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Figure 5. The transversity distribution functions
for u and d flavours as determined by our global
fit, at Q2 = 2.4 GeV2; we also show the Sof-
fer bound [46] (highest or lowest lines) and the
(wider) uncertainty bands of our previous extrac-
tion [20].

although this might not be the proper evolution,
it should mitigate the above-mentioned effect.

As it is well known, in a non relativistic the-
ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.

Another interesting quantity, related to the
first x-moment of the transversity distribution,
is the tensor charge:

δq =

∫ 1

0
dx (∆T q − ∆T q̄) =

∫ 1

0
dx∆T q (20)

where the last equality is valid for zero antiquark
transversity, as assumed in our approach. From
our analysis we get, at Q2 = 0.8 GeV2,

δu = 0.54+0.09
−0.22 δd = −0.23+0.09

−0.16 . (21)

Such values are quite close to various model pre-
dictions [47,48,49,50] for tensor charges which
span the ranges 0.5 ≤ δu ≤ 1.5 and −0.5 ≤
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Figure 6. Favoured and unfavoured Collins frag-
mentation functions as determined by our global
fit, at Q2 = 2.4 GeV2; we also show the positiv-
ity bound and the (wider) uncertainty bands as
obtained in Ref. [20].
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Figure 7. Comparison of the extracted transver-
sity (solid line) with the helicity distribution
(dashed line) at Q2 = 2.4 GeV2. The Soffer
bound [46] (blue solid line) is also shown.
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although this might not be the proper evolution,
it should mitigate the above-mentioned effect.

As it is well known, in a non relativistic the-
ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.
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although this might not be the proper evolution,
it should mitigate the above-mentioned effect.

As it is well known, in a non relativistic the-
ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.

Another interesting quantity, related to the
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δu = 0.54+0.09
−0.22 δd = −0.23+0.09
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Such values are quite close to various model pre-
dictions [47,48,49,50] for tensor charges which
span the ranges 0.5 ≤ δu ≤ 1.5 and −0.5 ≤
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considering the errors on the parametrization and taking
the upper and lower limits for the combination of interest.
Our data points seem not in disagreement with the extrac-
tion. However, a word of caution is needed here: while the
error bars of our data points correspond to 1! deviation
from the central value, the uncertainty on the parametriza-
tion [32] corresponds to a deviation !"2 ! 17 from the
best fit (see Ref. [33] for more details). In any case, to draw
clearer conclusions more data are needed (e.g., from the
COMPASS Collaboration [18]).

In summary, we have presented a determination of the
transversity parton distribution in the framework of collinear
factorization by using data for pion-pair production in deep-
inelastic scattering off transversely polarized targets, com-
bined with data of eþe# annihilations into pion pairs. The
final trend of the extracted transversity seems not to be in
disagreement with the transversity extracted from the
Collins effect [32]. More data are needed to clarify the issue.
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although this might not be the proper evolution,
it should mitigate the above-mentioned effect.

As it is well known, in a non relativistic the-
ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.
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considering the errors on the parametrization and taking
the upper and lower limits for the combination of interest.
Our data points seem not in disagreement with the extrac-
tion. However, a word of caution is needed here: while the
error bars of our data points correspond to 1! deviation
from the central value, the uncertainty on the parametriza-
tion [32] corresponds to a deviation !"2 ! 17 from the
best fit (see Ref. [33] for more details). In any case, to draw
clearer conclusions more data are needed (e.g., from the
COMPASS Collaboration [18]).

In summary, we have presented a determination of the
transversity parton distribution in the framework of collinear
factorization by using data for pion-pair production in deep-
inelastic scattering off transversely polarized targets, com-
bined with data of eþe# annihilations into pion pairs. The
final trend of the extracted transversity seems not to be in
disagreement with the transversity extracted from the
Collins effect [32]. More data are needed to clarify the issue.

We thank the Belle Collaboration and, in particular,
Anselm Vossen for many fruitful discussions. We thank
also Andrea Bianconi for many illuminating discussions.
This work is partially supported by the Italian MIUR
through the PRIN 2008EKLACK, and by the European
Community through the Research Infrastructure
Integrating Activity HadronPhysics2 (Grant Agreement
No. 227431) under the 7th Framework Programme.

*alessandro.bacchetta@unipv.it
†aurore.courtoy@pv.infn.it
‡marco.radici@pv.infn.it

[1] J. P. Ralston andD. E. Soper, Nucl. Phys.B152, 109 (1979);
R. L. Jaffe and X. Ji, Phys. Rev. Lett. 67, 552 (1991); J.
Cortes, B. Pire, and J. Ralston, Z. Phys. C 55, 409 (1992).

[2] X. Artru and M. Mekhfi, Z. Phys. C 45, 669 (1990).
[3] M. Gockeler et al. (QCDSF Collaboration), Phys. Rev.

Lett. 98, 222001 (2007).

[4] V. Barone, A. Drago, and P. G. Ratcliffe, Phys. Rep. 359, 1
(2002).

[5] J. C. Collins, Nucl. Phys. B396, 161 (1993).
[6] A. Airapetian et al. (HERMES Collaboration), Phys. Lett.

B 693, 11 (2010); M. Alekseev et al. (COMPASS
Collaboration), Phys. Lett. B 692, 240 (2010).

[7] D. Boer, R. Jakob, and P. J. Mulders, Nucl. Phys. B504,
345 (1997).

[8] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 96,
232002 (2006); R. Seidl et al. (Belle Collaboration), Phys.
Rev. D 78, 032011 (2008).

[9] M. Anselmino et al., Phys. Rev. D 75, 054032 (2007).
[10] J. C. Collins and D. E. Soper, Nucl. Phys. B193, 381

(1981); X. Ji, J.-P. Ma, and F. Yuan, Phys. Rev. D 71,
034005 (2005).

[11] D. Boer, Nucl. Phys. B806, 23 (2009).
[12] J. C. Collins, D. E. Soper, and G. Sterman, Adv. Ser. Dir.

High Energy Phys. 5, 1 (1988); R. Brock et al. (CTEQ
Collaboration), Rev. Mod. Phys. 67, 157 (1995).

[13] M. Radici, R. Jakob, and A. Bianconi, Phys. Rev. D 65,
074031 (2002).

[14] A. V. Efremov, L. Mankiewicz, and N.A. Tornqvist, Phys.
Lett. B 284, 394 (1992); J. C. Collins and G.A. Ladinsky,
arXiv:hep-ph/9411444.

[15] R. L. Jaffe, X. Jin, and J. Tang, Phys. Rev. Lett. 80, 1166
(1998).

[16] A. Bacchetta and M. Radici, Phys. Rev. D 67, 094002
(2003).

[17] A. Airapetian et al. (HERMES Collaboration), J. High
Energy Phys. 06 (2008) 017.

[18] H. Wollny, Ph.D. thesis, Freiburg U., 2010, CERN-
THESIS-2010-108.

[19] R. Yang (PHENIX Collaboration), AIP Conf. Proc. 1182,
569 (2009).

[20] X. Artru and J. C. Collins, Z. Phys. C 69, 277
(1996).

[21] D. Boer, R. Jakob, and M. Radici, Phys. Rev. D 67,
094003 (2003).

[22] A. Vossen et al. (Belle), arXiv:1104.2425.
[23] X.-R. Lu, Ph.D. thesis, Tokyo Institute of Technology,

2008, DESY-THESIS-2008-034.
[24] A. Bacchetta and M. Radici, Phys. Rev. D 74, 114007

(2006).
[25] T. Sjostrand, L. Lonnblad, S. Mrenna, and P. Z. Skands,

arXiv:hep-ph/0308153.
[26] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt,

Eur. Phys. J. C 63, 189 (2009).
[27] A. Bacchetta, F. A. Ceccopieri, A. Mukherjee, and M.

