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TMDs
Transverse Momentum Dependent PDFs

f(x,k⊥) =
1

2

∫
dz− d2z⊥
2π(2π)2

eik·z 〈P, S|ψ(z)U†(z;∞)U(∞;0) ψ(0) |P, S〉
∣∣∣
z+=0

Gauge link: U(z;∞) = e ig
∫ z
∞ dxµ Aµ(x)

Singularities

UV poles ∼ 1
ε

Rapidity divergencies ∼ ln θ

Overlapping divergencies ∼ 1
ε ln θ

Self-energy divergencies

removed by standard renormalisation

resummed by use of Collins-Soper

generalised renormalisation

treated by modification of soft factors

See talk by I.O. Cherednikov on friday.
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TMDs

Cusp Anomalous Dimension

(0+, x−,x⊥)(0+, 0−,0⊥)

"Hidden cusp" contribution to Γcusp

Γcusp = αsCF
π (χ cothχ− 1)

coshχ = p·k
|p||k|

on-LC→ ∞

Γcusp
on-LC→ αsCF

π

Nucl. Phys. B283 (1987) 342-364, G.P. Korchemsky and A.V. Radyushkin
Phys. Rev. D86 (2012) 085035, I.O. Cherednikov, T. Mertens and F.F. VdV.
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Definition of Wilson Loops

Definition

W[C] =
1

Nc
tr 〈0| Peig

∮
C dzµ Aaµ(z)ta |0〉

C : zµ(s) s = 0 . . . 1 where zµ(0) ≡ zµ(1)

Wilson Loops...
are characterised by their geometry

can be used as elementary objects defining QCD (in loop space)

can exhibit dualities to objects in standard QCD, depending on the structure
of the loop
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Motivation

Wilson loops ⇔ N = 4 Super Yang-Mills

⇔

Alday, Maldacena (2007); Makeenko (2003); Korchemsky, Drummond, Sokatchev (2008); Alday, Eden,

Korchemsky, Maldacena, Sokatchev (2011); Beisert et al. (2012); Belitsky (2012); etc.

Duality between a planar Wilson loop made up from N light-like segments
and the N-gluon planar scattering amplitude inN = 4 SYM.

Momenta pi of external gluons in SYM are equal to light-like segment
lengths pi ≡ xi − xi+1 of the loop
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Motivation

Wilson loops ⇔ N = 4 Super Yang-Mills

⇔

Alday, Maldacena (2007); Makeenko (2003); Korchemsky, Drummond, Sokatchev (2008); Alday, Eden,

Korchemsky, Maldacena, Sokatchev (2011); Beisert et al. (2012); Belitsky (2012); etc.

The UV singularities of the Wilson loop are related to the IR singularities of
theN = 4 SYM scattering amplitude.

The evolution equation for the amplitude as function of IR-cutoff is governed
by the cusp anomalous dimension of the Wilson loop.
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Motivation

Wilson loops ⇔ N = 4 Super Yang-Mills

⇔

Alday, Maldacena (2007); Makeenko (2003); Korchemsky, Drummond, Sokatchev (2008); Alday, Eden,

Korchemsky, Maldacena, Sokatchev (2011); Beisert et al. (2012); Belitsky (2012); etc.

It is thus instructive to investigate further how the Wilson loop behaves in
function of (changes of) its geometry and derive its evolution equations.

These might lead to evolution equations for TMDs, as the singular parts of
the latter are related to those of Wilson loops.
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Leading Order Calculation

Expansion and Calculation

≈ + + +

WLO = 1− αsCF
π

(2πµ2)ε Γ(1− ε)
[

1

ε2

(
−s

2

)ε
+

1

ε2

(
− t

2

)ε
− 1

2
ln2 s

t

]
Korchemskaya, Korchemsky (1992); Bassetto, Korchemskaya, Korchemsky, Nardelli (1993)

Mandelstam Energy/rapidity variables: s = (p1 + p2)2, t = (p2 + p3)2

s = −t, but watch out for pole structure: (−s+ iε)ε + (−t+ iε)ε

Absorb π and expansion of Γ(1− ε) in µ: µ2 = πµ2eγE
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Energy Evolution at Leading Order

One-Loop Evolution

WLO = 1− αsCF
π

[
1

ε2
((−s+ iε)ε + (s+ iε)ε) +

π2

2
− 2ζ(2) +O(ε)

]
Not multiplicatively renormalisable due to extra light-cone divergencies

Dual to the TMD case

Energy logarithmic derivative gives an evolution equation (s = µ2s):
dlnW
dln s

= −αsCF
π

1

ε
[(s+ iε)ε − (−s+ iε)ε]

d
dlnµ

dlnW
dln s

= −2
αsCF
π

[(s+ iε)ε + (−s+ iε)ε]→ −2
αsCF
π

= −2Γcusp
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Makeenko-Migdal Approach

