QUARK AND GLUON ANGULAR MOMENTA CONTRIBUTIONS TO NUCLEON SPIN (χ QCD COLLABORATION)

Mridupawan Deka

Joint Institute of Nuclear Reseach, Dubna

In collaboration with

T. Doi [Center for Nuclear Studies, Japan] B. Chakravorty, S. J. Dong, T. Draper, M. Gong, K. F. Liu, D. Mankame [University of Kentucky, USA] Y. Yang, Y. Chen [Institute of High Energy Physics, China] T. Streuer [University of Regensburg, Germany] H. W. Lin [University of Washington, USA] N. Mathur [Tata Institute of Fundamental Research, India]

Introduction

- Understanding the nucleon spin structure has been a long standing issue both experimentally and theoretically.
- According to naive Quark Model, the nucleon spin is carried entirely by the valence quarks.
- The polarized Deep Inelastic Scattering experiment has revealed that it carries only a small fraction, ~ 20%. [EMC, J. Ashman *et al.*,1988].
- ▶ Subsequent experimental and Lattice QCD studies confirmed the EMC results, 20 25%.

Exporimonto	Polarised	Polarised	Energy	
Experiments	beam	target	(GeV)	
SLAC (completed)	е	p, n, d	≤ 50	
EMC (completed)	μ	p	100 - 200	
SMC (completed)	μ	p, d	100, 190	
HERMES (analysing)	е	p, n, d	~ 30	
COMPASS (running)	μ	p,d	160	
JLAB (running)	е	p, n, d	≤ 6	
BNL (running)	р	р	$\leq 250 + 250$	

Quark Spin	COMPASS, 2010 (3 GeV ²)		
Δu	0.68(3)(3)		
Δd	-0.29(6)(3)		
Δs	-0.01(10)(10)		
$\Delta\Sigma/2$	0.20(1)(2)		

What are the other candidates for the missing proton spin? "Proton Spin Crisis"!!

• However QCD allows other candidates, namely the quark and gluon orbital angular momenta and gluon spin.

• How the nucleon spin of 1/2 is distributed among each quark flavor and gluons?

Spin Decomposition

$$J_{q,g}^{i} = \frac{1}{2} \epsilon^{ijk} \int d^{3}x \left(\mathcal{T}_{q,g}^{\{0k\}} x^{j} - \mathcal{T}_{q,g}^{\{0j\}} x^{k} \right)$$
(1)

$$\mathcal{T}_{q}^{\{0i\}} = \overline{\psi}_{f} \gamma^{\{0}(i \stackrel{\leftrightarrow}{\mathcal{D}})^{i\}} \psi_{f}, \quad \mathcal{T}_{g}^{\{0i\}} = -F^{0\alpha} F_{\alpha}^{i}$$
(2)

[Jaffe and Manohar, 1990; X. Ji, 1997]

 J_q can decomposed into two gauge-invariant components:

$$\vec{J}_q = \int d^3x \frac{1}{2} \left[\overline{\psi} \vec{\gamma} \gamma^5 \psi + \psi^{\dagger} \{ \vec{x} \times (i\vec{D}) \} \psi \right] = \frac{1}{2} \vec{\Sigma}_q + \vec{L}_q$$
(3)

 J_g can not be decomposed:

$$\vec{J}_g = \int d^3x \left[\vec{x} \times (\vec{E} \times \vec{B}) \right] \stackrel{?}{=} \frac{1}{2} \vec{\Sigma}_g + \vec{L}_g \tag{4}$$

Introduction Formalism Lattice Formalism Numerical Parameters Analysis Plots Renormalization Results Conclusion and Outlook Spin Decomposition Recent Studies Matrix Elements

The total angular momentum:

$$\vec{J} = \vec{J}_q + \vec{J}_g = \frac{1}{2}\vec{\Sigma}_q + \vec{L}_q + \vec{J}_g$$
 (5)

Spin sum rule:

$$\frac{1}{2} = J_q + J_g = \frac{1}{2}\Sigma_q + L_q + J_g$$
(6)

$$\frac{1}{2}\Sigma_q$$

- : Total spin contributions from both valence and sea quarks.
- L_q : Total orbital angular momentum from both valence and sea quarks.
- J_g : Total angular momentum from gluons

- One needs appropriate operators with well defined matrix elements between the initial and final hadronic states.
- No known operator for *L*_{*q*}.
- One can calculate the total quark angular momentum J_q as well as J_g .