Radici, Phys. Rev. D 79, 034029 (2009).
[28] F. A. Ceccopieri, M. Radici, and A. Bacchetta, Phys. Lett.

B 650, 81 (2007).
[29] D. de Florian, R. Sassot, and M. Stratmann, Phys. Rev. D

75, 114010 (2007).
[30] G. P. Salam and J. Rojo, Comput. Phys. Commun. 180,

120 (2009).
[31] A. Courtoy, A. Bacchetta, A. Bianconi, and M. Radici (to

be published).
[32] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F.

Murgia, A. Prokudin, and S. Melis, Nucl. Phys. B, Proc.
Suppl. 191, 98 (2009).

[33] M. Anselmino et al., Eur. Phys. J. A 39, 89 (2009).

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.0

0.1

0.2

0.3

x

x h1
uv x x h1

dv x 4

9 th. unc.

FIG. 1. The xhuv1 # xhdv1 =4 of Eq. (8) as a function of x. The
error bars are obtained by propagating the statistical errors of each
term in the equation. The uncertainty band represents the same
observable as deduced from the parametrization of Ref. [32].
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Figure 5. The transversity distribution functions
for u and d flavours as determined by our global
fit, at Q2 = 2.4 GeV2; we also show the Sof-
fer bound [46] (highest or lowest lines) and the
(wider) uncertainty bands of our previous extrac-
tion [20].

although this might not be the proper evolution,
it should mitigate the above-mentioned effect.

As it is well known, in a non relativistic the-
ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.

Another interesting quantity, related to the
first x-moment of the transversity distribution,
is the tensor charge:

δq =

∫ 1

0
dx (∆T q − ∆T q̄) =

∫ 1

0
dx∆T q (20)

where the last equality is valid for zero antiquark
transversity, as assumed in our approach. From
our analysis we get, at Q2 = 0.8 GeV2,

δu = 0.54+0.09
−0.22 δd = −0.23+0.09

−0.16 . (21)

Such values are quite close to various model pre-
dictions [47,48,49,50] for tensor charges which
span the ranges 0.5 ≤ δu ≤ 1.5 and −0.5 ≤

(z
)

un
f

(z
)/2

D
un

f
 DN

Δ−
(z

)
fa

v
(z

)/2
D

fa
v

 DN
Δ 

  )
(z

, p
un

f
 DN

Δ−
  )

(z
, p

fa
v

 DN
Δ 

z   (GeV)p

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1 2 = 2.4 GeV2Q
z = 0.36

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 2 = 2.4 GeV2Q
z = 0.36

Figure 6. Favoured and unfavoured Collins frag-
mentation functions as determined by our global
fit, at Q2 = 2.4 GeV2; we also show the positiv-
ity bound and the (wider) uncertainty bands as
obtained in Ref. [20].

 d
(x

)
T

Δ
x 

 u
(x

)
T

Δ
x 

  )
 d

(x
, k

T
Δ

x 
  )

 u
(x

, k
T

Δ
x 

x   (GeV)k

−0.1

0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

−0.1

0

0.1

0.2

0.3

0.4

x = 0.1

0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

x = 0.1

Figure 7. Comparison of the extracted transver-
sity (solid line) with the helicity distribution
(dashed line) at Q2 = 2.4 GeV2. The Soffer
bound [46] (blue solid line) is also shown.

considering the errors on the parametrization and taking
the upper and lower limits for the combination of interest.
Our data points seem not in disagreement with the extrac-
tion. However, a word of caution is needed here: while the
error bars of our data points correspond to 1! deviation
from the central value, the uncertainty on the parametriza-
tion [32] corresponds to a deviation !"2 ! 17 from the
best fit (see Ref. [33] for more details). In any case, to draw
clearer conclusions more data are needed (e.g., from the
COMPASS Collaboration [18]).

In summary, we have presented a determination of the
transversity parton distribution in the framework of collinear
factorization by using data for pion-pair production in deep-
inelastic scattering off transversely polarized targets, com-
bined with data of eþe# annihilations into pion pairs. The
final trend of the extracted transversity seems not to be in
disagreement with the transversity extracted from the
Collins effect [32]. More data are needed to clarify the issue.
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Semi-inclusive production of two hadrons [19,21] offers
an alternative way to access transversity, where the chiral-
odd partner of transversity is represented by the DiFF H!

1
[47], which relates the transverse spin of the quark to the
azimuthal orientation of the two-hadron plane. This func-
tion is at present unknown. Very recently, the HERMES
collaboration has reported measurements of the asymmetry
containing the product h1H!

1 [48]. The COMPASS col-
laboration has also presented analogous preliminary results
[49]. In the meanwhile, the BELLE collaboration is plan-
ning to measure the fragmentation functions H!

1 in the near
future [50,51].

In this context, it seems of great importance to devise a
way to model DiFF. From the theoretical side, this can help
in understanding what are the essential building blocks and
mechanisms involved in dihadron fragmentation. It can
also provide guidance for fits to data and further phenome-
nological studies. From the experimental side, a model
could be useful to study the effects of cuts and acceptance,
to estimate the size of observables in different processes
and kinematical regimes. Our work is not the first one in
this direction [21,47,52]. The model presented here is close
to the one discussed in Ref. [47]. However, for the first time
we are able to fix the parameters by comparing our unpo-
larized DiFF D1 with the output of the PYTHIA event
generator [53] tuned for HERMES [54]. Then, without
introducing extra parameters, we make predictions for
the polarized DiFF H!

1 and the related SSA involving the
transversity distribution h1.

The paper is organized as follows. In Sec. II, we review
the basic formalism of DiFF and of SIDIS cross section for
two-hadron production. In Sec. III, we describe our model
for the fragmentation of a quark into two unpolarized
hadrons and give analytic results for DiFF calculated in
this model. In Sec. IV, we fix the parameters of the model
by comparing it to the output of the PYTHIA event gen-
erator tuned for HERMES kinematics. In Sec. V, we show
numerical predictions for the DiFF and for the above-
mentioned SSA in the kinematics explored by the
HERMES [48] and COMPASS collaborations [49].
Finally, in Sec. VI we draw some conclusions.

II. BASICS OF DIHADRON FRAGMENTATION
FUNCTIONS

Dihadron fragmentation functions are involved in the
description of the fragmentation process q ! !!!"X.
The quark has momentum k. The two pions have masses
m! # 0:140 GeV, momenta P1 and P2, respectively, and
invariant mass Mh (considered to be much smaller than the
hard scale of the process, e.g., the virtuality of the photon,
Q, in SIDIS). We introduce the vectors Ph # P1 ! P2
and R # $P1 " P2%=2. We describe a 4-vector a as
&a"; a!; ax; ay', i.e. in terms of its light cone components
a( # $a0 ( a3%=

!!!
2

p
and its transverse spatial components.

We introduce the light cone fraction z # P"
h =k

" and the
polar angle ", being the angle between the direction of P1
in the pair’s center of mass and the direction of Ph in the
lab frame [55], so that the relevant momenta can be written
as

 k# #
"
P"
h

z
;
z$k2 ! ~k2T%

2P"
h

; kxT; k
y
T

#
; (1)

 P#
h #

"
P"
h ;

M2
h

2P"
h
; 0; 0

#
; (2)

 

R# #
"j ~RjP"

h

Mh
cos";" j ~RjMh

2P"
h

cos"; Rx
T; R

y
T

#

#
"j ~RjP"

h

Mh
cos";" j ~RjMh

2P"
h

cos";

) j ~Rj sin" cos$R; j ~Rj sin" sin$R

#
; (3)

where1

 j ~Rj # Mh

2

!!!!!!!!!!!!!!!!!!!
1" 4m2

!

