [n]
[η′,η]F

nβ
T

(η)U [n]
[η,ξ] ψ(ξ)|P, S〉

∣∣∣∣∣
LC

, (16)

among others, where LC indicates that all transverse components and n-components of the coordinates are zero.
Besides this matrix element one needs ΦDF , ΦFD and ΦDD as well as bilocal matrix elements, obtained by direct
or principal value integrations over these matrix elements (as in the case of single transverse momentum weighting)
or gluonic pole matrix elements, where x1 or x2 or both are zero. Explicitly, the matrix elements are discussed in
Appendix A.
The actual weighting of the gauge link dependent TMD correlator Φ[U ](x, pT ) gives

Φ{αβ} [U ]
∂∂ (x) ≡

∫
d2pT p{αT pβ}

T Φ[U ](x, p2
T
)

= Φ̃{αβ}
∂∂ (x) + πC [U ]

G

(
Φ̃{αβ}

∂G (x) + Φ̃{αβ}
G∂ (x)

)
+
∑

c

π2C [U ]
GG,cΦ

{αβ}
GG,c(x)

= Φ̃{αβ}
∂∂ (x) + πC [U ]

G

(
Φ̃{αβ}

∂G (x) + Φ̃{αβ}
G∂ (x)

)
+ π2C [U ]

GG,1 Φ
{αβ}
GG,1(x) + π2C [U ]

GG,2 Φ
{αβ}
GG,2(x). (17)

For the correlators containing two (or more) gluon fields like the one in Eq. 16, one must distinguish the different
color structures for the correlator, hence a summation over the color structures c. For double weighting, there are in
the double gluonic pole part two possible color structures related to the appearance of the color traced Wilson loop
1
Nc

Trc(U [!]). The differences between the two different correlators Φ{αβ}
GG,c(x) are made explicit in Appendix A. Just

as for the single weighted case in Eq. 9, the structures Φ̃... with one or more partial derivatives denote differences

between correlators with a covariant derivative minus a correlator with a principal value integration, e.g. Φ̃{αβ}
∂G (x) =

Φ{αβ}
DG (x)−Φ{αβ}

AG (x). For completeness, they are given in Appendix A. Since the weighting is done with the symmetric
combination, we have symmetrized in the indices, which should not influence the result. We also omitted the Dirac
indices on the fields. The precise form of all correlators in terms of matrix elements can be found in Appendix A.

h1T
⊥(2)[U ](x) = h1T

⊥(2)(A) (x)+CGG ,1
[U ] h1T

⊥(2)(B1) (x)+CGG ,2
[U ] h1T

⊥(2)(B2) (x)

 Trc(GG ψψ)  Trc(GG) Trc(ψψ) 



The next step: TMDs of definite rank 

!   Expansion into TMDs of definite rank  

 
 
!   Depending on spin and type of operators, only a finite number needed 
!   Example 1: quarks in an unpolarized target 
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Φ[U ](x, pT ) = Φ(x, pT
2 )+CG

[U ]π pTi ΦG
i (x, pT

2 )+CGG ,c
[U ] π 2 pTij ΦGG ,c

ij (x, pT
2 )+ ...

+ pTi Φ∂
i (x, pT

2 )+CG
[U ]π pTij Φ{∂G}

ij (x, pT
2 )+ ...

+ pTij Φ∂∂
ij (x, pT

2 )+ ...

+ ...

Φ(x, pT
2 ) = f1 (x, pT

2 )( ) P2 π ΦG
α (x, pT

2 ) = ih1
⊥(x, pT

2 )
γT
α

M

#

$
%%

&

'
((
P
2



Examples 

!   Rank expansion of TMDs  

 
 

!   Example 1: quarks in an unpolarized target 
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Φ(x, pT
2 )

pTi Φ∂
i (x, pT

2 )

pTij Φ∂∂
ij (x, pT

2 )

CG
[U ]π pTij Φ{∂G}

ij (x, pT
2 )

CG
[U ]π pTi ΦG

i (x, pT
2 ) CGG ,c

[U ] π 2 pTij ΦGG ,c
ij (x, pT

2 ) ...

...

...

...

f1 (x, pT
2 ) h1

⊥(x, pT
2 )

−

− −

−−

−

−



Examples 

!   General identification for quarks in a nucleon (spin ½) 
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4. TMDs of definite rank

An interesting possibility to obtain universal TMDs is to start with a parametriza-
tion that involves the symmetric traceless tensors pα1...αm

T
of rank m, such as

pα
T
, pαβ

T
= pα

T
pβ

T
−

1

2
p2

T
gαβ
T

. . . . (21)

Depending on the rank different correlators come in, involving operator combina-
tions of gluons, covariant derivatives and A-fields. Minimizing the twist we have

Φ[U ](x, pT ) = Φ(x, p2
T
) + πC [U ]

G

pTi

M
Φi

G(x, p
2
T
) + π2C [U ]

GG,c

pT ij

M2
Φij

GG,c(x, p
2
T
) + . . .

+
pT i

M
Φ̃i

∂(x, p
2
T
) + πC [U ]

G

pT ij

M2
Φ̃ ij

{∂G}(x, p
2
T
) + . . .

