Evolution and Dynamics of Cusped Light-Like Wilson Loops in Loop Space

3rd Workshop on the QCD Structure of the Nucleon Bilbao, Spain

Frederik F. Van der Veken † Igor O. Cherednikov $^{\dagger\,\gamma}$ Tom Mertens †

[†]Universiteit Antwerpen $^{\gamma}$ JINR Dubna

October 23, 2012

Universiteit Antwerpen

Introduction: TMDs	Wilson Loops 0000	Geometrical Approach	
6			Outline

2 Wilson Loops and their Evolution

3 Geometrical Approach

Universiteit Antwerpen

Introduction: TMDs	Wilson Loops	Geometrical Approach	Conclusion	¢
			TMDs	
Transverse M	omentum Depend	lent PDFs		
$f(x,\mathbf{k}_{\perp})=\frac{1}{2}$	$\int \frac{\mathrm{d}z^- \mathrm{d}^2 \mathbf{z}_\perp}{2\pi (2\pi)^2} e^{ik \cdot z}$	$z \langle P, S \overline{\psi}(z) \mathcal{U}^{\dagger}_{(z;\infty)} \mathcal{U}_{(\infty;z)}$	$_{0)}\psi(0)\left P,S\right\rangle\Big _{z^{+}=0}$	
Gauge link:	$\mathcal{U}(z;\infty) = e^{-\mathrm{i}g}$	$\int_{\infty}^{z} \mathrm{d}x^{\mu} A_{\mu}(x)$		I

Singularities

- UV poles $\sim rac{1}{\epsilon}$
- Rapidity divergencies $\, \sim \ln heta \,$
- ullet Overlapping divergencies $\,\sim rac{1}{\epsilon} \ln heta\,$ generalised renormalisatio
- Self-energy divergencies

removed by standard renormalisation resummed by use of Collins-Soper

treated by modification of soft factors

See talk by I.O. Cherednikov on friday.

Universiteit Antwerpen

Introduction: TMDs	Wilson Loops	Geometrical Approach	Conclusion
			TMDs
Transverse M	omentum Depenc	lent PDFs	
$f(x,\mathbf{k}_{\perp}) = \frac{1}{2}$	$\int \frac{\mathrm{d}z^- \mathrm{d}^2 \mathbf{z}_\perp}{2\pi (2\pi)^2} e^{ik \cdot z}$	$\mathbb{P}\left\langle P,S \overline{\psi}(z) \mathcal{U}_{(z;\infty)}^{\dagger} \mathcal{U}_{(\infty)} \right\rangle$	$_{0)}\psi(0)\left P,S\right\rangle\Big _{z^{+}=0}$
Gauge link:	$\mathcal{U}(z;\infty) = e^{-\mathrm{i}g}$	$\int_{\infty}^{z} \mathrm{d}x^{\mu} A_{\mu}(x)$	

Singularities

- UV poles $\sim \frac{1}{\epsilon}$
- Rapidity divergencies $\sim \ln \theta$
- Overlapping divergencies $\sim \frac{1}{\epsilon} \ln \theta$
- Self-energy divergencies

removed by standard renormalisation

- resummed by use of Collins-Soper
- generalised renormalisation

treated by modification of soft factors

See talk by I.O. Cherednikov on friday.

Universiteit Antwerpen

Introduction: TMDs	Wilson Loops 0000	Geometrical Approach	Conclusion
			TMDs
Cusp Anomalous	s Dimension		
(0 ⁺ ,0 ⁻ , 0 _⊥)	$(0^+, x^-, \mathbf{x}_\perp)$	• "Hidden cusp" con • $\Gamma_{cusp} = \frac{\alpha_s C_F}{\pi} (\chi$ • $\cosh \chi = \frac{p \cdot k}{ p k } \stackrel{\text{on}}{\rightarrow}$ • $\Gamma_{cusp} \stackrel{\text{on-LC}}{\rightarrow} \frac{\alpha_s C_F}{\pi}$	tribution to Γ_{cusp} $\cosh \chi - 1$) $\stackrel{\text{LC}}{\rightarrow} \infty$

Nucl. Phys. B283 (1987) 342-364, G.P. Korchemsky and A.V. Radyushkin Phys. Rev. D86 (2012) 085035, I.O. Cherednikov, T. Mertens and F.F. VdV.