M2
h

s
; (4)

and $R is defined later in Eq. (15) (see also Fig. 1). It is
useful to compute the scalar products

 Ph * R # 0; (5)

 Ph * k # M2
h

2z
! z

k2 ! j ~kT j2
2

; (6)

 

Ph

Ph

P2

P1

RT

S S
φ

φ
R

two−hadron plane

scattering plane

l l’

q

FIG. 1 (color online). Angles involved in the measurement of
the transverse single-spin asymmetry in deep-inelastic produc-
tion of two hadrons in the current region.

1Note that there is a misprint in the expressions for j ~Rj in
Eq. (27) of Ref. [55] and in Eq. (23) of Ref. [28].
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plitude times the conjugate of a different scattering ampli-

tude !12". However, for conciseness we follow the notation

of Ref. !2". The polarization of the incident beam is indicated
with #e and

A$y %!1"y#
y2

2
, B$y %!1"y , C$y %!y$2"y %.

$23%

In Eq. $22%, the indices (&1 ,&1!) refer to the chiralities of the
entering quarks and identify each submatrix, while (&2 ,&2!)
refer to the exiting quarks and point to the elements inside

each submatrix. By expanding the sum over repeated indices

in Eq. $21%, we get the expression

d7'

d(dMh
2d)Rdzdxdyd)S

!*
a
ea
2
2+2

4,Q2y
! A$y % f 1

a$x %D1
a$z ,( ,Mh

2%

##e#
C$y %

2
g1
a$x %D1

a$z ,( ,Mh
2%

#B$y %
"S! T""R! T"
Mh

sin$)R#)S%h1
a$x %H1

!a$z ,( ,Mh
2%# .

$24%

For an unpolarized beam (#e!0, indicated with O) and a
transversely polarized target (#!0, indicated with T), Eq.
$24% corresponds to Eq. $10% of Ref. !6" after integrating over
all transverse momenta. The following SSA can be built:

A
OT

sin()R#)S)$y ,x ,z ,Mh
2%

!
$ d)Sd)Rd( sin$)R#)S%d

7'OT

$ d)Sd)Rd(d7'OO
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ea
2h1

a$x %$ d(
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2Mh
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!a$z ,( ,Mh
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*
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ea
2 f 1

a$x %$ d(D1
a$z ,( ,Mh

2%

,

$25%

which allows us to isolate the transversity h1 at leading twist.

Apart from the usual variables x , y , z , the only other vari-

able to be measured is the angle )R#)S . Instead of using

the scattering plane as a reference to measure azimuthal

angles, it is sometimes convenient to use the directions of the

beam and of the transverse component of the target spin. The

new plane is rotated by the angle )S-") l
S with respect to

the scattering plane; therefore, we have )R-)R
S") l

S and

)R#)S-)R
S"2) l

S !6".
The asymmetry described in Eq. $25% is the most general

one at leading twist for the case of two-hadron production

when an unpolarized lepton beam scatters off a transversely

polarized target. No assumptions are made on the behavior of

the fragmentation functions. However, as we shall see in the

next section, it is useful and desirable to understand how

different partial waves contribute to the above fragmentation

functions.

III. PARTIAL-WAVE EXPANSION FOR THE

TWO-HADRON SYSTEM

If the invariant mass Mh of the two hadrons is not very

large, the pair can be assumed to be produced mainly in the

relative s-wave channel, with a typical smooth distribution,

or in the p-wave channel with a Breit-Wigner profile !32".
Therefore, it is useful to expand Eq. $16%—or equivalently
Eq. $19%—in relative partial waves keeping only the first two
harmonics. To this purpose, in the following we reformulate

the kinematics in the c.m. frame of the two-hadron system.

Then, the leading-twist projection for the quark-quark cor-

relator . is conveniently expanded deducing a more detailed

structure than Eq. $19%. A set of new bounds is derived and
the corresponding expression for the cross section is dis-

cussed.

In the c.m. frame the emission of the two hadrons occurs

back to back. The direction identified by this emission forms

an angle / with the direction of Ph in the target rest frame

$see Fig. 3%. In this frame, the relevant variables become

Ph
0!%Mh

!2
,

Mh
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, 0, 0& ,
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where

FIG. 3. The hadron pair in the c.m. frame; / is the c.m. polar
angle of the pair with respect to the direction of Ph in the target rest

frame.
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Knowledge on DiFFs leads to h1(x, Q2)

Semi-inclusive production of two hadrons [19,21] offers
an alternative way to access transversity, where the chiral-
odd partner of transversity is represented by the DiFF H!

1
[47], which relates the transverse spin of the quark to the
azimuthal orientation of the two-hadron plane. This func-
tion is at present unknown. Very recently, the HERMES
collaboration has reported measurements of the asymmetry
containing the product h1H!

1 [48]. The COMPASS col-
laboration has also presented analogous preliminary results
[49]. In the meanwhile, the BELLE collaboration is plan-
ning to measure the fragmentation functions H!

1 in the near
future [50,51].

In this context, it seems of great importance to devise a
way to model DiFF. From the theoretical side, this can help
in understanding what are the essential building blocks and
mechanisms involved in dihadron fragmentation. It can
also provide guidance for fits to data and further phenome-
nological studies. From the experimental side, a model
could be useful to study the effects of cuts and acceptance,
to estimate the size of observables in different processes
and kinematical regimes. Our work is not the first one in
this direction [21,47,52]. The model presented here is close
to the one discussed in Ref. [47]. However, for the first time
we are able to fix the parameters by comparing our unpo-
larized DiFF D1 with the output of the PYTHIA event
generator [53] tuned for HERMES [54]. Then, without
introducing extra parameters, we make predictions for
the polarized DiFF H!

1 and the related SSA involving the
transversity distribution h1.

The paper is organized as follows. In Sec. II, we review
the basic formalism of DiFF and of SIDIS cross section for
two-hadron production. In Sec. III, we describe our model
for the fragmentation of a quark into two unpolarized
hadrons and give analytic results for DiFF calculated in
this model. In Sec. IV, we fix the parameters of the model
by comparing it to the output of the PYTHIA event gen-
erator tuned for HERMES kinematics. In Sec. V, we show
numerical predictions for the DiFF and for the above-
mentioned SSA in the kinematics explored by the
HERMES [48] and COMPASS collaborations [49].
Finally, in Sec. VI we draw some conclusions.

II. BASICS OF DIHADRON FRAGMENTATION
FUNCTIONS

Dihadron fragmentation functions are involved in the
description of the fragmentation process q ! !!!"X.
The quark has momentum k. The two pions have masses
m! # 0:140 GeV, momenta P1 and P2, respectively, and
invariant mass Mh (considered to be much smaller than the
hard scale of the process, e.g., the virtuality of the photon,
Q, in SIDIS). We introduce the vectors Ph # P1 ! P2
and R # $P1 " P2%=2. We describe a 4-vector a as
&a"; a!; ax; ay', i.e. in terms of its light cone components
a( # $a0 ( a3%=

!!!
2

p
and its transverse spatial components.

We introduce the light cone fraction z # P"
h =k

" and the
polar angle ", being the angle between the direction of P1
in the pair’s center of mass and the direction of Ph in the
lab frame [55], so that the relevant momenta can be written
as
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where1

 j ~Rj # Mh

2

!!!!!!!!!!!!!!!!!!!
1" 4m2

!