+
pT ij

M2
Φ̃ij

∂∂(x, p
2
T
) + . . . , (22)

with a summation over the color structures c. The reproduction of the transverse
moments provides the proper identification of universal TMD functions,

Φ(x, p2
T
) =

{
f1(x, p

2
T
) + SL g1(x, p

2
T
)γ5 + h1(x, p

2
T
)γ5 /ST

}
/P

2
, (23)

pTi

M
Φ̃i

∂(x, p
2
T
) =

{
h⊥
1L(x, p

2
T
)SL

γ5 /p
T

M
− g1T (x, p

2
T
)
pT ·ST

M
γ5

}
/P

2
, (24)

pTi

M
Φi

G(x, p
2
T
) =

{
− f⊥

1T (x, p
2
T
)
ερσT pTρSTσ

M
+ ih⊥

1 (x, p
2
T
)
/p
T

M

}
/P

2
, (25)

pTij

M2
Φ̃ij

∂∂(x, p
2
T
) = h⊥(A)

1T (x, p2
T
)
pT ijSi

T
γ5γ

j
T

M2

/P

2
, (26)

pTij

M2
Φij

GG,1(x, p
2
T
) =

1

π2
h⊥(B1)
1T (x, p2

T
)
pT ijSi

T
γ5γ

j
T

M2

/P

2
, (27)

pTij

M2
Φij

GG,2(x, p
2
T
) =

1

π2
h⊥(B2)
1T (x, p2

T
)
pT ijSi

T
γ5γ

j
T

M2

/P

2
, (28)

pTij

M2
Φ̃ij

{∂G}(x, p
2
T
) = 0. (29)

We note that the rank zero functions in Eq. (23) depend on x and p2
T

and in-
volve traces, to be precise g1(x, p2T ) = g[U ]

1L (x, p2
T
) and h1(x, p2T ) = h[U ]

1T (x, p2
T
) −

(p2
T
/2M2)h⊥[U ]

1T (x, p2
T
). As remarked before, for the pretzelocity there are three uni-

versal functions with in general

h⊥[U ]
1T (x, p2

T
) = h⊥(A)

1T (x, p2
T
) + C [U ]

GG,1 h
⊥(B1)
1T (x, p2

T
) + C [U ]

GG,2 h
⊥(B2)
1T (x, p2

T
). (30)

For the simplest gauge links we have C [±]
GG,1 = 1 and C [±]

GG,2 = 0, which shows e.g.

that h⊥[SIDIS]
1T (x, p2

T
) = h⊥[DY]

1T (x, p2
T
), but that for other processes (with more com-

plicated gauge links) other combinations of the three possible pretzelocity functions
occur. For a spin 1/2 target the above set of TMDs is complete. There are no higher
rank functions. For a spin 1 target 23,24 and for gluons, there are higher rank func-
tions 22,25. For the fragmentation correlator there is for rank 2 only a single (T-even)

 Trc(GGψψ) 

 Trc(GG)Trc(ψψ) 



Examples 

!   Rank expansion of TMDs  

 
 

!   Example 2: TMD PDFs for a longitudinally (L) polarized spin ½ target 
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Φ(x, pT
2 )

pTi Φ∂
i (x, pT

2 )

pTij Φ∂∂
ij (x, pT

2 )

CG
[U ]π pTij Φ{∂G}

ij (x, pT
2 )

CG
[U ]π pTi ΦG

i (x, pT
2 ) CGG ,c

[U ] π 2 pTij ΦGG ,c
ij (x, pT

2 ) ...

...

...

...

g1
h1L
⊥

−

− −

−

−

− −



Examples 

!   Expansion  

 
 

!   Example 3: TMD PDFs for a transversely (T) polarized spin ½ target 
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Φ(x, pT
2 )

pTi Φ∂
i (x, pT

2 )

pTij Φ∂∂
ij (x, pT

2 )

CG
[U ]π pTij Φ{∂G}

ij (x, pT
2 )

CG
[U ]π pTi ΦG

i (x, pT
2 ) CGG ,c

[U ] π 2 pTij ΦGG ,c
ij (x, pT

2 ) ...

...

...

...

h1
g1T

h1T
⊥(B1) , h1T

⊥(B2)f1T
⊥

h1T
⊥(A)

−

− −

−



Examples 

!   Rank expansion  

 
 

!   Example 4: TMD PFFs for spin ½ fragment 
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Φ(x, pT
2 )

pTi Φ∂
i (x, pT

2 )

pTij Φ∂∂
ij (x, pT

2 )

CG
[U ]π pTij Φ{∂G}

ij (x, pT
2 )

CG
[U ]π pTi ΦG

i (x, pT
2 ) CGG ,c

[U ] π 2 pTij ΦGG ,c
ij (x, pT

2 ) ...

...

...

...

D1 ,G1, H1
H1

⊥ , H1L
⊥ ,G1T , D1T

⊥

H1T
⊥



Summarizing quark TMDs up to spin 1 targets 
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9

GLUONIC POLE RANK
0 1 2 3

Φ(x, p2T ) πC
[U ]
G ΦG π2C

[U ]
GG,c ΦGG,c π3C

[U ]
GGG,c ΦGGG,c

Φ̃∂ πC
[U ]
G Φ̃{∂G} π2C

[U ]
GG,c Φ̃{∂GG},c . . .

Φ̃∂∂ πC
[U ]
G Φ̃{∂∂G} . . . . . .

Φ̃∂∂∂ . . . . . . . . .

TABLE II: The contributions in the TMD correlator for correlators ordered in columns according to the
number of gluonic poles (G) and ordered in rows according to the number of contributing partial derivatives
(∂ = D−A). The rank of these operators is equal to the sum of these numbers. Their twist is equal to the
rank + 2.

PDFs FOR SPIN 0 HADRONS
f1 h⊥

1

TABLE III: The assignment of TMD PDFs
for a spin 0 or unpolarized target to the quark
correlators as given in Table II involve at most
rank 1 TMD correlators. There is no T-even
function corresponding to Φ̃i

∂ .