Universiteit Antwerpen

Nucl. Phys. B283 (1987) 342-364, G.P. Korchemsky and A.V. Radyushkin Phys. Rev. D86 (2012) 085035, I.O. Cherednikov, T. Mertens and F.F. VdV.

Universiteit Antwerpen

Introduction: TMDs	Wilson Loops	Geometrical Approach	
6			Outline

Introduction: TMDs 00	Wilson Loops •000	Geometrical Approach 000000		
		Definition	f Wilson Loona	

Definition of Wilson Loops

Definition

$$\mathcal{W}[C] = \frac{1}{N_c} \operatorname{tr} \langle 0 | \mathcal{P}e^{ig \oint_C dz^{\mu} A^a_{\mu}(z)t_a} | 0 \rangle$$

$$\mathcal{C}: \quad z^{\mu}(s) \quad s = 0 \dots 1 \quad \text{where} \quad z^{\mu}(0) \equiv z^{\mu}(1)$$

Wilson Loops...

- are characterised by their geometry
- can be used as elementary objects defining QCD (in loop space)
- can exhibit dualities to objects in standard QCD, depending on the structure of the loop

Universiteit Antwerpen

Introduction: TMDs 00	Wilson Loops ●000	Geometrical Approach	
		Definition	

Definition of Wilson Loops

Definition

$$\mathcal{W}[C] = \frac{1}{N_c} \operatorname{tr} \langle 0 | \mathcal{P}e^{\mathrm{i}g \oint_C \mathrm{d}z^{\mu} A^a_{\mu}(z)t_a} | 0 \rangle$$

$$\mathcal{C}: \quad z^{\mu}(s) \quad s = 0 \dots 1 \quad \text{where} \quad z^{\mu}(0) \equiv z^{\mu}(1)$$

Wilson Loops...

- are characterised by their geometry
- can be used as elementary objects defining QCD (in loop space)
- can exhibit dualities to objects in standard QCD, depending on the structure of the loop

Universiteit Antwerpen

- Duality between a planar Wilson loop made up from N light-like segments and the N-gluon planar scattering amplitude in $\mathcal{N}=4$ SYM.
- Momenta p_i of external gluons in SYM are equal to light-like segment lengths $p_i \equiv x_i x_{i+1}$ of the loop

- Duality between a planar Wilson loop made up from N light-like segments and the N-gluon planar scattering amplitude in $\mathcal{N} = 4$ SYM.
- Momenta p_i of external gluons in SYM are equal to light-like segment lengths $p_i \equiv x_i x_{i+1}$ of the loop

- The UV singularities of the Wilson loop are related to the IR singularities of the ${\cal N}=4$ SYM scattering amplitude.
- The evolution equation for the amplitude as function of IR-cutoff is governed by the cusp anomalous dimension of the Wilson loop.

- It is thus instructive to investigate further how the Wilson loop behaves in function of (changes of) its geometry and derive its evolution equations.
- These might lead to evolution equations for TMDs, as the singular parts of the latter are related to those of Wilson loops.