M2
h

s
; (4)

and $R is defined later in Eq. (15) (see also Fig. 1). It is
useful to compute the scalar products

 Ph * R # 0; (5)

 Ph * k # M2
h

2z
! z

k2 ! j ~kT j2
2

; (6)
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P2

P1

RT

S S
φ

φ
R

two−hadron plane

scattering plane

l l’

q

FIG. 1 (color online). Angles involved in the measurement of
the transverse single-spin asymmetry in deep-inelastic produc-
tion of two hadrons in the current region.

1Note that there is a misprint in the expressions for j ~Rj in
Eq. (27) of Ref. [55] and in Eq. (23) of Ref. [28].
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plitude times the conjugate of a different scattering ampli-

tude !12". However, for conciseness we follow the notation

of Ref. !2". The polarization of the incident beam is indicated
with #e and

A$y %!1"y#
y2

2
, B$y %!1"y , C$y %!y$2"y %.

$23%

In Eq. $22%, the indices (&1 ,&1!) refer to the chiralities of the
entering quarks and identify each submatrix, while (&2 ,&2!)
refer to the exiting quarks and point to the elements inside

each submatrix. By expanding the sum over repeated indices

in Eq. $21%, we get the expression

d7'

d(dMh
2d)Rdzdxdyd)S

!*
a
ea
2
2+2

4,Q2y
! A$y % f 1
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a$z ,( ,Mh

2%
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2
g1
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2%

#B$y %
"S! T""R! T"
Mh

sin$)R#)S%h1
a$x %H1

!a$z ,( ,Mh
2%# .

$24%

For an unpolarized beam (#e!0, indicated with O) and a
transversely polarized target (#!0, indicated with T), Eq.
$24% corresponds to Eq. $10% of Ref. !6" after integrating over
all transverse momenta. The following SSA can be built:

A
OT

sin()R#)S)$y ,x ,z ,Mh
2%

!
$ d)Sd)Rd( sin$)R#)S%d

7'OT

$ d)Sd)Rd(d7'OO
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*
a
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!a$z ,( ,Mh
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*
a
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2 f 1
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2%

,

$25%

which allows us to isolate the transversity h1 at leading twist.

Apart from the usual variables x , y , z , the only other vari-

able to be measured is the angle )R#)S . Instead of using

the scattering plane as a reference to measure azimuthal

angles, it is sometimes convenient to use the directions of the

beam and of the transverse component of the target spin. The

new plane is rotated by the angle )S-") l
S with respect to

the scattering plane; therefore, we have )R-)R
S") l

S and

)R#)S-)R
S"2) l

S !6".
The asymmetry described in Eq. $25% is the most general

one at leading twist for the case of two-hadron production

when an unpolarized lepton beam scatters off a transversely

polarized target. No assumptions are made on the behavior of

the fragmentation functions. However, as we shall see in the

next section, it is useful and desirable to understand how

different partial waves contribute to the above fragmentation

functions.

III. PARTIAL-WAVE EXPANSION FOR THE

TWO-HADRON SYSTEM

If the invariant mass Mh of the two hadrons is not very

large, the pair can be assumed to be produced mainly in the

relative s-wave channel, with a typical smooth distribution,

or in the p-wave channel with a Breit-Wigner profile !32".
Therefore, it is useful to expand Eq. $16%—or equivalently
Eq. $19%—in relative partial waves keeping only the first two
harmonics. To this purpose, in the following we reformulate

the kinematics in the c.m. frame of the two-hadron system.

Then, the leading-twist projection for the quark-quark cor-

relator . is conveniently expanded deducing a more detailed

structure than Eq. $19%. A set of new bounds is derived and
the corresponding expression for the cross section is dis-

cussed.

In the c.m. frame the emission of the two hadrons occurs

back to back. The direction identified by this emission forms

an angle / with the direction of Ph in the target rest frame

$see Fig. 3%. In this frame, the relevant variables become
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where

FIG. 3. The hadron pair in the c.m. frame; / is the c.m. polar
angle of the pair with respect to the direction of Ph in the target rest

frame.
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Fig. 4: Deuteron and proton asymmetries, integrated over the angle q , as a function of x, z and Mhh, for
the data taken with the 6LiD (top) and NH3 target (bottom), respectively. The open data points in both
asymmetry distributions vs. Mhh include all hadron pairs with an invariant mass of Mhh � 1.5 GeV/c2.
These pairs are discarded for the two other distributions, which are integrated over Mhh. The grey bands
indicate the systematic uncertainties, where the last bin in Mhh is not fully shown. The curves show the
comparison of the extracted asymmetries to predictions [37, 38] made using the transversity functions
extracted in Ref. [15] (solid lines) or a pQCD based counting rule analysis (dotted lines).1

5 Discussion of Results

The resulting asymmetries are shown in Fig. 4 as a function of x, z and Mhh for the 6LiD (top) and NH3
(bottom) targets, respectively. For 6LiD, no significant asymmetry is observed in any variable. For NH3,
large negative asymmetries are observed in the region x > 0.03, which implies that both transversity
distributions and polarised two-hadron interference fragmentation functions do not vanish. For x < 0.03,
the asymmetries are compatible with zero. Over the measured range of the invariant mass Mhh and z, the
asymmetry is negative and shows no strong dependence on these variables.
When comparing the results on the NH3 target to the published HERMES results on a transversely po-
larised proton target [28], the larger kinematic region in x and Mhh is evident. However, both results can-
not be directly compared for several reasons: (1) The opposite sign is due to the fact that in the extraction
of the asymmetries the phase p in the angle fRS is used in the COMPASS analysis; (2) COMPASS calcu-
lates asymmetries in the photon-nucleon system, while HERMES published them in the lepton-nucleon
system; both agree reasonably well when including Dnn corrections for HERMES; (3) HERMES uses
identified p

+
p

� pairs and COMPASS h+h� pairs; (4) COMPASS applies a minimum cut on z, removing
a possible dilution due to contributions from target fragmentation.
A naive interpretation of our data, based on Eq. (7) and on isospin symmetry and charge conjugation,
yields D1,u = D1,d and H^

1,u =�H^
1,d [27]. When considering only valence quarks, the asymmetry AsinfRS

UT,d

is proportional to [hu
1 +hd

1 ]H
^
1,u for the deuteron target, while for the proton target AsinfRS

UT,p µ [4hu
1 �hd

1 ]H
^
1,u.