Corresponding operators : Energy-momentum tensor, $\mathcal{T}_{q,g}^{\{0i\}}$.

Subtract the *independently* computed spin contributions to extract L_q .

- Lattice studies of L^{u+d} for connected insertions ~ 0 .
- $\Delta G/G \sim 0.$ [COMPASS, 2011; STAR, 2010]

Experiments on angular momenta:

- ▶ JLab (6/12 GeV)
- COMPASS
- EIC/eRHIC
- RHIC
- GSI FAIR
- ▶ LHC

Matrix Elements

The matrix element of the energy-momentum tensor, T_{4i} is given by, [X. Ji, 1997]

$$(p, s|\mathcal{T}_{\{4i\}q,g}|p',s') = \left(\frac{1}{2}\right) \bar{u}(p,s) \left[T_1(q^2)(\gamma_4 \bar{p}_i + \gamma_i \bar{p}_4) - \frac{1}{2m}T_2(q^2)(\bar{p}_4 \sigma_{i\alpha} q_\alpha + \bar{p}_i \sigma_{4\alpha} q_\alpha) - \frac{i}{m}T_3(q^2)q_4q_i\right]_{q,g} u(p',s')$$

$$(7)$$

where, $q = p - p', \ \bar{p} = (p + p')/2.$

Using Eq. (9) and taking $q^2 \rightarrow 0$ limit, one can show that,

$$J_{q,g} = \frac{1}{2} \left[T_1(0) + T_2(0) \right]_{q,g}$$
(8)

Introduction Formalism Lattice Formalism Numerical Parameters Analysis Plots Renormalization Results Conclusion and Outlook Spin Decomposition Recent Studies Matrix Elements

Special Case

• Linear Momentum Operator : $P_i^{q,g} = \int d^3x \, \mathcal{T}^{\{0i\}q,g}$

 $\langle x \rangle_{q,g} = T_{1;q,g}(0)$: the first moment of the momentum fraction carried by the quarks or gluons.

Momentum Sum Rule:

$$\langle x \rangle_q + \langle x \rangle_g = 1 \tag{9}$$

$$p = p', q = 0 \Rightarrow$$

$$(p, s | \mathcal{T}_{\{4i\}q,g} | p, s) = \left(\frac{1}{2}\right) \bar{u}(p, s) T_{1;q,g}(0) (\gamma_4 \bar{p}_i + \gamma_i \bar{p}_4) u(p, s) \quad (10)$$

Can be computed independently [M. Deka et al., 2008].

Two-point Correlation Functions

$$G_{NN}(t_2, \vec{p}) = \sum_{\vec{x}_2} e^{-i\vec{p}.(\vec{x}_2 - \vec{x}_0)} \langle 0|T[\chi(x_2) \ \bar{\chi}(x_0)]|0\rangle$$
(11)

Inserting Energy eigenstates:

$$Tr[\Gamma G_{NN}(t_2, \vec{p})] = A e^{-E_p(t_2 - t_0)} + Higher states$$
(12)

Wick Contraction:

$$\operatorname{Tr}[\Gamma G_{NN}(t_{2},\vec{p})] = \sum_{\vec{x}_{2}} e^{-i\vec{p}.(\vec{x}_{2}-\vec{x}_{0})} \frac{1}{Z} \int \mathcal{D}U \left[\operatorname{det}\mathcal{M}(U)\right] e^{-S_{g}}$$
$$\operatorname{Tr}\left\{f\left[M^{-1}(x_{2},x_{0})M^{-1}(x_{2},x_{0})M^{-1}(x_{2},x_{0});U\right]\right\} (13)$$

$$\sum_{\vec{x}_{2}} e^{-i\vec{p}\cdot(\vec{x}_{2}-\vec{x}_{0})} \sum_{\{U\}} \operatorname{Tr} \left\{ f \left[M^{-1}(x_{2},x_{0}) M^{-1}(x_{2},x_{0}) M^{-1}(x_{2},x_{0}); U \right] \right\} \\
\xrightarrow{(t_{2}-t_{0}) \gg 1} A e^{-E_{p}(t_{2}-t_{0})}$$
(14)

