Quark and Gluon Angular Momenta Contributions to Nucleon Spin (χ QCD COLLABORATION)

Mridupawan Deka

Joint Institute of Nuclear Reseach, Dubna

In collaboration with
T. Doi [Center for Nuclear Studies, Japan]
B. Chakravorty, S. J. Dong, T. Draper, M. Gong, K. F. Liu, D. Mankame [University of Kentucky, USA]
Y. Yang, Y. Chen [Institute of High Energy Physics, China]
T. Streuer [University of Regensburg, Germany]
H. W. Lin [University of Washington, USA]
N. Mathur [Tata Institute of Fundamental Research, India]

Introduction

- Understanding the nucleon spin structure has been a long standing issue both experimentally and theoretically.
- According to naive Quark Model, the nucleon spin is carried entirely by the valence quarks.
- The polarized Deep Inelastic Scattering experiment has revealed that it carries only a small fraction, $\sim 20 \%$.
[EMC, J. Ashman et al.,1988].
- Subsequent experimental and Lattice QCD studies confirmed the EMC results, 20 - 25\%.

Experiments	Polarised beam	Polarised target	Energy (GeV)
SLAC (completed)	e	p, n, d	≤ 50
EMC (completed)	μ	p	$100-200$
SMC (completed)	μ	p, d	100,190
HERMES (analysing)	e	p, n, d	~ 30
COMPASS (running)	μ	p, d	160
JLAB (running)	e	p, n, d	≤ 6
BNL (running)	p	p	$\leq 250+250$

Quark Spin	COMPASS, 2010 $\left(3 \mathrm{GeV}^{2}\right)$
Δu	$0.68(3)(3)$
Δd	$-0.29(6)(3)$
Δs	$-0.01(10)(10)$
$\Delta \Sigma / 2$	$0.20(1)(2)$

-What are the other candidates for the missing proton spin? "Proton Spin Crisis"!!

- However QCD allows other candidates, namely the quark and gluon orbital angular momenta and gluon spin.
- How the nucleon spin of $1 / 2$ is distributed among each quark flavor and gluons?

Spin Decomposition

$$
\begin{gather*}
J_{q, g}^{i}=\frac{1}{2} \epsilon^{i j k} \int d^{3} x\left(\mathcal{T}_{q, g}^{\{0 k\}} x^{j}-\mathcal{T}_{q, g}^{\{0 j\}} x^{k}\right) \tag{1}\\
\mathcal{T}_{q}^{\{0 i\}}=\bar{\psi}_{f} \gamma^{\{0}(i \stackrel{\leftrightarrow}{\mathcal{D}})^{i\}} \psi_{f}, \quad \mathcal{T}_{g}^{\{0 i\}}=-F^{0 \alpha} F_{\alpha}^{i} \tag{2}
\end{gather*}
$$

[Jaffe and Manohar, 1990; X. Ji, 1997]
J_{q} can decomposed into two gauge-invariant components:

$$
\begin{equation*}
\vec{J}_{q}=\int d^{3} x \frac{1}{2}\left[\bar{\psi} \vec{\gamma} \gamma^{5} \psi+\psi^{\dagger}\{\vec{x} \times(i \vec{D})\} \psi\right]=\frac{1}{2} \vec{\Sigma}_{q}+\vec{L}_{q} \tag{3}
\end{equation*}
$$

J_{g} can not be decomposed:

$$
\begin{equation*}
\vec{J}_{g}=\int d^{3} x[\vec{x} \times(\vec{E} \times \vec{B})] \stackrel{?}{=} \frac{1}{2} \vec{\Sigma}_{g}+\vec{L}_{g} \tag{4}
\end{equation*}
$$

The total angular momentum:

$$
\begin{equation*}
\vec{J}=\vec{J}_{q}+\vec{J}_{g}=\frac{1}{2} \vec{\Sigma}_{q}+\vec{L}_{q}+\vec{J}_{g} \tag{5}
\end{equation*}
$$

Spin sum rule:

$$
\begin{equation*}
\frac{1}{2}=J_{q}+J_{g}=\frac{1}{2} \Sigma_{q}+L_{q}+J_{g} \tag{6}
\end{equation*}
$$

$\frac{1}{2} \Sigma_{q}:$ Total spin contributions from both valence and sea quarks.
L_{q} : Total orbital angular momentum from both valence and sea quarks.
J_{g} : Total angular momentum from gluons

- One needs appropriate operators with well defined matrix elements between the initial and final hadronic states.
- No known operator for L_{q}.
- One can calculate the total quark angular momentum J_{q} as well as J_{g}.