Leading Order Calculation

Expansion and Calculation

- Mandelstam Energy/rapidity variables: $s = (p_1 + p_2)^2, t = (p_2 + p_3)^2$
- s = -t, but watch out for pole structure: $(-s + i\varepsilon)^{\epsilon} + (-t + i\varepsilon)^{\epsilon}$
- Absorb π and expansion of $\Gamma(1-\epsilon)$ in μ : $\overline{\mu}^2 = \pi \mu^2 e^{\gamma_E}$

Universiteit Antwerpen

Leading Order Calculation

Expansion and Calculation

- Mandelstam Energy/rapidity variables: $s = (p_1 + p_2)^2, t = (p_2 + p_3)^2$
- s = -t, but watch out for pole structure: $(-s + i\varepsilon)^{\epsilon} + (-t + i\varepsilon)^{\epsilon}$
- Absorb π and expansion of $\Gamma(1-\epsilon)$ in $\mu:\ \overline{\mu}^2=\pi\mu^2 e^{\gamma_E}$

Universiteit Antwerpen

One-Loop Evolution

$$\mathcal{W}_{LO} = 1 - \frac{\alpha_s C_F}{\pi} \left[\frac{1}{\epsilon^2} \left((-\overline{s} + i\varepsilon)^\epsilon + (\overline{s} + i\varepsilon)^\epsilon \right) + \frac{\pi^2}{2} - 2\zeta(2) + \mathcal{O}(\epsilon) \right]$$

Not multiplicatively renormalisable due to extra light-cone divergencies

Dual to the TMD case

Energy logarithmic derivative gives an evolution equation
$$(\overline{s} = \overline{\mu}^2 s)$$
:

$$\frac{\mathrm{dln} \mathcal{W}}{\mathrm{dln} s} = -\frac{\alpha_s C_F}{\pi} \frac{1}{\epsilon} \left[(\overline{s} + \mathrm{i}\varepsilon)^\epsilon - (-\overline{s} + \mathrm{i}\varepsilon)^\epsilon \right]$$

$$\frac{\mathrm{d}}{\mathrm{dln} \mu} \frac{\mathrm{dln} \mathcal{W}}{\mathrm{dln} s} = -2 \frac{\alpha_s C_F}{\pi} \left[(\overline{s} + \mathrm{i}\varepsilon)^\epsilon + (-\overline{s} + \mathrm{i}\varepsilon)^\epsilon \right] \rightarrow -2 \frac{\alpha_s C_F}{\pi}$$

$$= -2\Gamma_{cusp}$$

Universiteit Antwerpen

One-Loop Evolution

$$\mathcal{W}_{LO} = 1 - \frac{\alpha_s C_F}{\pi} \left[\frac{1}{\epsilon^2} \left((-\overline{s} + i\varepsilon)^\epsilon + (\overline{s} + i\varepsilon)^\epsilon \right) + \frac{\pi^2}{2} - 2\zeta(2) + \mathcal{O}(\epsilon) \right]$$

Not multiplicatively renormalisable due to extra light-cone divergencies

Dual to the TMD case

Energy logarithmic derivative gives an evolution equation $(\overline{s} = \overline{\mu}^2 s)$: $\frac{\mathrm{dln} \mathcal{W}}{\mathrm{dln} s} = -\frac{\alpha_s C_F}{\pi} \frac{1}{\epsilon} \left[(\overline{s} + \mathrm{i}\varepsilon)^\epsilon - (-\overline{s} + \mathrm{i}\varepsilon)^\epsilon \right]$ $\frac{\mathrm{d}}{\mathrm{dln} \mu} \frac{\mathrm{dln} \mathcal{W}}{\mathrm{dln} s} = -2 \frac{\alpha_s C_F}{\pi} \left[(\overline{s} + \mathrm{i}\varepsilon)^\epsilon + (-\overline{s} + \mathrm{i}\varepsilon)^\epsilon \right] \rightarrow -2 \frac{\alpha_s C_F}{\pi}$ $= -2\Gamma_{cusp}$