Wilson Loops as Fundamental Gauge-Invariant Degrees of Freedom

Wn(Γ1, . . . ,Γn) = tr 〈0| T 1

Nn
c

Φ(Γ1) · · ·Φ(Γn) |0〉

Φ(Γi) = Peig
∫
Γi

dzµ Aµ(z)

Formalism

Area derivative:
δ

δσµν(x)
Φ(Γ) = lim

|δσ|

Φ(ΓδΓx)− Φ(Γ)

|δσµν(x)|

x −

δΓx

Path derivative: ∂µΦ(Γ) = lim
|δxµ|

Φ(δx−1
µ Γδxµ)− Φ(Γ)

|δxµ|

x −
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Makeenko-Migdal Approach
Mandelstam Formula

δ

δσµν(x)
tr Φ(Γ) = ig tr {Fµν(x)Φ(Γ)}

Relates geometry evolution of a loop with its gauge content

But area functional derivative is not well-defined for arbitrary contours..

⇒ no information about cusps, divergencies, etc...!

Schwinger approach

Fundamental quantum dynamical principle: δ 〈′ |′′〉 = i
~ 〈
′| δS |′′〉

Applied toW1, this gives the Makeenko-Migdal equation:

∂ν
δ

δσµν(x)
W1(Γ) = g2Nc

∮
Γ

dzµ δ(4)(x− z)W2(ΓxzΓzx)

Migdal (1980); Makeenko, Migdal (1981); Brandt et al. (1982)
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Makeenko-Migdal Approach

Remarks:

MM equation is exact and non-perturbative, but not closed and difficult.

Most interesting loops are divergent and have obstructions. Of particular
interest are cusped loops, but in that case we lack a renormalised version
of the MM equation.

The area functional derivative is not a well-defined operation. In particular,
the area differentiation of cusped loops is (at least) not straightforward.

Problems when doing continuous deformations of loops in Minkowski space:
a consistent definition of the derivatives is missing.

Connecting loop functionals to observables is highly non-trivial.

No known solution to the MM equations in four-dimensional Mikowskian
space-time.
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Makeenko-Migdal Approach

Simplifications:

Large-Nc limit: factorisation propertyW2(Γ1,Γ2) ≈ W1(Γ1)W1(Γ2).

Null-plane light-cone rectangular contours are essentially two-dimensional.

Light-like polygons with conserved angles: no angle-dependent contribu-
tions (which might break the MM equation).

By using area differentiation the power of divergencies decreases.

Can we combine the geometric approach of the MM equations with the
evolution equations governed by the cusp anomalous dimension?
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Angle-Conserving Deformations of the Null Plane

Deformations

δσ+−

δσ−+
p+

p−

Null-plane defined by z⊥ ≡ 0

Light-like lines: p2
i = (xi − xi+1)2 ≡ 0

δσ+− =
∮

dz− z+ = p+δp−

δσ−+ =
∮

dz+ z− = p−δp+

Area variable: Σ = p1 · p2 = 1
2s = p+p−

Use energy evolution to find the geometrical evolution:

d
dlnµ

dlnW
dln s

= −2Γcusp
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Angle-Conserving Deformations of the Null Plane
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δσ+−
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p+

p−

Null-plane defined by z⊥ ≡ 0

Light-like lines: p2
i = (xi − xi+1)2 ≡ 0

δσ+− =
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dz− z+ = p+δp−

δσ−+ =
∮

dz+ z− = p−δp+

Area variable: Σ = p1 · p2 = 1
2s = p+p−

Motivated by this, we conjecture a more general evolution equation:

d
dlnµ

[
σµν

δ

δσµν
lnW

]
= −

∑
i

Γcusp

Phys. Rev. D86 (2012) 085035, I.O. Cherednikov, T. Mertens and F.F. VdV.
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Relation to TMDs

Relation to TMDs

Related by overlapping divergencies (∼ 1
ε ln θ).

Those are the only divergencies that contribute after d
dlnµ

d
dln θ .

θ = η
p·N− is the rapidity cut-off

p ∼ N+, so θ ∼ (N+N−)−1

Cherednikov, Stefanis (2008)

Evolution Equation for TMD On the Light-Cone

d
dlnµ

[
d

dln θ
ln f(x,k⊥)

]
= 2Γcusp
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Conclusion

Loop space:
Wilson loops as fundamental degrees of freedom
Makeenko-Migdal approach gives good description of geometrical properties
But system of MM eqs is not closed and cannot be applied trivially...

For : δσµν ∼ ∂s and MM eqs ∼ energy/rapidity evolution eqs.

Geometrical properties of loop space ∼ dynamics in cusps

Conjecture: MM approach can be applied to construct energy/rapidity evo-
lution equations in many interesting situations. Specific properties are de-
termined by contours with cusps.
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