PDFs FOR SPIN 1/2 HADRONS

g1, h1 f⊥
1T h

⊥(B1)
1T , h⊥(B2)

1T

g1T , h
⊥
1L

h
⊥(A)
1T

TABLE IV: The assignment of TMD PDFs for
a polarized spin 1/2 target to the quark corre-
lators as given in Table II involve at most rank
1 TMD correlators for longitudinal polarization,
while they involve also rank 2 TMD correlators
for a transversely polarized spin 1/2 target.

PFFs FOR SPIN 0 HADRONS
D1

H⊥
1

TABLE V: The operator structure of quark TMD
PFFs for spin 0 or unpolarized hadrons. All glu-
onic pole matrix elements vanish.

PFFs FOR SPIN 1/2 HADRONS
G1, H1

G1T , H
⊥
1L, D

⊥
1T

H⊥
1T

TABLE VI: The operator structure of quark
TMD PFFs for polarized spin 1/2 hadrons. Glu-
onic pole matrix elements vanish.

B. Results for spin 1 hadrons

Extension to higher spin targets is straightforward. We illustrate this by giving in Table VII the assignments for
spin 1 tensor polarized TMD functions. These were first given in Ref. [25]. The (slightly updated) parametrization
of the TMD correlator for the TMD PDFs for a tensor polarized target are given in Appendix C as well as the

parametrization of the TMD PFFs in Appendix D. From these tensor polarized spin 1 contributions, the f [U ]
1TT (x, p

2
T
)

and h⊥[U ]
1TT (x, p2

T
) can be written as a combination of multiple universal PDFs, multiplied with process dependent

gluonic pole factors,

f [U ]
1TT (x, p

2
T
) = f (A)

1TT (x, p
2
T
) + C [U ]

GG,c f
(Bc)
1TT (x, p2

T
), (36)

h⊥[U ]
1TT (x, p2

T
) = C [U ]

G h⊥(A)
1TT (x, p2

T
) + C [U ]

GGG,c h
⊥(Bc)
1TT (x, p2

T
). (37)

Note that the h⊥[U ]
1TT (x, p2

T
) is a rank 3 object, for which all contributing universal functions are multiplied with a

process dependent prefactor. A special case is the T-odd TMD PDF h1LT , which is forbidden because of time-reversal
invariance. Following Ref. [25], this rank 0 TMD PDF is defined as the combination h1LT (x, p2T ) = h′

1LT (x, p
2
T
) +

h⊥(1)
1LT (x, p2

T
) and is shown as the wiped-out function in Table VII. It shows a nice feature of our TMD functions

of definite rank. In the first column only T-even TMD PDFs are allowed, in the second column only T-odd ones,
etc. The first victim of the application of time-reversal invariance for leading quark TMDs, thus, is h1LT (x, p2T ), a
(T-forbidden) transversely polarized quark distribution function in a tensor polarized hadron. Note that the rank 2,
T-odd function h⊥

1LT (x, p
2
T
) is allowed. The only rank 0 function for a tensor polarized spin 1 target thus is f1LL(x, p2T ),

introduced as the distribution b1 in Ref. [26].
For fragmentation functions, gluonic pole contributions all vanish and only the first column survives. The
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GLUONIC POLE RANK
0 1 2 3

Φ(x, p2T ) πC
[U ]
G ΦG π2C

[U ]
GG,c ΦGG,c π3C

[U ]
GGG,c ΦGGG,c

Φ̃∂ πC
[U ]
G Φ̃{∂G} π2C

[U ]
GG,c Φ̃{∂GG},c . . .

Φ̃∂∂ πC
[U ]
G Φ̃{∂∂G} . . . . . .

Φ̃∂∂∂ . . . . . . . . .

TABLE II: The contributions in the TMD correlator for correlators ordered in columns according to the
number of gluonic poles (G) and ordered in rows according to the number of contributing partial derivatives
(∂ = D−A). The rank of these operators is equal to the sum of these numbers. Their twist is equal to the
rank + 2.

PDFs FOR SPIN 0 HADRONS
f1 h⊥

1

TABLE III: The assignment of TMD PDFs
for a spin 0 or unpolarized target to the quark
correlators as given in Table II involve at most
rank 1 TMD correlators. There is no T-even
function corresponding to Φ̃i

∂ .

PDFs FOR SPIN 1/2 HADRONS

g1, h1 f⊥
1T h

⊥(B1)
1T , h⊥(B2)

1T

g1T , h
⊥
1L

h
⊥(A)
1T

TABLE IV: The assignment of TMD PDFs for
a polarized spin 1/2 target to the quark corre-
lators as given in Table II involve at most rank
1 TMD correlators for longitudinal polarization,
while they involve also rank 2 TMD correlators
for a transversely polarized spin 1/2 target.

PFFs FOR SPIN 0 HADRONS
D1

H⊥
1

TABLE V: The operator structure of quark TMD
PFFs for spin 0 or unpolarized hadrons. All glu-
onic pole matrix elements vanish.

PFFs FOR SPIN 1/2 HADRONS
G1, H1

G1T , H
⊥
1L, D

⊥
1T

H⊥
1T

TABLE VI: The operator structure of quark
TMD PFFs for polarized spin 1/2 hadrons. Glu-
onic pole matrix elements vanish.