Corresponding operators : Energy-momentum tensor, $\mathcal{T}_{q, g}^{\{0 i\}}$.

- Subtract the independently computed spin contributions to extract L_{q}.

- Lattice studies of L^{u+d} for connected insertions ~ 0.
- $\Delta G / G \sim 0$. [COMPASS, 2011; STAR, 2010]

,

Experiments on angular momenta:

- JLab (6/12 GeV)
- COMPASS
- EIC/eRHIC
- RHIC
- GSI FAIR
- LHC

Matrix Elements

The matrix element of the energy-momentum tensor, $\mathcal{T}_{4 i}$ is given by, [X. Ji, 1997]

$$
\begin{align*}
\left(p, s\left|\mathcal{T}_{\{4 i\} q, g}\right| p^{\prime}, s^{\prime}\right) & =\left(\frac{1}{2}\right) \bar{u}(p, s)\left[T_{1}\left(q^{2}\right)\left(\gamma_{4} \bar{p}_{i}+\gamma_{i} \bar{p}_{4}\right)\right. \\
& -\frac{1}{2 m} T_{2}\left(q^{2}\right)\left(\bar{p}_{4} \sigma_{i \alpha} q_{\alpha}+\bar{p}_{i} \sigma_{4 \alpha} q_{\alpha}\right) \\
& \left.-\frac{i}{m} T_{3}\left(q^{2}\right) q_{4} q_{i}\right]_{q, g} u\left(p^{\prime}, s^{\prime}\right) \tag{7}
\end{align*}
$$

where, $q=p-p^{\prime}, \quad \bar{p}=\left(p+p^{\prime}\right) / 2$.
Using Eq. (9) and taking $q^{2} \rightarrow 0$ limit, one can show that,

$$
\begin{equation*}
J_{q, g}=\frac{1}{2}\left[T_{1}(0)+T_{2}(0)\right]_{q, g} \tag{8}
\end{equation*}
$$

Special Case

- Linear Momentum Operator : $P_{i}^{q, g}=\int d^{3} x \mathcal{T}^{\{0 i\} q, g}$ $\langle x\rangle_{q, g}=T_{1 ; q, g}(0)$: the first moment of the momentum fraction carried by the quarks or gluons.
- Momentum Sum Rule:

$$
\begin{gather*}
\langle x\rangle_{q}+\langle x\rangle_{g}=1 \\
p=p^{\prime}, q=0 \Rightarrow \\
\left(p, s\left|\mathcal{T}_{\{4 i\} q, g}\right| p, s\right)=\left(\frac{1}{2}\right) \bar{u}(p, s) T_{1 ; q, g}(0)\left(\gamma_{4} \bar{p}_{i}+\gamma_{i} \bar{p}_{4}\right) u(p, s) \tag{10}
\end{gather*}
$$

- Can be computed independently [M. Deka et al., 2008].

Two-point Correlation Functions

$$
\begin{equation*}
G_{N N}\left(t_{2}, \vec{p}\right)=\sum_{\vec{x}_{2}} e^{-i \vec{p} \cdot\left(\vec{x}_{2}-\vec{x}_{0}\right)}\langle 0| T\left[\chi\left(x_{2}\right) \bar{\chi}\left(x_{0}\right)\right]|0\rangle \tag{11}
\end{equation*}
$$

Inserting Energy eigenstates:

$$
\begin{equation*}
\operatorname{Tr}\left[\Gamma G_{N N}\left(t_{2}, \vec{p}\right)\right]=A e^{-E_{p}\left(t_{2}-t_{0}\right)}+\text { Higher states } \tag{12}
\end{equation*}
$$

Wick Contraction:

$$
\begin{align*}
\operatorname{Tr}\left[\Gamma G_{N N}\left(t_{2}, \vec{p}\right)\right]= & \sum_{\vec{x}_{2}} e^{-i \vec{p} \cdot\left(\vec{x}_{2}-\vec{x}_{0}\right)} \frac{1}{Z} \int \mathcal{D} U[\operatorname{det} M(U)] e^{-S_{g}} \\
& \operatorname{Tr}\left\{f\left[M^{-1}\left(x_{2}, x_{0}\right) M^{-1}\left(x_{2}, x_{0}\right) M^{-1}\left(x_{2}, x_{0}\right) ; U\right]\right\} \tag{13}
\end{align*}
$$

$$
\begin{align*}
& \sum_{\vec{x}_{2}} e^{-i \vec{p} \cdot\left(\vec{x}_{2}-\vec{x}_{0}\right)} \sum_{\{U\}} \operatorname{Tr}\left\{f\left[M^{-1}\left(x_{2}, x_{0}\right) M^{-1}\left(x_{2}, x_{0}\right) M^{-1}\left(x_{2}, x_{0}\right) ; U\right]\right\} \\
& \xrightarrow{\left(t_{2}-t_{0}\right) \gg 1} A e^{-E_{p}\left(t_{2}-t_{0}\right)} \tag{14}
\end{align*}
$$