Therefore, like in the case of the Collins asymmetry, the small asymmetries observed for the deuteron
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SIDIS production of pion pairs 
	 	 	 	 	 	 	 	 	 	 	 @ COMPASS & HERMES                  

2007 Proton Data 

9

〉
θ

 si
n 

U
T,
pRSφ

sin
 

A〈

x z ]2c [GeV/hhM
-210 -110 1

-0.15

-0.1

-0.05

0

0.05

0.2 0.4 0.6 0.8

-0.15

-0.1

-0.05

0

0.05

0.5 1 1.5 2

-0.15

-0.1

-0.05

0

0.05

〉
θ

 si
n 

U
T,
dRSφ

sin
 

A〈

x z ]2c [GeV/hhM
-210 -110 1

-0.15

-0.1

-0.05

0

0.05

0.2 0.4 0.6 0.8

-0.15

-0.1

-0.05

0

0.05

0.5 1 1.5 2

-0.15

-0.1

-0.05

0

0.05

Fig. 4: Deuteron and proton asymmetries, integrated over the angle q , as a function of x, z and Mhh, for
the data taken with the 6LiD (top) and NH3 target (bottom), respectively. The open data points in both
asymmetry distributions vs. Mhh include all hadron pairs with an invariant mass of Mhh � 1.5 GeV/c2.
These pairs are discarded for the two other distributions, which are integrated over Mhh. The grey bands
indicate the systematic uncertainties, where the last bin in Mhh is not fully shown. The curves show the
comparison of the extracted asymmetries to predictions [37, 38] made using the transversity functions
extracted in Ref. [15] (solid lines) or a pQCD based counting rule analysis (dotted lines).1

5 Discussion of Results

The resulting asymmetries are shown in Fig. 4 as a function of x, z and Mhh for the 6LiD (top) and NH3
(bottom) targets, respectively. For 6LiD, no significant asymmetry is observed in any variable. For NH3,
large negative asymmetries are observed in the region x > 0.03, which implies that both transversity
distributions and polarised two-hadron interference fragmentation functions do not vanish. For x < 0.03,
the asymmetries are compatible with zero. Over the measured range of the invariant mass Mhh and z, the
asymmetry is negative and shows no strong dependence on these variables.
When comparing the results on the NH3 target to the published HERMES results on a transversely po-
larised proton target [28], the larger kinematic region in x and Mhh is evident. However, both results can-
not be directly compared for several reasons: (1) The opposite sign is due to the fact that in the extraction
of the asymmetries the phase p in the angle fRS is used in the COMPASS analysis; (2) COMPASS calcu-
lates asymmetries in the photon-nucleon system, while HERMES published them in the lepton-nucleon
system; both agree reasonably well when including Dnn corrections for HERMES; (3) HERMES uses
identified p

+
p

� pairs and COMPASS h+h� pairs; (4) COMPASS applies a minimum cut on z, removing
a possible dilution due to contributions from target fragmentation.
A naive interpretation of our data, based on Eq. (7) and on isospin symmetry and charge conjugation,
yields D1,u = D1,d and H^

1,u =�H^
1,d [27]. When considering only valence quarks, the asymmetry AsinfRS

UT,d

is proportional to [hu
1 +hd

1 ]H
^
1,u for the deuteron target, while for the proton target AsinfRS

UT,p µ [4hu
1 �hd

1 ]H
^
1,u.

Therefore, like in the case of the Collins asymmetry, the small asymmetries observed for the deuteron
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(z, Mh)-dpdence determined 
by DiFF from Belle

[A.C., Bacchetta, Radici, Bianconi, Phys.Rev. D85]



SIDIS production of pion pairs 
	 	 	 	 	 	 	 	 	 	 	 @ COMPASS & HERMES                  

2007 Proton Data 

9

〉
θ

 si
n 

U
T,
pRSφ

sin
 

A〈

x z ]2c [GeV/hhM
-210 -110 1

-0.15

-0.1

-0.05

0

0.05

0.2 0.4 0.6 0.8

-0.15

-0.1

-0.05

0

0.05

0.5 1 1.5 2

-0.15

-0.1

-0.05

0

0.05

〉
θ

 si
n 

U
T,
dRSφ

sin
 

A〈

x z ]2c [GeV/hhM
-210 -110 1

-0.15

-0.1

-0.05

0

0.05

0.2 0.4 0.6 0.8

-0.15

-0.1

-0.05

0

0.05

0.5 1 1.5 2

-0.15

-0.1

-0.05

0

0.05

Fig. 4: Deuteron and proton asymmetries, integrated over the angle q , as a function of x, z and Mhh, for
the data taken with the 6LiD (top) and NH3 target (bottom), respectively. The open data points in both
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These pairs are discarded for the two other distributions, which are integrated over Mhh. The grey bands
indicate the systematic uncertainties, where the last bin in Mhh is not fully shown. The curves show the
comparison of the extracted asymmetries to predictions [37, 38] made using the transversity functions
extracted in Ref. [15] (solid lines) or a pQCD based counting rule analysis (dotted lines).1

5 Discussion of Results

The resulting asymmetries are shown in Fig. 4 as a function of x, z and Mhh for the 6LiD (top) and NH3
(bottom) targets, respectively. For 6LiD, no significant asymmetry is observed in any variable. For NH3,
large negative asymmetries are observed in the region x > 0.03, which implies that both transversity
distributions and polarised two-hadron interference fragmentation functions do not vanish. For x < 0.03,
the asymmetries are compatible with zero. Over the measured range of the invariant mass Mhh and z, the
asymmetry is negative and shows no strong dependence on these variables.
When comparing the results on the NH3 target to the published HERMES results on a transversely po-
larised proton target [28], the larger kinematic region in x and Mhh is evident. However, both results can-
not be directly compared for several reasons: (1) The opposite sign is due to the fact that in the extraction
of the asymmetries the phase p in the angle fRS is used in the COMPASS analysis; (2) COMPASS calcu-
lates asymmetries in the photon-nucleon system, while HERMES published them in the lepton-nucleon
system; both agree reasonably well when including Dnn corrections for HERMES; (3) HERMES uses
identified p

+
p

� pairs and COMPASS h+h� pairs; (4) COMPASS applies a minimum cut on z, removing
a possible dilution due to contributions from target fragmentation.
A naive interpretation of our data, based on Eq. (7) and on isospin symmetry and charge conjugation,
yields D1,u = D1,d and H^

1,u =�H^
1,d [27]. When considering only valence quarks, the asymmetry AsinfRS

UT,d

is proportional to [hu
1 +hd

1 ]H
^
1,u for the deuteron target, while for the proton target AsinfRS
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Therefore, like in the case of the Collins asymmetry, the small asymmetries observed for the deuteron
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5 Discussion of Results

The resulting asymmetries are shown in Fig. 4 as a function of x, z and Mhh for the 6LiD (top) and NH3
(bottom) targets, respectively. For 6LiD, no significant asymmetry is observed in any variable. For NH3,
large negative asymmetries are observed in the region x > 0.03, which implies that both transversity
distributions and polarised two-hadron interference fragmentation functions do not vanish. For x < 0.03,
the asymmetries are compatible with zero. Over the measured range of the invariant mass Mhh and z, the
asymmetry is negative and shows no strong dependence on these variables.
When comparing the results on the NH3 target to the published HERMES results on a transversely po-
larised proton target [28], the larger kinematic region in x and Mhh is evident. However, both results can-
not be directly compared for several reasons: (1) The opposite sign is due to the fact that in the extraction
of the asymmetries the phase p in the angle fRS is used in the COMPASS analysis; (2) COMPASS calcu-
lates asymmetries in the photon-nucleon system, while HERMES published them in the lepton-nucleon
system; both agree reasonably well when including Dnn corrections for HERMES; (3) HERMES uses
identified p

+
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� pairs and COMPASS h+h� pairs; (4) COMPASS applies a minimum cut on z, removing
a possible dilution due to contributions from target fragmentation.
A naive interpretation of our data, based on Eq. (7) and on isospin symmetry and charge conjugation,
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FIG. 5. The unpolarized cross section d�0 at Q2 = 100 GeV2

as a function of z for the three bins 0.39  Mh  0.41, 0.79 
Mh  0.81, 0.99  Mh  1.01 GeV (from top to bottom).
Same notations as in the previous figure. The figure serves
only for illustration purposes. For the description of the ac-
tual fitting procedure, see details in the text, particularly
around Eqs. (15) and (16).

angles in the experimental acceptance, we will consider
their average values in each experimental bin. As such,
Eq. (7) corresponds to the experimental a

12R in Ref. [29].