B. Results for spin 1 hadrons

Extension to higher spin targets is straightforward. We illustrate this by giving in Table VII the assignments for
spin 1 tensor polarized TMD functions. These were first given in Ref. [25]. The (slightly updated) parametrization
of the TMD correlator for the TMD PDFs for a tensor polarized target are given in Appendix C as well as the

parametrization of the TMD PFFs in Appendix D. From these tensor polarized spin 1 contributions, the f [U ]
1TT (x, p

2
T
)

and h⊥[U ]
1TT (x, p2

T
) can be written as a combination of multiple universal PDFs, multiplied with process dependent

gluonic pole factors,

f [U ]
1TT (x, p

2
T
) = f (A)

1TT (x, p
2
T
) + C [U ]

GG,c f
(Bc)
1TT (x, p2

T
), (36)

h⊥[U ]
1TT (x, p2

T
) = C [U ]

G h⊥(A)
1TT (x, p2

T
) + C [U ]

GGG,c h
⊥(Bc)
1TT (x, p2

T
). (37)

Note that the h⊥[U ]
1TT (x, p2

T
) is a rank 3 object, for which all contributing universal functions are multiplied with a

process dependent prefactor. A special case is the T-odd TMD PDF h1LT , which is forbidden because of time-reversal
invariance. Following Ref. [25], this rank 0 TMD PDF is defined as the combination h1LT (x, p2T ) = h′

1LT (x, p
2
T
) +

h⊥(1)
1LT (x, p2

T
) and is shown as the wiped-out function in Table VII. It shows a nice feature of our TMD functions

of definite rank. In the first column only T-even TMD PDFs are allowed, in the second column only T-odd ones,
etc. The first victim of the application of time-reversal invariance for leading quark TMDs, thus, is h1LT (x, p2T ), a
(T-forbidden) transversely polarized quark distribution function in a tensor polarized hadron. Note that the rank 2,
T-odd function h⊥

1LT (x, p
2
T
) is allowed. The only rank 0 function for a tensor polarized spin 1 target thus is f1LL(x, p2T ),

introduced as the distribution b1 in Ref. [26].
For fragmentation functions, gluonic pole contributions all vanish and only the first column survives. The
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GLUONIC POLE RANK
0 1 2 3

Φ(x, p2T ) πC
[U ]
G ΦG π2C

[U ]
GG,c ΦGG,c π3C

[U ]
GGG,c ΦGGG,c

Φ̃∂ πC
[U ]
G Φ̃{∂G} π2C

[U ]
GG,c Φ̃{∂GG},c . . .

Φ̃∂∂ πC
[U ]
G Φ̃{∂∂G} . . . . . .

Φ̃∂∂∂ . . . . . . . . .

TABLE II: The contributions in the TMD correlator for correlators ordered in columns according to the
number of gluonic poles (G) and ordered in rows according to the number of contributing partial derivatives
(∂ = D−A). The rank of these operators is equal to the sum of these numbers. Their twist is equal to the
rank + 2.

PDFs FOR SPIN 0 HADRONS
f1 h⊥

1

TABLE III: The assignment of TMD PDFs
for a spin 0 or unpolarized target to the quark
correlators as given in Table II involve at most
rank 1 TMD correlators. There is no T-even
function corresponding to Φ̃i

∂ .

PDFs FOR SPIN 1/2 HADRONS

g1, h1 f⊥
1T h

⊥(B1)
1T , h⊥(B2)

1T

g1T , h
⊥
1L

h
⊥(A)
1T

TABLE IV: The assignment of TMD PDFs for
a polarized spin 1/2 target to the quark corre-
lators as given in Table II involve at most rank
1 TMD correlators for longitudinal polarization,
while they involve also rank 2 TMD correlators
for a transversely polarized spin 1/2 target.

PFFs FOR SPIN 0 HADRONS
D1

H⊥
1

TABLE V: The operator structure of quark TMD
PFFs for spin 0 or unpolarized hadrons. All glu-
onic pole matrix elements vanish.

PFFs FOR SPIN 1/2 HADRONS
G1, H1

G1T , H
⊥
1L, D

⊥
1T

H⊥
1T

TABLE VI: The operator structure of quark
TMD PFFs for polarized spin 1/2 hadrons. Glu-
onic pole matrix elements vanish.

B. Results for spin 1 hadrons

Extension to higher spin targets is straightforward. We illustrate this by giving in Table VII the assignments for
spin 1 tensor polarized TMD functions. These were first given in Ref. [25]. The (slightly updated) parametrization
of the TMD correlator for the TMD PDFs for a tensor polarized target are given in Appendix C as well as the

parametrization of the TMD PFFs in Appendix D. From these tensor polarized spin 1 contributions, the f [U ]
1TT (x, p

2
T
)

and h⊥[U ]
1TT (x, p2

T
) can be written as a combination of multiple universal PDFs, multiplied with process dependent

gluonic pole factors,

f [U ]
1TT (x, p

2
T
) = f (A)

1TT (x, p
2
T
) + C [U ]

GG,c f
(Bc)
1TT (x, p2

T
), (36)

h⊥[U ]
1TT (x, p2

T
) = C [U ]

G h⊥(A)
1TT (x, p2

T
) + C [U ]

GGG,c h
⊥(Bc)
1TT (x, p2

T
). (37)

Note that the h⊥[U ]
1TT (x, p2

T
) is a rank 3 object, for which all contributing universal functions are multiplied with a

process dependent prefactor. A special case is the T-odd TMD PDF h1LT , which is forbidden because of time-reversal
invariance. Following Ref. [25], this rank 0 TMD PDF is defined as the combination h1LT (x, p2T ) = h′