Universiteit Antwerpen

Introduction: TMDs	Wilson Loops 0000	Geometrical Approach	
6			Outline

Introduction: TMDs

- 2 Wilson Loops and their Evolution
- 3 Geometrical Approach

Conclusion

Universiteit Antwerpen

 $\begin{array}{c|c} \hline \mbox{Mison Loops} & \hline \mbox{Geometrical Approach} & \hline \mbox{Conclusion} & \hline \mbox{Conclusion} & \hline \mbox{Makeenko-Migdal Approach} & \hline \mbox{Makeenko-Migdal Approach} & \hline \mbox{Mison Loops as Fundamental Gauge-Invariant Degrees of Freedom} & \hline \mbox{Wilson Loops as Fundamental Gauge-Invariant Degrees of Freedom} & \hline \mbox{W}_n(\Gamma_1,\ldots,\Gamma_n) = \mathrm{tr}\,\langle 0 | \, \mathcal{T} \frac{1}{N_c^n} \Phi(\Gamma_1) \cdots \Phi(\Gamma_n) \, | 0 \rangle \\ & \Phi(\Gamma_i) = \mathcal{P} e^{\mathrm{i}g \int_{\Gamma_i} \mathrm{d} z^\mu A_\mu(z)} & \hline \end{array}$

FormalismArea derivative: $\frac{\delta}{\delta\sigma_{\mu\nu}(x)} \Phi(\Gamma) = \lim_{|\delta\sigma|} \frac{\Phi(\Gamma\delta\Gamma_x) - \Phi(\Gamma)}{|\delta\sigma_{\mu\nu}(x)|}$ $\frac{\delta}{\delta\sigma_{\mu\nu}(x)} \Phi(\Gamma)$ Path derivative: $\partial_\mu \Phi(\Gamma) = \lim_{|\delta x_\mu|} \frac{\Phi(\delta x_\mu^{-1} \Gamma \delta x_\mu) - \Phi(\Gamma)}{|\delta x_\mu|}$ $\frac{\delta}{\delta\sigma_{\mu\nu}(x)}$

Universiteit Antwerpen

$$\Phi(\Gamma_i) = \mathcal{P}e^{\mathrm{i}g\int_{\Gamma_i} \mathrm{d}z^{\mu}A_{\mu}(z)}$$

Formalism

Area derivative:
$$\frac{\delta}{\delta\sigma_{\mu\nu}(x)}\Phi(\Gamma) = \lim_{|\delta\sigma|} \frac{\Phi(\Gamma\delta\Gamma_x) - \Phi(\Gamma)}{|\delta\sigma_{\mu\nu}(x)|} \qquad \bigcirc$$
Path derivative:
$$\partial_{\mu}\Phi(\Gamma) = \lim_{|\delta x_{\mu}|} \frac{\Phi(\delta x_{\mu}^{-1}\Gamma\delta x_{\mu}) - \Phi(\Gamma)}{|\delta x_{\mu}|} \qquad \bigcirc$$

Universiteit Antwerpen

Evolution of Cusped Loops

δΓ

$$\frac{\delta}{\delta\sigma_{\mu\nu}(x)}\operatorname{tr}\Phi(\Gamma) = \operatorname{i}g\operatorname{tr}\left\{F^{\mu\nu}(x)\Phi(\Gamma)\right\}$$

- Relates geometry evolution of a loop with its gauge content
- But area functional derivative is not well-defined for arbitrary contours..

 \Rightarrow no information about cusps, divergencies, etc...!

Schwinger approach

- Fundamental quantum dynamical principle: $\delta \langle | ' \rangle = \frac{i}{\hbar} \langle | \delta S | '' \rangle$
- Applied to \mathcal{W}_1 , this gives the Makeenko-Migdal equation:

$$\partial^{\nu} \frac{\delta}{\delta \sigma_{\mu\nu}(x)} \mathcal{W}_1(\Gamma) = g^2 N_c \oint_{\Gamma} \mathrm{d}z^{\mu} \, \delta^{(4)}(x-z) \mathcal{W}_2(\Gamma_{xz} \Gamma_{zx})$$

Migdal (1980); Makeenko, Migdal (1981); Brandt et al. (1982)

Universiteit Antwerpen

$\frac{\delta}{\delta\sigma_{\mu\nu}(x)}\operatorname{tr}\Phi(\Gamma) = \operatorname{i}g\operatorname{tr}\left\{F^{\mu\nu}(x)\Phi(\Gamma)\right\}$

- Relates geometry evolution of a loop with its gauge content
- But area functional derivative is not well-defined for arbitrary contours..