Three-point Correlation Functions

The three point-function for an operator, \mathcal{T},

$$
\begin{align*}
& G_{N \mathcal{T} N}\left(\vec{p}, t_{2} ; \vec{q}, t_{1} ; \vec{p}^{\prime}, t_{0}\right)= \sum_{\vec{x}_{2}, \vec{x}_{1}} e^{-i \vec{p} \cdot \vec{x}_{2}} e^{i q \cdot \vec{x}_{1}} e^{i \vec{p}^{\prime} \cdot \vec{x}_{0}}\langle 0| \mathrm{T}\left(\chi\left(x_{2}\right) \mathcal{T}\left(x_{1}\right) \bar{\chi}\left(x_{0}\right)\right)|0\rangle \\
&= \sum_{\left\{\vec{x}_{2}\right.} e^{-i \vec{p} \cdot\left(\vec{x}_{2}-\vec{x}_{0}\right)} e^{+i \vec{q} \cdot\left(\vec{x}_{1}-\vec{x}_{0}\right)} \\
& \sum_{\left\{M^{2}\right.}\left[M^{-1} M^{-1} M^{-1} M^{-1} ; U\right] \tag{15}\\
& \operatorname{Tr}\left[\Gamma G_{N T_{4} i N}\left(\vec{p}, t_{2} ; \vec{q}, t_{1} ; \vec{p}, t_{0}\right)\right] \xrightarrow{t_{1} \gg t_{0}, t_{2} \gg t_{1}} \\
& B e^{-E_{p}\left(t_{2}-t_{1}\right)} e^{-E_{p^{\prime}}\left(t_{1}-t_{0}\right)}\left[a_{1} T_{1}\left(q^{2}\right)+a_{2} T_{2}\left(q^{2}\right)+a_{3} T_{3}\left(q^{2}\right)\right] \tag{16}
\end{align*}
$$

Ratios

$$
\begin{gather*}
\frac{\operatorname{Tr}\left[\Gamma_{\text {pol, unpol }} G_{N T_{i} N}\left(\vec{p}, t_{2} ; \vec{q}, t_{1} ; \vec{p}^{\prime}, t_{0}\right)\right]}{\operatorname{Tr}\left[\Gamma_{\text {unpol }} G_{N N}\left(\vec{p}, t_{2}\right)\right]} \\
\times \sqrt{\frac{\operatorname{Tr}\left[\Gamma_{\text {unpol }} G_{N N}\left(\vec{p}^{\prime}, t_{2}-t_{1}+t_{0}\right)\right]}{\operatorname{Tr}\left[\Gamma_{\text {unpol }} G_{N N}\left(\vec{p}, t_{2}-t_{1}+t_{0}\right)\right]}} \\
\times \sqrt{\frac{\operatorname{Tr}\left[\Gamma_{\text {unpol }} G_{N N}\left(\vec{p}, t_{1}\right)\right]}{\operatorname{Tr}\left[\Gamma_{\text {unpol }} G_{N N}\left(\vec{p}^{\prime}, t_{1}\right)\right]} \cdot \frac{\operatorname{Tr}\left[\Gamma_{\text {unpol }} G_{N N}\left(\vec{p}, t_{2}\right)\right]}{\operatorname{Tr}\left[\Gamma_{\text {unpol }} G_{N N}\left(\vec{p}^{\prime}, t_{2}\right)\right]}} \\
\frac{t_{1} \gg t_{0}, t_{2} \gg t_{1}}{4 \sqrt{E_{p}\left(E_{p}+m\right) E_{p^{\prime}}\left(E_{p^{\prime}}+m\right)}} \tag{17}\\
\left.\frac{\left.\operatorname{Tr}\left[q^{2}\right)+a_{2} T_{2}\left(q^{2}\right)+a_{3} T_{3}\left(q^{2}\right)\right]}{\operatorname{Tr}\left[\Gamma_{\text {unpol }} G_{N T_{4 i} N}\left(\vec{p}, t_{2} ; \overrightarrow{0}, t_{1} ; \vec{p}, t_{0}\right)\right]} \xrightarrow[L_{\text {unpol }} G_{N N}\left(\vec{p}, t_{2}\right)]\right]{t_{1} \gg t_{0}, t_{2} \gg t_{1}} T_{1}(0)=\langle x\rangle \tag{18}
\end{gather*}
$$