1LT (x, p
2
T
) +

h⊥(1)
1LT (x, p2

T
) and is shown as the wiped-out function in Table VII. It shows a nice feature of our TMD functions

of definite rank. In the first column only T-even TMD PDFs are allowed, in the second column only T-odd ones,
etc. The first victim of the application of time-reversal invariance for leading quark TMDs, thus, is h1LT (x, p2T ), a
(T-forbidden) transversely polarized quark distribution function in a tensor polarized hadron. Note that the rank 2,
T-odd function h⊥

1LT (x, p
2
T
) is allowed. The only rank 0 function for a tensor polarized spin 1 target thus is f1LL(x, p2T ),

introduced as the distribution b1 in Ref. [26].
For fragmentation functions, gluonic pole contributions all vanish and only the first column survives. The
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PDFs FOR TENSOR POLARIZED SPIN 1 HADRONS

f1LL,!!!"
""h1LT h⊥

1LL, g1LT , h1TT f
(Bc)
1TT h

⊥(Bc)
1TT

f1LT h⊥
1LT , g1TT

f
(A)
1TT h

⊥(A)
1TT

TABLE VII: The operator assignments of TMD PDFs for a tensor polarized spin 1 target require operator
structures up to rank 3. There are several different functions f1TT (x, p

2
T ) and h⊥

1TT (x, p
2
T ).

PFFs FOR TENSOR POLARIZED SPIN 1 HADRONS
D1LL, H1LT

D1LT , H
⊥
1LL, G1LT , H1TT

D1TT , H
⊥
1LT , G1TT

H⊥
1TT

TABLE VIII: The operator structure of TMD PFFs for a tensor polarized spin 1 target requires operator
structures up to rank 3.

parametrization of the higher rank correlators contain the T-even and T-odd TMD fragmentation functions. The
fragmentation functions describing fragmentation into a tensor polarized hadron are given in Table VIII.

C. Bessel weights

We note that the TMDs f (m)(x, p2
T
) of a given rank do not contain operators of definite twist. This is only

true for transverse moments f (m)
... (x) after pT -integration. The TMD correlators of definite rank appearing in the

parametrization in Eq. 22 only are integrated over azimuthal directions. The rank just refers to the azimuthal
dependence of the correlators in the full correlator Φ[U ](x, pT ).
Using that for a given rank m, there are two independent combinations pi1...im

T
∝ |pT |m exp(±imϕp), it is equivalent

to consider

pTi1...im

Mm
Φ̃i1...im

... (x, p2
T
) or Φ̃(m/2)

... (x, p2
T
) eimϕp , (38)

where Φ̃(m/2)
... (x, p2

T
) = (−p2

T
/2M2)m/2 Φ̃...(x, p2T ) assures the appropriate small pT -behavior. A suitable normalization

of the correlator has to assure that Φ̃(m)
... (x, p2

T
) reproduces the collinear transverse moments upon integration,

Φ̃(m)
... (x) =

∫ ∞

0
2π|pT | d|pT | Φ̃

(m)
... (x, p2

T
). (39)

Knowing the correlators in Eq. 38 to be Fourier transforms of nonlocal matrix elements in transverse space, it is
natural to write the appropriately weighted TMD PDF in their parametrization as a Bessel transform,

f̃ (m/2)
... (x, |pT |) =

∫ ∞

0
db

√
|pT |b Jm(|pT |b) f

(m/2)
... (x, b), (40)

such that f (m/2)
... (x, b) exp(imϕb) is the (two-dimensional) Fourier transform of f̃ (m/2)

... (x, |pT |) exp(imϕp). Bessel
weightings are extensively studied in Ref. [27].
Bessel weighting may also offer a convenient way to incorporate the soft factor which usually is given in b-space [28].

This factor has been omitted from Eq. 19. Our decomposition in Eq. 22, however, can always be written down, but
the Φ...(x, p2T ) will be modified by the inclusion of the soft factor.

IV. CONCLUSIONS

In Eq. 22 we have presented a parametrization for TMD quark correlators that distinguishes different azimuthal
dependences. For this we write down an expansion in terms of irreducible tensors in the transverse momentum
multiplied with correlators depending on x and p2

T
. These correlators contain tensors describing the polarization of
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Time reversal constraints 

!   After all a ‘forbidden’ TMD because of time reversal symmetry: h1LT 

!   H1LT is allowed, D1TT is unique, … 
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1TT

TABLE VII: The operator assignments of TMD PDFs for a tensor polarized spin 1 target require operator
structures up to rank 3. There are several different functions f1TT (x, p

2
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1TT (x, p
2
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⊥
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⊥
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H⊥
1TT
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Knowing the correlators in Eq. 38 to be Fourier transforms of nonlocal matrix elements in transverse space, it is
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f̃ (m/2)
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∫ ∞
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such that f (m/2)
... (x, b) exp(imϕb) is the (two-dimensional) Fourier transform of f̃ (m/2)

... (x, |pT |) exp(imϕp). Bessel
weightings are extensively studied in Ref. [27].
Bessel weighting may also offer a convenient way to incorporate the soft factor which usually is given in b-space [28].

This factor has been omitted from Eq. 19. Our decomposition in Eq. 22, however, can always be written down, but
the Φ...(x, p2T ) will be modified by the inclusion of the soft factor.

IV. CONCLUSIONS

In Eq. 22 we have presented a parametrization for TMD quark correlators that distinguishes different azimuthal
dependences. For this we write down an expansion in terms of irreducible tensors in the transverse momentum
multiplied with correlators depending on x and p2
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. These correlators contain tensors describing the polarization of
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parametrization of the higher rank correlators contain the T-even and T-odd TMD fragmentation functions. The
fragmentation functions describing fragmentation into a tensor polarized hadron are given in Table VIII.