Three-point Correlation Functions

The three point-function for an operator, \mathcal{T} ,

$$G_{N\mathcal{T}N}(\vec{p}, t_2; \vec{q}, t_1; \vec{p}', t_0) = \sum_{\vec{x}_2, \vec{x}_1} e^{-i\vec{p}.\vec{x}_2} e^{i\vec{q}.\vec{x}_1} e^{i\vec{p}'.\vec{x}_0} \langle 0| \mathbf{T}(\chi(x_2)\mathcal{T}(x_1)\bar{\chi}(x_0))|0\rangle$$

$$= \sum_{\vec{x}_2} e^{-i\vec{p}.(\vec{x}_2 - \vec{x}_0)} e^{+i\vec{q}.(\vec{x}_1 - \vec{x}_0)}$$

$$\sum_{\{U\}} f\left[M^{-1}M^{-1}M^{-1}M^{-1}; U\right]$$
(15)

$$\operatorname{Tr}\left[\Gamma G_{N\mathcal{T}_{4i}N}(\vec{p}, t_2; \vec{q}, t_1; \vec{p}, t_0)\right] \xrightarrow{t_1 \gg t_0, \ t_2 \gg t_1} \longrightarrow B e^{-E_p(t_2 - t_1)} e^{-E_{p'}(t_1 - t_0)} [a_1 T_1(q^2) + a_2 T_2(q^2) + a_3 T_3(q^2)] \quad (16)$$

Introduction Formalism Lattice Formalism Numerical Parameters Analysis Plots Renormalization Results Conclusion and Outlook 2-pt Functions 3-pt Functions Ratios CI and DI Computation of DI Glue Operator Extraction of T₁ and T₂

Ratios

$$\frac{\operatorname{Tr}\left[\Gamma_{\text{pol},\text{unpol}}G_{NT_{4i}N}(\vec{p}, t_{2}; \vec{q}, t_{1}; \vec{p}\,', t_{0})\right]}{\operatorname{Tr}\left[\Gamma_{\text{unpol}}G_{NN}(\vec{p}, t_{2})\right]} \times \sqrt{\frac{\operatorname{Tr}\left[\Gamma_{\text{unpol}}G_{NN}(\vec{p}\,, t_{2}-t_{1}+t_{0})\right]}{\operatorname{Tr}\left[\Gamma_{\text{unpol}}G_{NN}(\vec{p}\,, t_{2}-t_{1}+t_{0})\right]}} \times \sqrt{\frac{\operatorname{Tr}\left[\Gamma_{\text{unpol}}G_{NN}(\vec{p}\,, t_{2}-t_{1}+t_{0})\right]}{\operatorname{Tr}\left[\Gamma_{\text{unpol}}G_{NN}(\vec{p}\,, t_{1})\right]} \cdot \frac{\operatorname{Tr}\left[\Gamma_{\text{unpol}}G_{NN}(\vec{p}\,, t_{2})\right]}{\operatorname{Tr}\left[\Gamma_{\text{unpol}}G_{NN}(\vec{p}\,', t_{1})\right]} \cdot \frac{\operatorname{Tr}\left[\Gamma_{\text{unpol}}G_{NN}(\vec{p}\,, t_{2})\right]}{\operatorname{Tr}\left[\Gamma_{\text{unpol}}G_{NN}(\vec{p}\,', t_{2})\right]} \times \frac{t_{1} \gg t_{0}, t_{2} \gg t_{1}}{4\sqrt{E_{p}(E_{p}+m)E_{p'}(E_{p'}+m)}} \left(\frac{[a_{1}T_{1}(q^{2}) + a_{2}T_{2}(q^{2}) + a_{3}T_{3}(q^{2})]}{4\sqrt{E_{p}(E_{p}+m)E_{p'}(E_{p'}+m)}}\right) \tag{17}$$