 \Rightarrow no information about cusps, divergencies, etc...!

Schwinger approach

- Fundamental quantum dynamical principle: $\delta \langle | ' \rangle = \frac{i}{\hbar} \langle | \delta S | '' \rangle$
- $\bullet\,$ Applied to $\mathcal{W}_1,$ this gives the Makeenko-Migdal equation:

$$\partial^{\nu} \frac{\delta}{\delta \sigma_{\mu\nu}(x)} \mathcal{W}_1(\Gamma) = g^2 N_c \oint_{\Gamma} \mathrm{d}z^{\mu} \, \delta^{(4)}(x-z) \mathcal{W}_2(\Gamma_{xz}\Gamma_{zx})$$

Migdal (1980); Makeenko, Migdal (1981); Brandt et al. (1982)

Universiteit Antwerpen

Remarks:

- MM equation is exact and non-perturbative, but not closed and difficult.
- Most interesting loops are divergent and have obstructions. Of particular interest are cusped loops, but in that case we lack a renormalised version of the MM equation.
- The area functional derivative is not a well-defined operation. In particular, the area differentiation of cusped loops is (at least) not straightforward.
- Problems when doing continuous deformations of loops in Minkowski space: a consistent definition of the derivatives is missing.
- Connecting loop functionals to observables is highly non-trivial.
- No known solution to the MM equations in four-dimensional Mikowskian space-time.

Universiteit Antwerpen

Makeenko-Migdal Approach

Simplifications:

- Large- N_c limit: factorisation property $\mathcal{W}_2(\Gamma_1, \Gamma_2) \approx \mathcal{W}_1(\Gamma_1)\mathcal{W}_1(\Gamma_2)$.
- Null-plane light-cone rectangular contours are essentially two-dimensional.
- Light-like polygons with conserved angles: no angle-dependent contributions (which might break the MM equation).
- By using area differentiation the power of divergencies decreases.

Can we combine the geometric approach of the MM equations with the evolution equations governed by the cusp anomalous dimension?

Universiteit Antwerpen

Angle-Conserving Deformations of the Null Plane

Deformations

 $\bullet~$ Null-plane defined by $\mathbf{z}_{\perp}\equiv 0$

• Light-like lines:
$$p_i^2 = (x_i - x_{i+1})^2 \equiv 0$$

•
$$\delta \sigma^{+-} = \oint \mathrm{d} z^- z^+ = p^+ \delta p^-$$

$$\delta\sigma^{-+} = \oint \mathrm{d}z^+ \, z^- = p^- \delta p^+$$

• Area variable:
$$\Sigma = p_1 \cdot p_2 = rac{1}{2}s = p^+p^-$$

Use energy evolution to find the geometrical evolution:

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu}\frac{\mathrm{d}\ln\mathcal{W}}{\mathrm{d}\ln s} = -2\Gamma_{cusp}$$

Universiteit Antwerpen

Angle-Conserving Deformations of the Null Plane

Deformations

- Null-plane defined by $\mathbf{z}_{\perp}\equiv 0$
- Light-like lines: $p_i^2 = (x_i x_{i+1})^2 \equiv 0$
- $\delta \sigma^{+-} = \oint \mathrm{d} z^- z^+ = p^+ \delta p^-$

$$\partial \partial = \mathcal{Y} dz^2 z = p^2 \partial p^2$$

• Area variable:
$$\Sigma = p_1 \cdot p_2 = \frac{1}{2}s = p^+p^-$$

Use energy evolution to find the geometrical evolution:

$$\frac{\mathrm{d}}{\mathrm{dln}\,\mu}\frac{\mathrm{dln}\,\mathcal{W}}{\mathrm{dln}\,\boldsymbol{s}} = -2\Gamma_{cusp}$$