C. Bessel weights

We note that the TMDs f (m)(x, p2
T
) of a given rank do not contain operators of definite twist. This is only

true for transverse moments f (m)
... (x) after pT -integration. The TMD correlators of definite rank appearing in the

parametrization in Eq. 22 only are integrated over azimuthal directions. The rank just refers to the azimuthal
dependence of the correlators in the full correlator Φ[U ](x, pT ).
Using that for a given rank m, there are two independent combinations pi1...im

T
∝ |pT |m exp(±imϕp), it is equivalent

to consider

pTi1...im

Mm
Φ̃i1...im

... (x, p2
T
) or Φ̃(m/2)
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) eimϕp , (38)
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/2M2)m/2 Φ̃...(x, p2T ) assures the appropriate small pT -behavior. A suitable normalization

of the correlator has to assure that Φ̃(m)
... (x, p2

T
) reproduces the collinear transverse moments upon integration,

Φ̃(m)
... (x) =

∫ ∞

0
2π|pT | d|pT | Φ̃

(m)
... (x, p2

T
). (39)

Knowing the correlators in Eq. 38 to be Fourier transforms of nonlocal matrix elements in transverse space, it is
natural to write the appropriately weighted TMD PDF in their parametrization as a Bessel transform,

f̃ (m/2)
... (x, |pT |) =

∫ ∞

0
db

√
|pT |b Jm(|pT |b) f

(m/2)
... (x, b), (40)

such that f (m/2)
... (x, b) exp(imϕb) is the (two-dimensional) Fourier transform of f̃ (m/2)

... (x, |pT |) exp(imϕp). Bessel
weightings are extensively studied in Ref. [27].
Bessel weighting may also offer a convenient way to incorporate the soft factor which usually is given in b-space [28].

This factor has been omitted from Eq. 19. Our decomposition in Eq. 22, however, can always be written down, but
the Φ...(x, p2T ) will be modified by the inclusion of the soft factor.

IV. CONCLUSIONS

In Eq. 22 we have presented a parametrization for TMD quark correlators that distinguishes different azimuthal
dependences. For this we write down an expansion in terms of irreducible tensors in the transverse momentum
multiplied with correlators depending on x and p2

T
. These correlators contain tensors describing the polarization of
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Gluon TMDs in a nucleon 

!   For gluons one can have rank 0 – 3 

!   Color structure GG,c includes a.o.                         and 
!   PDFs: 
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GLUONIC POLE RANK
0 1 2 3

Γ(x, p2T ) Γ[U ]
G,c Γ[U ]

GG,c
Γ[U ]
GGG,c

Γ̃∂ Γ̃[U ]
{∂G},c Γ̃[U ]

{∂GG},c
. . .

Γ̃∂∂ Γ̃[U ]
{∂∂G},c . . . . . .

Γ̃∂∂∂ . . . . . . . . .

TABLE I: The matrix elements for gluon TMD PDFS, ordered by gluonic pole rank and partial derivatives.
The explicit expansion of all correlators in universal correlators multiplied with gluonic pole factors is given
in the text. Note that the gluonic pole coefficients are equal for correlators in the same column.

PDFs FOR GLUONS

fg
1 , g

g
1L f

⊥g(Ac)
1T , hg(Ac)

1T h
⊥g(Bc)
1 h

⊥g(Bc)
1T

gg1T h
⊥g(Ac)
1L

h
⊥g(A)
1 h

⊥g(Ac)
1T

TABLE II: The operator assignments of TMD PDFs for gluons. The index c for some labels A and B indicate
that there are multiple contributions for that TMD PDF of that rank due to the presence of multiple color
structures.

PFFs FOR GLUONS
Dg

1 , G
g
1L

D⊥g
1T , Gg

1T , H
g
1T

H⊥g
1 , H⊥g

1L

H⊥g
1T

TABLE III: The matrix element assignment for gluon fragmentation functions. All gluonic pole matrix
elements vanish.

This implies that (these relations still have to be checked)

2xΓµν(x, p2T ) = −gµνT fg
1 (x,p

2
T ) + iεµνT SL gg1L(x,p

2
T ), (21)

2x
pT i

M
Γ̃i µν
∂ (x, p2

T
) = −iεµνT

pT · ST

M
gg1T (x,p

2
T
), (22)

2x
pT i

M
πΓi µν

G,c (x, p
2
T
) = gµνT

εpTST

T

M
f⊥g(Ac)
1T (x,p2

T
)−

εpT {µ
T Sν}

T +εST {µ
T pν}T

4M
hg(Ac)
1T (x,p2

T
), (23)

2x
pT ij

M2
Γ̃ij µν
∂∂ (x, p2

T
) = pTijg

iµ
T gjνT h⊥g(A)

1 (x,p2
T
), (24)

2x
pT ij

M2
πΓ̃ij µν

{∂G},c(x, p
2
T ) = −

pTijε
i{µ
T gν}jT SL

2M2
h⊥g(Ac)
1L (x,p2T ), (25)

2x
pT ij

M2
π2Γij µν

GG,c(x, p
2
T ) = pTijg

iµ
T gjνT h⊥g(Bc)

1 (x,p2T ), (26)

2x
pT ijk

M3
Γ̃ijk µν
∂∂∂ (x, p2T ) = 0, (27)

2x
pT ijk

M3
πΓ̃ijk µν

{∂∂G},c(x, p
2
T ) = pTijk

εi{µT gν}jT

2M2

Sk
T

M
h⊥g(Ac)
1T (x,p2T ), (28)

2x
pT ijk

M3
π2Γ̃ijk µν

{∂GG},c(x, p
2
T ) = 0, (29)