It is convenient to define also the following quanti-

ties [25]
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Then, the Artru–Collins asymmetry can be simplified to
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where we understand that nq(Q2) = nq(Q2) (due to
Eqs. (11), (12)), n"

q(Q
2) = �n"

q(Q
2) (see the following

Eqs. (20), (21)), and, using again Eqs. (11) and (12), we
have defined
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Isospin symmetry and charge conjugation can be ap-
plied also to the polarized fragmentation into (⇡+⇡�)
pairs such that [11, 21, 25]

H^, u
1

= �H^, d
1

= �H
^, u
1

= H
^, d
1

, (20)

H^, s
1

= �H
^, s
1

= H^, c
1

= �H
^, c
1

= 0 . (21)

These relations should hold for all channels but for the
K0

S resonance. However, pion pairs produced in the K0

S
decay are in the relative s wave, and with our assump-
tions there are no p wave contributions to interfere with.
Therefore, we assume H^, q

1,sp ⇡ 0 for the K0

S channel, such
that Eqs. (20) and (21) are valid in general throughout
our analysis.
Using these symmetry relations, we can further manip-

ulate Eq. (18) and define

H(z, Mh;Q
2) = �h1 + cos2 ✓

2

i
hsin2 ✓

2

i
9

5

1

hsin ✓i hsin ✓i
⇥ D(z, Mh;Q

2)A(z, Mh;Q
2)

⌘ |R|
Mh

H^u
1,sp(z, Mh;Q

2)n"

u(Q
2) ,

(22)

where
Z

dz dMh H(z, Mh, Q2) = [n"

u(Q
2)]2 . (23)

Using symmetries for DiFFs:
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its fitting procedure, and we present the results of the
parametrization of the unpolarized DiFF D

1

.

A. The Monte Carlo simulation

We used a PYTHIA simulation [34] to study (⇡+⇡�)
pairs with momentum fraction z and invariant mass Mh

from e+e� annihilations at the Belle kinematics [35]. The
pair distribution should be described according to the
unpolarized cross section of Eq. (8) integrated in ✓

2

and
✓, since we assume the integration to be complete in the
Monte Carlo sample. The actual expression of the cross
section is

d�0

dz dMh dQ2

=
4⇡↵2

Q2

X

q

e2

q Dq
1

(z, Mh;Q
2) . (9)

Events are generated with no cuts in acceptance. The
data sample is based on a Monte Carlo integrated lumi-
nosity L

MC

= 647.26 pb�1 corresponding to 2.194 ⇥ 106

events. The total number of produced pion pairs is
n

tot

= 1.040 ⇥ 106, approximately one pair every two
events. We use these numbers to normalize D

1

, but
the results for the Artru–Collins asymmetry (and, conse-
quently, for H^

1

/D
1

) are independent of the normaliza-
tion.

The counts of pion pairs are collected in a bidimen-
sional 40 ⇥ 50 binning in (z, Mh). The invariant mass
is limited in the range 0.29  Mh  1.29 GeV, the
lower bound being given by the natural threshold 2m⇡

and the upper cut excluding scarcely populated or fre-
quently empty bins. Each pion pair is required to have a
fractional energy z � 0.2 in order to focus only on pions
coming from the fragmentation process. To avoid large
mass corrections, we impose the condition

�h ⌘ 2Mh

zQ
⌧ 1 , (10)

which we in practice implement as �h  1/2.
For the fragmentation process q ! (⇡+⇡�)X in the

range 0.29  Mh  1.29 GeV, the invariant mass distri-
bution has a rich structure. The most prominent chan-
nels can be cast in two main categories, three resonant
channels and a “continuum” (see the discussion around
Fig. 2 in Ref. [11]; see also Refs. [3–5, 38]):

• the production of (⇡+⇡�) pairs in relative p wave
via the decay of the ⇢ resonance; it is the cleanest
channel and is responsible for a peak in the invari-
ant mass distribution at Mh ⇠ 776 MeV,

• the production of (⇡+⇡�) pairs in relative p wave
via the decay of the ! resonance; it produces a
sharp peak at Mh ⇠ 783 MeV but smaller than the
previous one. However, the ! resonance has a large
branching ratio for the decay into (⇡+⇡�)⇡0 [39].
We include also this contribution after summing
over the unobserved ⇡0; it generates a a broad peak
roughly centered around Mh ⇠ 500 MeV,

• the production of (⇡+⇡�) pairs via the decay of the
K0

S resonance, which produces a very narrow peak
at Mh ⇠ 498 MeV,

• everything else included in a channel which for con-
venience we call “continuum” and we model as the
fragmentation into an “incoherent” pion pair.

The fragmentation via the ⌘ resonance also produces a
peak overlapping with the K0

S one (plus a smaller hump
at Mh ⇠ 350 MeV) but with less statistical weight.
Hence, we will neglect this channel and we will neglect
as well all other resonances which are not visible in the
PYTHIA output [11].

In summary, the behaviour of the fragmentation into
(⇡+⇡�) pairs with respect to their invariant mass will be
simulated in four ways: three channels corresponding to
the decay of the ⇢, !, and K0

S resonances, and a chan-
nel that includes everything else (continuum). Using the
Monte Carlo, we study each channel separately. For each
channel, the flavor sum in Eq. (9) is decomposed in the
contribution of q = u, d, s, and c.

B. Fitting the Monte Carlo simulation

In the first step, for each channel ch = cont, ⇢, !, K,
and for each flavor q = u, d, s, c, we parametrize
Dq

1,ch(z, Mh;Q2

0

) at the hadronic scale Q2

0

= 1 GeV2 tak-

ing inspiration from Refs. [11, 21, 25]. For (⇡+⇡�) pairs,
isospin symmetry and charge conjugation suggest that
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The best fit of the Monte Carlo output at the Belle scale
shows compatibility with both conditions (11) and (12)
for all channels but for the K0

S ! (⇡+⇡�) decay, where
the choice Dd
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1,K is required. In general, we
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The full analytic expression of Dq
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) can be
found in appendix A. Here, we illustrate the z and Mh de-
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1,⇢ as an example, since it displays enough
general features that are common to most of the other
channels. The function Du
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FIG. 5. The unpolarized cross section d�0 at Q2 = 100 GeV2

as a function of z for the three bins 0.39  Mh  0.41, 0.79 
Mh  0.81, 0.99  Mh  1.01 GeV (from top to bottom).
Same notations as in the previous figure. The figure serves
only for illustration purposes. For the description of the ac-
tual fitting procedure, see details in the text, particularly
around Eqs. (15) and (16).

angles in the experimental acceptance, we will consider
their average values in each experimental bin. As such,
Eq. (7) corresponds to the experimental a

12R in Ref. [29].

It is convenient to define also the following quanti-

ties [25]
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Then, the Artru–Collins asymmetry can be simplified to
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where we understand that nq(Q2) = nq(Q2) (due to
Eqs. (11), (12)), n"
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2) (see the following

Eqs. (20), (21)), and, using again Eqs. (11) and (12), we
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Isospin symmetry and charge conjugation can be ap-
plied also to the polarized fragmentation into (⇡+⇡�)
pairs such that [11, 21, 25]
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These relations should hold for all channels but for the
K0

S resonance. However, pion pairs produced in the K0

S
decay are in the relative s wave, and with our assump-
tions there are no p wave contributions to interfere with.
Therefore, we assume H^, q

1,sp ⇡ 0 for the K0

S channel, such
that Eqs. (20) and (21) are valid in general throughout
our analysis.
Using these symmetry relations, we can further manip-

ulate Eq. (18) and define
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where
Z

dz dMh H(z, Mh, Q2) = [n"

u(Q
2)]2 . (23)

Using symmetries for DiFFs:
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its fitting procedure, and we present the results of the
parametrization of the unpolarized DiFF D

1

.