$$\frac{\operatorname{Tr}\left[\Gamma_{\operatorname{unpol}}G_{N\mathcal{T}_{4i}N}(\vec{p},t_{2};\vec{0},t_{1};\vec{p},t_{0})\right]}{\operatorname{Tr}\left[\Gamma_{\operatorname{unpol}}G_{NN}(\vec{p},t_{2})\right]} \quad \xrightarrow{t_{1}\gg t_{0}, t_{2}\gg t_{1}} T_{1}(0) = \langle x \rangle \quad (18)$$

Connected and Disconnected Insertions

$$G_{N\mathcal{T}N}(\vec{p}, t_2; \vec{q}, t_1; \vec{p}', t_0) = \sum_{\vec{x}_2, \vec{x}_1} e^{-i\vec{p}.\vec{x}_2} e^{i\vec{q}.\vec{x}_1} e^{i\vec{p}'.\vec{x}_0} \langle 0 | T(\chi(x_2)\mathcal{T}(x_1)\bar{\chi}(x_0)) | 0 \rangle$$

The three-point functions for quarks have two different contributions: connected (CI) and disconnected insertions (DI).

• CI three-point functions are relatively easier to compute.

Introduction Formalism Lattice Formalism Numerical Parameters Analysis Plots Renormalization Results Conclusion and Outlook 2-pt Functions 3-pt Functions Ratios Cl and DI Computation of DI Glue Operator Extraction of T₁ and T₂

▶ DI three-point functions are computationally challenging: Involves propagators from *all-to-all* points.

Tr [Three-point Func.]_{DI} \sim Tr [two-point Func.] \times Tr [loop]

strange quark contributions come only from DI. *up* and *down* quarks have contributions both from CI and DI.

Introduction Formalism Lattice Formalism Numerical Parameters Analysis Plots Renormalization Results Conclusion and Outlook 2-pt Functions 3-pt Functions Ratios CI and DI Computation of DI Glue Operator Extraction of T₁ and T₂

Computation of DI

 Loops are stochastically estimated by using complex Z₂ noise [S. J. Dong and K. F. Liu, 1992].

$$\langle \eta_i \rangle = \lim_{L \to \infty} \frac{1}{L} \sum_{n=1}^{L} \eta_i^n = 0, \qquad \langle \eta_i^{\dagger} \eta_j \rangle = \lim_{L \to \infty} \frac{1}{L} \sum_{n=1}^{L} \eta_i^{\dagger n} \eta_j^n = \delta_{ij}$$
(19)

Solve for *X*:

$$MX = \eta \quad \Rightarrow \quad \langle \eta_j^{\dagger} X_i \rangle = \sum_k M_{ik}^{-1} \langle \eta_k^{\dagger} \eta_j \rangle \simeq M_{ij}^{-1} \tag{20}$$

Improvement:

- Unbiased Subtraction.
- Discrete Symmetries and Transformations.
- Summation over insertion time.
- Multiple nucleon sources.

Glue Operator

- Need suitable operator.
- We construct from the overlap operator, D_{OV}, [K. F. Liu *et al.*, 2008; T. Doi *et al.*, 2008]

$$F_{\mu\nu}(x) = \text{const.} \times \text{Tr}^{s} \left[\sigma_{\mu\nu} D_{\text{OV}}(x, x) \right]$$
(21)

- High mode fluctuations are expected to be suppressed.
- $D_{OV}(x, x)$ is estimated stochastically using complex Z_2 noise.
- Color and spin are computed exactly.
- Space-time dilution is performed by a separation of two sites on top of odd/even dilution. "taxi driver distance" = 4.

Extraction of T₁ and T₂

ratio =
$$\frac{a_1 T_1(q^2) + a_2 T_2(q^2) + a_3 T_3(q^2)}{4\sqrt{E_p(E_p + m)E_{p'}(E_{p'} + m)}}$$
(22)

- Select appropriate kinematics for which $\vec{p} \neq \vec{p}' \neq 0$, and set up enough number of equations for each q^2 .
- CI: Obtained from fitting a constant.