2x
pT ijk

M3
π3Γijk µν

GGG,c(x, p
2
T
) = pT ijk

εi{µT gν}jT

2M2

Sk
T

M
h⊥g(Bc)
1T (x,p2

T
). (30)

Note that we have used Eq. 7 for the gluon parametrization.
A similar expansion as in Eq. 20 can be made for the fragmentation correlator as well. For fragmentation functions,

the gluonic pole matrix elements vanish [REFS], hence there is no longer any process dependence. As a result, all
fragmentation TMDs are universal. The assigment of gluon TMD PFFs can be seen in Table III. The parametrizaton
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{∂GG},c
. . .
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TABLE I: The matrix elements for gluon TMD PDFS, ordered by gluonic pole rank and partial derivatives.
The explicit expansion of all correlators in universal correlators multiplied with gluonic pole factors is given
in the text. Note that the gluonic pole coefficients are equal for correlators in the same column.
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1T h
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⊥g(Bc)
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⊥g(A)
1 h

⊥g(Ac)
1T

TABLE II: The operator assignments of TMD PDFs for gluons. The index c for some labels A and B indicate
that there are multiple contributions for that TMD PDF of that rank due to the presence of multiple color
structures.

PFFs FOR GLUONS
Dg

1 , G
g
1L

D⊥g
1T , Gg

1T , H
g
1T

H⊥g
1 , H⊥g

1L
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1T

TABLE III: The matrix element assignment for gluon fragmentation functions. All gluonic pole matrix
elements vanish.

This implies that (these relations still have to be checked)

2xΓµν(x, p2T ) = −gµνT fg
1 (x,p

2
T ) + iεµνT SL gg1L(x,p

2
T ), (21)

2x
pT i

M
Γ̃i µν
∂ (x, p2

T
) = −iεµνT

pT · ST

M
gg1T (x,p

2
T
), (22)

2x
pT i

M
πΓi µν

G,c (x, p
2
T
) = gµνT

εpTST

T

M
f⊥g(Ac)
1T (x,p2

T
)−

εpT {µ
T Sν}

T +εST {µ
T pν}T

4M
hg(Ac)
1T (x,p2

T
), (23)

2x
pT ij

M2
Γ̃ij µν
∂∂ (x, p2

T
) = pTijg

iµ
T gjνT h⊥g(A)

1 (x,p2
T
), (24)

2x
pT ij

M2
πΓ̃ij µν

{∂G},c(x, p
2
T ) = −

pTijε
i{µ
T gν}jT SL

2M2
h⊥g(Ac)
1L (x,p2T ), (25)

2x
pT ij

M2
π2Γij µν

GG,c(x, p
2
T ) = pTijg

iµ
T gjνT h⊥g(Bc)

1 (x,p2T ), (26)

2x
pT ijk

M3
Γ̃ijk µν
∂∂∂ (x, p2T ) = 0, (27)

2x
pT ijk

M3
πΓ̃ijk µν

{∂∂G},c(x, p
2
T ) = pTijk
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Sk
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M
h⊥g(Ac)
1T (x,p2T ), (28)
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pT ijk

M3
π2Γ̃ijk µν

{∂GG},c(x, p
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T ) = 0, (29)

2x
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π3Γijk µν

GGG,c(x, p
2
T
) = pT ijk

εi{µT gν}jT

2M2

Sk
T

M
h⊥g(Bc)
1T (x,p2

T
). (30)

Note that we have used Eq. 7 for the gluon parametrization.
A similar expansion as in Eq. 20 can be made for the fragmentation correlator as well. For fragmentation functions,

the gluonic pole matrix elements vanish [REFS], hence there is no longer any process dependence. As a result, all
fragmentation TMDs are universal. The assigment of gluon TMD PFFs can be seen in Table III. The parametrizaton

Trc([G,F][G,F]) Trc({G,F}{G,F}) 
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Bessel transforms 

!   The universal TMDs of definite rank are natural objects that can be 
studied in impact parameter space 

!   Bessel transforms for rank m involve (m/2)-moments 
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PDFs FOR TENSOR POLARIZED SPIN 1 HADRONS

f1LL,!!!"
""h1LT h⊥

1LL, g1LT , h1TT f
(Bc)
1TT h

⊥(Bc)
1TT

f1LT h⊥
1LT , g1TT

f
(A)
1TT h

⊥(A)
1TT

TABLE VII: The operator assignments of TMD PDFs for a tensor polarized spin 1 target require operator
structures up to rank 3. There are several different functions f1TT (x, p

2
T ) and h⊥

1TT (x, p
2
T ).

PFFs FOR TENSOR POLARIZED SPIN 1 HADRONS
D1LL, H1LT

D1LT , H
⊥
1LL, G1LT , H1TT

D1TT , H
⊥
1LT , G1TT

H⊥
1TT

TABLE VIII: The operator structure of TMD PFFs for a tensor polarized spin 1 target requires operator
structures up to rank 3.

parametrization of the higher rank correlators contain the T-even and T-odd TMD fragmentation functions. The
fragmentation functions describing fragmentation into a tensor polarized hadron are given in Table VIII.