A. The Monte Carlo simulation

We used a PYTHIA simulation [34] to study (⇡+⇡�)
pairs with momentum fraction z and invariant mass Mh

from e+e� annihilations at the Belle kinematics [35]. The
pair distribution should be described according to the
unpolarized cross section of Eq. (8) integrated in ✓

2

and
✓, since we assume the integration to be complete in the
Monte Carlo sample. The actual expression of the cross
section is

d�0

dz dMh dQ2

=
4⇡↵2

Q2

X

q

e2

q Dq
1

(z, Mh;Q
2) . (9)

Events are generated with no cuts in acceptance. The
data sample is based on a Monte Carlo integrated lumi-
nosity L

MC

= 647.26 pb�1 corresponding to 2.194 ⇥ 106

events. The total number of produced pion pairs is
n

tot

= 1.040 ⇥ 106, approximately one pair every two
events. We use these numbers to normalize D

1

, but
the results for the Artru–Collins asymmetry (and, conse-
quently, for H^

1

/D
1

) are independent of the normaliza-
tion.

The counts of pion pairs are collected in a bidimen-
sional 40 ⇥ 50 binning in (z, Mh). The invariant mass
is limited in the range 0.29  Mh  1.29 GeV, the
lower bound being given by the natural threshold 2m⇡

and the upper cut excluding scarcely populated or fre-
quently empty bins. Each pion pair is required to have a
fractional energy z � 0.2 in order to focus only on pions
coming from the fragmentation process. To avoid large
mass corrections, we impose the condition

�h ⌘ 2Mh

zQ
⌧ 1 , (10)

which we in practice implement as �h  1/2.
For the fragmentation process q ! (⇡+⇡�)X in the

range 0.29  Mh  1.29 GeV, the invariant mass distri-
bution has a rich structure. The most prominent chan-
nels can be cast in two main categories, three resonant
channels and a “continuum” (see the discussion around
Fig. 2 in Ref. [11]; see also Refs. [3–5, 38]):

• the production of (⇡+⇡�) pairs in relative p wave
via the decay of the ⇢ resonance; it is the cleanest
channel and is responsible for a peak in the invari-
ant mass distribution at Mh ⇠ 776 MeV,

• the production of (⇡+⇡�) pairs in relative p wave
via the decay of the ! resonance; it produces a
sharp peak at Mh ⇠ 783 MeV but smaller than the
previous one. However, the ! resonance has a large
branching ratio for the decay into (⇡+⇡�)⇡0 [39].
We include also this contribution after summing
over the unobserved ⇡0; it generates a a broad peak
roughly centered around Mh ⇠ 500 MeV,

• the production of (⇡+⇡�) pairs via the decay of the
K0

S resonance, which produces a very narrow peak
at Mh ⇠ 498 MeV,

• everything else included in a channel which for con-
venience we call “continuum” and we model as the
fragmentation into an “incoherent” pion pair.

The fragmentation via the ⌘ resonance also produces a
peak overlapping with the K0

S one (plus a smaller hump
at Mh ⇠ 350 MeV) but with less statistical weight.
Hence, we will neglect this channel and we will neglect
as well all other resonances which are not visible in the
PYTHIA output [11].

In summary, the behaviour of the fragmentation into
(⇡+⇡�) pairs with respect to their invariant mass will be
simulated in four ways: three channels corresponding to
the decay of the ⇢, !, and K0

S resonances, and a chan-
nel that includes everything else (continuum). Using the
Monte Carlo, we study each channel separately. For each
channel, the flavor sum in Eq. (9) is decomposed in the
contribution of q = u, d, s, and c.

B. Fitting the Monte Carlo simulation

In the first step, for each channel ch = cont, ⇢, !, K,
and for each flavor q = u, d, s, c, we parametrize
Dq

1,ch(z, Mh;Q2
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) at the hadronic scale Q2
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The best fit of the Monte Carlo output at the Belle scale
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✦  2 hemispheres
✦  azimuthal modulation between the 2 hemispheres

[Belle, Phys.Rev.Lett.107.072004] 
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✦  2 hemispheres
✦  azimuthal modulation between the 2 hemispheres

[Belle, Phys.Rev.Lett.107.072004] 

Two ways of analyzing the DiFFs

✦  1st analysis: direct analysis from experimental data                          [Bacchetta, A.C., Radici, PRL 107 (2011)]

✦  2nd analysis: analysis from fit of the data                             [A.C., Bacchetta, Radici, Bianconi, Phys.Rev. D85]
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integrated in mean values
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Fitting the Valence Transversities

Constraints from first principles

✦ Soffer bound

✦ h1(x=1)=0   ; the parton model predicts h1(x=0)=0 but too restrictive in QCD

�ASIDIS, and the error coming from the fit of H^
1 , i.e., �n"

u

. The extracted transversity
combinations, with the exact scale dependence for n

u

, n
d

, n
s

and n"
u

, are explicitly given in
Table 5.

Though, as we have just demonstrated, one of the biggest advantages of the dihadron
way of extracting transversity resides in it is unbiased by a functional form a priori, we are
aware that such a form is mandatory for practical purposes. The scarce data does not allow
an accurate statistical analysis, so the outcome of the fitting procedure presented hereafter
does not lead to substantial physical interpretations. In particular, we will show that several
functional forms, with dramatically different behavior at the moderate x region, lead to an
equally good goodness-of-fit criterion. It is in part due to that the transversities are defined
between x 2 [0, 1] 2, while the data range from x ⇠ 6⇥10�3 to 0.28. One has to be cautious
about the meaning of the functional form oustide the experimental range of data.

The main constraint we have on the functional form is the Soffer inequality [16],

2|hq

1(x, Q2)|  |f q

1 (x, Q2) + gq

1(x, Q2)| ⌘ 2 SBq(x, Q2) , (3.1)

which is true at all Q2 [17, 18]. An analogous relation holds for antiquark distributions. We
impose this upper (lower) bound by multiplying the functional form by the corresponding
Soffer bound at the starting scale of the parameterization. To be consistent, we here use the
MSTW08 set [15] for the unpolarized PDF, combined to the DSSV parameterization [19]
for the helicity parameterization, at the scale of Q2

0 = 1GeV2.
We have studied the dependence on the Soffer bound coming from different PDF sets

SHALL WE SET AN ADHOC ERROR COMING FROM THE PDF SET??
The functional form we have adopted is directly proportional to the Soffer bound, i.e.

TO BE UPDATED...
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To ensure that the valence transversities respect this limit, the multiplying function must
be defined between [�1, 1], like the hyperbolic tangent of Eq. (3.2). The power of overall
x in the argument of the hyperbolic tangent has been chosen according to the power of
the paremeterization of unpolarized PDFs. In fact, the Soffer bound is divergent at x = 0

but x SBq(x, Q2) is still integrable. The valence transversities should be integrable as well,
which we impose by a judicious choice of the power of the argument.