Connected and Disconnected Insertions

$G_{N T N}\left(\vec{p}, t_{2} ; \vec{q}, t_{1} ; \vec{p}^{\prime}, t_{0}\right)=\sum_{\vec{x}_{2}, \vec{x}_{1}} e^{-i \vec{p} \cdot \vec{x}_{2}} e^{i \vec{q} \cdot \vec{x}_{1}} e^{i \bar{p}^{\prime} \cdot \vec{x}_{0}}\langle 0| \mathrm{T}\left(\chi\left(x_{2}\right) \mathcal{T}\left(x_{1}\right) \bar{\chi}\left(x_{0}\right)\right)|0\rangle$
The three-point functions for quarks have two different contributions: connected (CI) and disconnected insertions (DI).

- CI three-point functions are relatively easier to compute.

- DI three-point functions are computationally challenging: Involves propagators from all-to-all points.
Tr [Three-point Func.] $]_{\text {DI }} \sim \operatorname{Tr}$ [two-point Func.] $\times \operatorname{Tr}$ [loop]
- strange quark contributions come only from DI. up and down quarks have contributions both from CI and DI.

Computation of DI

- Loops are stochastically estimated by using complex Z_{2} noise [S. J. Dong and K. F. Liu, 1992].

$$
\begin{equation*}
\left\langle\eta_{i}\right\rangle=\lim _{L \rightarrow \infty} \frac{1}{L} \sum_{n=1}^{L} \eta_{i}^{n}=0, \quad\left\langle\eta_{i}^{\dagger} \eta_{j}\right\rangle=\lim _{L \rightarrow \infty} \frac{1}{L} \sum_{n=1}^{L} \eta_{i}^{\dagger n} \eta_{j}^{n}=\delta_{i j} \tag{19}
\end{equation*}
$$

- Solve for X:

$$
\begin{equation*}
M X=\eta \Rightarrow\left\langle\eta_{j}^{\dagger} X_{i}\right\rangle=\sum_{k} M_{i k}^{-1}\left\langle\eta_{k}^{\dagger} \eta_{j}\right\rangle \simeq M_{i j}^{-1} \tag{20}
\end{equation*}
$$

Improvement:

- Unbiased Subtraction.
- Discrete Symmetries and Transformations.
- Summation over insertion time.
- Multiple nucleon sources.

Glue Operator

- Need suitable operator.
- We construct from the overlap operator, D_{OV}, [K. F. Liu et al., 2008; T. Doi et al., 2008]

$$
\begin{equation*}
F_{\mu \nu}(x)=\text { const. } \times \operatorname{Tr}^{s}\left[\sigma_{\mu \nu} D_{\mathrm{OV}}(x, x)\right] \tag{21}
\end{equation*}
$$

- High mode fluctuations are expected to be suppressed.
- $D_{\mathrm{OV}}(x, x)$ is estimated stochastically using complex Z_{2} noise.
- Color and spin are computed exactly.
- Space-time dilution is perfoemed by a separation of two sites on top of odd/even dilution. "taxi driver distance" $=4$.

Extraction of T_{1} and T_{2}

$$
\begin{equation*}
\text { ratio }=\frac{a_{1} T_{1}\left(q^{2}\right)+a_{2} T_{2}\left(q^{2}\right)+a_{3} T_{3}\left(q^{2}\right)}{4 \sqrt{E_{p}\left(E_{p}+m\right) E_{p^{\prime}}\left(E_{p^{\prime}}+m\right)}} \tag{22}
\end{equation*}
$$

- Select appropriate kinematics for which $\vec{p} \neq \vec{p}^{\prime} \neq 0$, and set up enough number of equations for each q^{2}.
- CI: Obtained from fitting a constant.

DI: Summation over insertion time \Rightarrow Obtained from the slope.

- Separate $T_{1}\left(q^{2}\right)$ and $T_{2}\left(q^{2}\right)$ at a few different values of q^{2}.
- Separately extrapolate them to $q^{2} \rightarrow 0$.

Numerical Parameters

- Standard Wilson Action. The gauge fields are generated in the quenched approximation with Wilson gauge action.
- $16^{3} \times 24$ lattice.
- The lattice spacing is $a \sim 0.11 \mathrm{fm} \simeq 2 \mathrm{Gev}$.
- $\kappa=0.154,0.155,0.1555$. The corresponding pion masses are 650 (3), 538 (4) and 478 (4) MeV respectively.
- The number of configurations 500. For quarks, the number of Z_{2} noise estimator is 500 on each gauge configuration.