C. Bessel weights

We note that the TMDs f (m)(x, p2
T
) of a given rank do not contain operators of definite twist. This is only

true for transverse moments f (m)
... (x) after pT -integration. The TMD correlators of definite rank appearing in the

parametrization in Eq. 22 only are integrated over azimuthal directions. The rank just refers to the azimuthal
dependence of the correlators in the full correlator Φ[U ](x, pT ).
Using that for a given rank m, there are two independent combinations pi1...im

T
∝ |pT |m exp(±imϕp), it is equivalent

to consider

pTi1...im

Mm
Φ̃i1...im

... (x, p2
T
) or Φ̃(m/2)

... (x, p2
T
) eimϕp , (38)

where Φ̃(m/2)
... (x, p2

T
) = (−p2

T
/2M2)m/2 Φ̃...(x, p2T ) assures the appropriate small pT -behavior. A suitable normalization

of the correlator has to assure that Φ̃(m)
... (x, p2

T
) reproduces the collinear transverse moments upon integration,

Φ̃(m)
... (x) =

∫ ∞

0
2π|pT | d|pT | Φ̃

(m)
... (x, p2

T
). (39)

Knowing the correlators in Eq. 38 to be Fourier transforms of nonlocal matrix elements in transverse space, it is
natural to write the appropriately weighted TMD PDF in their parametrization as a Bessel transform,

f̃ (m/2)
... (x, |pT |) =

∫ ∞

0
db

√
|pT |b Jm(|pT |b) f

(m/2)
... (x, b), (40)

such that f (m/2)
... (x, b) exp(imϕb) is the (two-dimensional) Fourier transform of f̃ (m/2)

... (x, |pT |) exp(imϕp). Bessel
weightings are extensively studied in Ref. [27].
Bessel weighting may also offer a convenient way to incorporate the soft factor which usually is given in b-space [28].

This factor has been omitted from Eq. 19. Our decomposition in Eq. 22, however, can always be written down, but
the Φ...(x, p2T ) will be modified by the inclusion of the soft factor.

IV. CONCLUSIONS

In Eq. 22 we have presented a parametrization for TMD quark correlators that distinguishes different azimuthal
dependences. For this we write down an expansion in terms of irreducible tensors in the transverse momentum
multiplied with correlators depending on x and p2

T
. These correlators contain tensors describing the polarization of
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parametrization of the higher rank correlators contain the T-even and T-odd TMD fragmentation functions. The
fragmentation functions describing fragmentation into a tensor polarized hadron are given in Table VIII.
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... (x) after pT -integration. The TMD correlators of definite rank appearing in the

parametrization in Eq. 22 only are integrated over azimuthal directions. The rank just refers to the azimuthal
dependence of the correlators in the full correlator Φ[U ](x, pT ).
Using that for a given rank m, there are two independent combinations pi1...im
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∝ |pT |m exp(±imϕp), it is equivalent
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T
/2M2)m/2 Φ̃...(x, p2T ) assures the appropriate small pT -behavior. A suitable normalization

of the correlator has to assure that Φ̃(m)
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) reproduces the collinear transverse moments upon integration,
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... (x) =

∫ ∞

0
2π|pT | d|pT | Φ̃

(m)
... (x, p2

T
). (39)

Knowing the correlators in Eq. 38 to be Fourier transforms of nonlocal matrix elements in transverse space, it is
natural to write the appropriately weighted TMD PDF in their parametrization as a Bessel transform,

f̃ (m/2)
... (x, |pT |) =

∫ ∞

0
db

√
|pT |b Jm(|pT |b) f

(m/2)
... (x, b), (40)

such that f (m/2)
... (x, b) exp(imϕb) is the (two-dimensional) Fourier transform of f̃ (m/2)

... (x, |pT |) exp(imϕp). Bessel
weightings are extensively studied in Ref. [27].
Bessel weighting may also offer a convenient way to incorporate the soft factor which usually is given in b-space [28].

This factor has been omitted from Eq. 19. Our decomposition in Eq. 22, however, can always be written down, but
the Φ...(x, p2T ) will be modified by the inclusion of the soft factor.

IV. CONCLUSIONS

In Eq. 22 we have presented a parametrization for TMD quark correlators that distinguishes different azimuthal
dependences by writing an expansion in terms of irreducible tensors in the transverse momentum multiplied with
correlators depending on x and p2

T
. These correlators contain tensors describing the polarization of the target and



Process dependent complications (preliminary) 

!   There are remaining process-dependent complications in convolutions 

!   … but these complications are not worse than collinear twist-3 squared 
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σ DY (x1,x2 ,qT ) = 1
Nc
Conv Φ(x1, p1T

2 )Φ(x2 , p2T
2 )σ̂{ }

+ 1
Nc
Conv p1Tα Φ∂

α (x1, p1T
2 )Φ(x2 , p2T

2 )σ̂{ }
+ 1

Nc
Conv CG

[−]p1TαΦG
α (x1, p1T

2 )Φ(x2 , p2T
2 )σ̂{ }

+ 1
Nc
Conv Φ(x1, p1T

2 )p2Tα Φ∂
α (x2 , p2T

2 )σ̂{ }
+ 1

Nc
Conv Φ(x1, p1T

2 )CG
[−]p2TαΦG

α (x2 , p2T
2 )σ̂{ }

+ 1
Nc
Conv CGG

[−] p1TαβΦGG
αβ (x1, p1T

2 )Φ(x2 , p2T
2 )σ̂{ }

+ 1
Nc (Nc

2−1)
Conv CG

[−]p1TαΦ(x1, p1T
2 )CG

[−]p2TαΦG
α (x2 , p2T

2 )σ̂{ }
+ ....
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Conclusions 

!   (Generalized) universality using definite rank functions 

!   Rank m is coupled to cos(mφ) and sin(mφ) azimuthal asymmetries 

!   Multiple distribution functions showing up in azimuthal asymmetries 
(depending on color structure of operators), e.g. three pretzelocities. 

!   In principle distinguishable in different experiments (with different color 
flow in tree-level diagrams) 

!   Factorization is the next step  
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