Universiteit Antwerpen

Angle-Conserving Deformations of the Null Plane

Deformations

- Null-plane defined by $\mathbf{z}_{\perp}\equiv 0$
- Light-like lines: $p_i^2 = (x_i x_{i+1})^2 \equiv 0$

•
$$\delta \sigma^{+-} = \oint \mathrm{d} z^- z^+ = p^+ \delta p^-$$

$$\delta\sigma^{-+} = \oint \mathrm{d}z^+ \, z^- = p^- \delta p^+$$

• Area variable:
$$\Sigma = p_1 \cdot p_2 = rac{1}{2}s = p^+p^-$$

Use energy evolution to find the geometrical evolution:

$$\frac{\mathrm{d}}{\mathrm{dln}\,\mu}\frac{\mathrm{dln}\,\mathcal{W}}{\mathrm{dln}\,\Sigma} = -4\Gamma_{cusp}$$

Universiteit Antwerpen

Introduction: TMDs Wilson Loops Geometrical Approach Conclusion 00 0000 0000●0

Angle-Conserving Deformations of the Null Plane

Deformations

- Null-plane defined by $\mathbf{z}_{\perp} \equiv 0$
- Light-like lines: $p_i^2 = (x_i x_{i+1})^2 \equiv 0$

•
$$\delta \sigma^{+-} = \oint dz^- z^+ = p^+ \delta p^-$$

 $\delta \sigma^{-+} = \oint dz^+ z^- = p^- \delta p^+$

• Area variable:
$$\Sigma = p_1 \cdot p_2 = \frac{1}{2}s = p^+p^-$$

Motivated by this, we conjecture a more general evolution equation:

$$\frac{\mathrm{d}}{\mathrm{dln}\,\mu} \left[\sigma_{\mu\nu} \frac{\delta}{\delta \sigma_{\mu\nu}} \ln \mathcal{W} \right] = -\sum_{i} \Gamma_{cusp}$$

Phys. Rev. D86 (2012) 085035, I.O. Cherednikov, T. Mertens and F.F. VdV.

Universiteit Antwerpen

Introduction: TMDs	Wilson Loops 0000	Geometrical Approach	
			Relation to TMDs
Relation to TN	ИDs		

- Related by overlapping divergencies ($\sim \frac{1}{\epsilon} \ln \theta$).
- Those are the only divergencies that contribute after $\frac{d}{d \ln \mu} \frac{d}{d \ln \theta}$.
- $\theta = \frac{\eta}{p \cdot N^{-}}$ is the rapidity cut-off

•
$$p \sim N^+$$
, so $\theta \sim (N^+N^-)^{-1}$

Cherednikov, Stefanis (2008)

Evolution Equation for TMD On the Light-Cone

$$\frac{\mathrm{d}}{\mathrm{dln}\,\mu}\left[\frac{\mathrm{d}}{\mathrm{dln}\,\theta}\ln f(x,\mathbf{k}_{\perp})\right] = 2\Gamma_{cusp}$$

Universiteit Antwerpen

Introduction: TMDs	Wilson Loops	Geometrical Approach	Conclusion
6			Outline

Introduction: TMDs

- 2 Wilson Loops and their Evolution
- 3 Geometrical Approach

Universiteit Antwerpen

Introduction: TMDs 00	Wilson Loops 0000	Geometrical Approach	Conclusion
			Conclusion

- Loop space:
 - Wilson loops as fundamental degrees of freedom
 - Makeenko-Migdal approach gives good description of geometrical properties
 - But system of MM eqs is not closed and cannot be applied trivially...
- For \square : $\delta_{\sigma_{\mu\nu}} \sim \partial_s$ and MM eqs \sim energy/rapidity evolution eqs.
- Geometrical properties of loop space \sim dynamics in cusps
- Conjecture: MM approach can be applied to construct energy/rapidity evolution equations in many interesting situations. Specific properties are determined by contours with cusps.