Analysis

- Close to 30 TB of data has been produced from more than one million processor hours of computing. Has to be analyzed in various sequential steps.
- The error analysis is performed by using the jackknife procedure.
- The correlation among different quantities are taken into account by constructing the corresponding covariance matrices.
- 4 different q^{2} values are considered.
- q^{2} extrapolations are performed using dipole approximation,

$$
\begin{equation*}
\left.\left[T_{i}\left(q^{2}\right)\right]\right|_{i=1,2}=\left.\frac{T_{i}(0)}{\left[1+\frac{q^{2}}{\Lambda_{i}^{2}}\right]^{2}}\right|_{i=1,2} \tag{23}
\end{equation*}
$$

Disconnected Insertions

Chiral Extrapolation for Light quark (DI)

Glue

glue, $\left[\mathrm{T}_{1}+\mathrm{T}_{2}\right]\left(\mathrm{q}^{2}\right)$

glue, $\mathrm{T}_{1}\left(\mathrm{q}^{2}\right), \mathrm{T}_{\mathbf{2}}\left(\mathrm{q}^{2}\right)$

Chiral Extrapolation for Glue

Renormalization

- Renormalized operators

$$
\mathcal{T}(\mu)=Z_{\mathcal{T}}(a \mu, g(a)) \mathcal{T}(a)
$$

- Lattice renormalization are performed using sum rule

$$
\begin{aligned}
& Z_{q}(a) T_{1}(0)_{q}+Z_{g}(a) T_{1}(0)_{g}=1 \\
& Z_{q}(a)\left[T_{1}(0)_{q}+T_{2}(0)_{q}\right]+Z_{g}(a)\left[T_{1}(0)_{g}+T_{2}(0)_{g}\right]=\frac{1}{2} \\
\Rightarrow \quad & Z_{q}=1.05, Z_{g}=1.05
\end{aligned}
$$

- Perturbative mixing and matching to the $\overline{M S}$ scheme has not been completed.

Table: Lattice renormalized value with renormalization constants, $Z_{q}=Z_{g}=1.05$.

	$\mathrm{CI}(\mathrm{u})$	$\mathrm{CI}(\mathrm{d})$	$\mathrm{CI}(\mathrm{u}+\mathrm{d})$	$\mathrm{DI}(\mathrm{u}, \mathrm{d})$	$\mathrm{DI}(\mathrm{s})$	Glue
$\langle x\rangle$	$0.428(40)$	$0.156(20)$	$0.586(45)$	$0.038(7)$	$0.024(6)$	$0.313(56)$
$T_{2}(0)$	$0.297(112)$	$-0.228(80)$	$0.064(22)$	$-0.002(2)$	$-0.001(3)$	$-0.059(52)$
2J	$0.726(128)$	$-0.072(82)$	$0.651(51)$	$0.036(7)$	$0.023(7)$	$0.254(76)$
2L	$-0.18(18)$	$0.23(14)$	$0.04(10)$	$0.16(2)$	$0.14(2)$	-

Decomposition of First Moment

$\square \mathrm{CI}(u+d)$
$\square \mathrm{DI}(u+d)$
$\square \mathrm{DI}(s)$
\square Glue

Decomposition of Total Angular Momenta

$\square \frac{\Delta \Sigma}{2}(u+d+s)$
\square OAM CI $(u+d)$
\square OAM DI $(u+d)$ \square OAM DI (s)
\square Glue AM

Conclusion and Outlook

- A complete calculation of the quark and glue momenta and angular momenta in the nucleon has been carried out.
- Renormalization constants in $\overline{M S}$ scheme needed to be calculated. Work is in Progress.
- The glue momentum fraction of $0.313(56)$ is smaller than CTEQ4M results of 0.42 at $Q=1.6 \mathrm{GeV}$. [H.L. Lai et al., 1997]
- $\langle x\rangle_{s}=0.024(6)$ is in the range of CTEQ6M results: $0.018<\langle x\rangle_{s}<0.040$. [H. L. Lai et al., 2007]
- In progress:
- Dynamical domain-wall fermion gauge (RBC + UKQCD) configurations, lowest pion mass $\sim 140 \mathrm{MeV}$ on a 5.5 fm box.
- Quark loops with low mode averaging and improved nucleon propagator.

Thank you !!