DI: Summation over insertion time \Rightarrow Obtained from the slope.

- Separate $T_1(q^2)$ and $T_2(q^2)$ at a few different values of q^2 .
- Separately extrapolate them to $q^2 \rightarrow 0$.

Numerical Parameters

- Standard Wilson Action. The gauge fields are generated in the quenched approximation with Wilson gauge action.
- ▶ $16^3 \times 24$ lattice.
- The lattice spacing is $a \sim 0.11$ fm $\simeq 2$ Gev.
- κ = 0.154, 0.155, 0.1555. The corresponding pion masses are
 650 (3), 538 (4) and 478 (4) MeV respectively.
- ▶ The number of configurations 500. For quarks, the number of *Z*₂ noise estimator is 500 on each gauge configuration.

Analysis

- Close to 30 TB of data has been produced from more than one million processor hours of computing. Has to be analyzed in various sequential steps.
- The error analysis is performed by using the jackknife procedure.
- The correlation among different quantities are taken into account by constructing the corresponding covariance matrices.
- 4 different q^2 values are considered.
- ▶ *q*² extrapolations are performed using dipole approximation,

$$[T_i(q^2)]\Big|_{i=1,2} = \frac{T_i(0)}{\left[1 + \frac{q^2}{\Lambda_i^2}\right]^2}\Bigg|_{i=1,2}$$
(23)

Disconnected Insertions

Glue

Renormalization

Renormalized operators

$$\mathcal{T}(\mu) = Z_{\mathcal{T}}(a\mu, g(a)) \mathcal{T}(a)$$

> Lattice renormalization are performed using sum rule

$$Z_q(a)T_1(0)_q + Z_g(a)T_1(0)_g = 1$$

$$Z_q(a)[T_1(0)_q + T_2(0)_q] + Z_g(a)[T_1(0)_g + T_2(0)_g] = \frac{1}{2}$$

$$\Rightarrow$$
 $Z_q = 1.05$, $Z_g = 1.05$

 Perturbative mixing and matching to the MS scheme has not been completed.

Table: Lattice renormalized value with renormalization constants, $Z_q = Z_g = 1.05$.

	CI(u)	CI(d)	CI(u+d)	DI(u,d)	DI(s)	Glue
$\langle x \rangle$	0.428(40)	0.156(20)	0.586(45)	0.038(7)	0.024(6)	0.313(56)
$T_2(0)$	0.297(112)	-0.228(80)	0.064(22)	-0.002(2)	-0.001(3)	-0.059(52)
2J	0.726(128)	-0.072(82)	0.651(51)	0.036(7)	0.023(7)	0.254(76)
2L	-0.18(18)	0.23(14)	0.04(10)	0.16(2)	0.14(2)	-

Introduction Formalism Lattice Formalism Numerical Parameters Analysis Plots Renormalization Results Conclusion and Outlook Decomposition of First Moment Decomposition of Total Angular Momenta

Decomposition of Total Angular Momenta

Conclusion and Outlook

- A complete calculation of the quark and glue momenta and angular momenta in the nucleon has been carried out.
- Renormalization constants in MS scheme needed to be calculated. Work is in Progress.
- The glue momentum fraction of 0.313(56) is smaller than CTEQ4M results of 0.42 at Q = 1.6 GeV. [H.L. Lai *et al.*, 1997]
- ⟨x⟩_s = 0.024(6) is in the range of CTEQ6M results: 0.018 < ⟨x⟩_s < 0.040. [H. L. Lai *et al.*, 2007]
- In progress:
 - Dynamical domain-wall fermion gauge (RBC + UKQCD) configurations, lowest pion mass ~ 140 MeV on a 5.5 fm box.
 - Quark loops with low mode averaging and improved nucleon propagator.

Introduction Formalism Lattice Formalism Numerical Parameters Analysis Plots Renormalization Results Conclusion and Outlook

Thank you !!