The evolution of the functional form (3.2) is implemented by the HOPPET code. The
fitting procedure consists then in minimizing the usual �2 function, defined as
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Table 5. The �2/d.o.f. is 1.13 for the combined proton and deuteron analysis. The best fit
parameters and their 1 � � error at the initial scale Q2

0 = 1GeV2 are given in Table 4.
2

The lower limit constraint can be relaxed so the functional form does only have to be zero at x = 1.
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QCD evolution with HOPPET code 

✦ of the Soffer bound:  LO evolution of f1(x) from MSTW08 & g1(x) from DSS  

✦ of the DiFF & h1:        LO as in previous papers
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QCD evolution with HOPPET code 

✦ of the Soffer bound:  LO evolution of f1(x) from MSTW08 & g1(x) from DSS  
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Though, as we have just demonstrated, one of the biggest advantages of the dihadron
way of extracting transversity resides in it is unbiased by a functional form a priori, we are
aware that such a form is mandatory for practical purposes. The scarce data does not allow
an accurate statistical analysis, so the outcome of the fitting procedure presented hereafter
does not lead to substantial physical interpretations. In particular, we will show that several
functional forms, with dramatically different behavior at the moderate x region, lead to an
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between x 2 [0, 1] 2, while the data range from x ⇠ 6⇥10�3 to 0.28. One has to be cautious
about the meaning of the functional form oustide the experimental range of data.

The main constraint we have on the functional form is the Soffer inequality [16],

2|hq

1(x, Q2)|  |f q

1 (x, Q2) + gq

1(x, Q2)| ⌘ 2 SBq(x, Q2) , (3.1)

which is true at all Q2 [17, 18]. An analogous relation holds for antiquark distributions. We
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Soffer bound at the starting scale of the parameterization. To be consistent, we here use the
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be defined between [�1, 1], like the hyperbolic tangent of Eq. (3.2). The power of overall
x in the argument of the hyperbolic tangent has been chosen according to the power of
the paremeterization of unpolarized PDFs. In fact, the Soffer bound is divergent at x = 0
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QCD evolution with HOPPET code 

✦ of the Soffer bound:  LO evolution of f1(x) from MSTW08 & g1(x) from DSS  

✦ of the DiFF & h1:        LO as in previous papers

Choice of Functional Form the CRUCIAL point for further uses

Constraints from first principles
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Though, as we have just demonstrated, one of the biggest advantages of the dihadron
way of extracting transversity resides in it is unbiased by a functional form a priori, we are
aware that such a form is mandatory for practical purposes. The scarce data does not allow
an accurate statistical analysis, so the outcome of the fitting procedure presented hereafter
does not lead to substantial physical interpretations. In particular, we will show that several
functional forms, with dramatically different behavior at the moderate x region, lead to an
equally good goodness-of-fit criterion. It is in part due to that the transversities are defined
between x 2 [0, 1] 2, while the data range from x ⇠ 6⇥10�3 to 0.28. One has to be cautious
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which is true at all Q2 [17, 18]. An analogous relation holds for antiquark distributions. We
impose this upper (lower) bound by multiplying the functional form by the corresponding
Soffer bound at the starting scale of the parameterization. To be consistent, we here use the
MSTW08 set [15] for the unpolarized PDF, combined to the DSSV parameterization [19]
for the helicity parameterization, at the scale of Q2

0 = 1GeV2.
We have studied the dependence on the Soffer bound coming from different PDF sets
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To ensure that the valence transversities respect this limit, the multiplying function must
be defined between [�1, 1], like the hyperbolic tangent of Eq. (3.2). The power of overall
x in the argument of the hyperbolic tangent has been chosen according to the power of
the paremeterization of unpolarized PDFs. In fact, the Soffer bound is divergent at x = 0

but x SBq(x, Q2) is still integrable. The valence transversities should be integrable as well,
which we impose by a judicious choice of the power of the argument.
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Though, as we have just demonstrated, one of the biggest advantages of the dihadron
way of extracting transversity resides in it is unbiased by a functional form a priori, we are
aware that such a form is mandatory for practical purposes. The scarce data does not allow
an accurate statistical analysis, so the outcome of the fitting procedure presented hereafter
does not lead to substantial physical interpretations. In particular, we will show that several
functional forms, with dramatically different behavior at the moderate x region, lead to an
equally good goodness-of-fit criterion. It is in part due to that the transversities are defined
between x 2 [0, 1] 2, while the data range from x ⇠ 6⇥10�3 to 0.28. One has to be cautious
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which is true at all Q2 [17, 18]. An analogous relation holds for antiquark distributions. We
impose this upper (lower) bound by multiplying the functional form by the corresponding
Soffer bound at the starting scale of the parameterization. To be consistent, we here use the
MSTW08 set [15] for the unpolarized PDF, combined to the DSSV parameterization [19]
for the helicity parameterization, at the scale of Q2

0 = 1GeV2.
We have studied the dependence on the Soffer bound coming from different PDF sets

SHALL WE SET AN ADHOC ERROR COMING FROM THE PDF SET??
The functional form we have adopted is directly proportional to the Soffer bound, i.e.

TO BE UPDATED...

x hqV
1 (x) = tanh

⇣
x1/4 (A

q

+ B
q

x + C
q

x2)
⌘ �

x SBq(x) + x SBq̄(x)
�
/2 . (3.2)

To ensure that the valence transversities respect this limit, the multiplying function must
be defined between [�1, 1], like the hyperbolic tangent of Eq. (3.2). The power of overall
x in the argument of the hyperbolic tangent has been chosen according to the power of
the paremeterization of unpolarized PDFs. In fact, the Soffer bound is divergent at x = 0

but x SBq(x, Q2) is still integrable. The valence transversities should be integrable as well,
which we impose by a judicious choice of the power of the argument.

The evolution of the functional form (3.2) is implemented by the HOPPET code. The
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aware that such a form is mandatory for practical purposes. The scarce data does not allow
an accurate statistical analysis, so the outcome of the fitting procedure presented hereafter
does not lead to substantial physical interpretations. In particular, we will show that several
functional forms, with dramatically different behavior at the moderate x region, lead to an
equally good goodness-of-fit criterion. It is in part due to that the transversities are defined
between x 2 [0, 1] 2, while the data range from x ⇠ 6⇥10�3 to 0.28. One has to be cautious
about the meaning of the functional form oustide the experimental range of data.

The main constraint we have on the functional form is the Soffer inequality [16],

2|hq

1(x, Q2)|  |f q

1 (x, Q2) + gq

1(x, Q2)| ⌘ 2 SBq(x, Q2) , (3.1)

which is true at all Q2 [17, 18]. An analogous relation holds for antiquark distributions. We
impose this upper (lower) bound by multiplying the functional form by the corresponding
Soffer bound at the starting scale of the parameterization. To be consistent, we here use the
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way of extracting transversity resides in it is unbiased by a functional form a priori, we are
aware that such a form is mandatory for practical purposes. The scarce data does not allow
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Soffer bound at the starting scale of the parameterization. To be consistent, we here use the
MSTW08 set [15] for the unpolarized PDF, combined to the DSSV parameterization [19]
for the helicity parameterization, at the scale of Q2

0 = 1GeV2.
We have studied the dependence on the Soffer bound coming from different PDF sets

SHALL WE SET AN ADHOC ERROR COMING FROM THE PDF SET??
The functional form we have adopted is directly proportional to the Soffer bound, i.e.

TO BE UPDATED...

x hqV
1 (x) = tanh

⇣
x1/4 (A

q

+ B
q

x + C
q

x2)
⌘ �

x SBq(x) + x SBq̄(x)
�
/2 . (3.2)

To ensure that the valence transversities respect this limit, the multiplying function must
be defined between [�1, 1], like the hyperbolic tangent of Eq. (3.2). The power of overall
x in the argument of the hyperbolic tangent has been chosen according to the power of
the paremeterization of unpolarized PDFs. In fact, the Soffer bound is divergent at x = 0

but x SBq(x, Q2) is still integrable. The valence transversities should be integrable as well,
which we impose by a judicious choice of the power of the argument.

The evolution of the functional form (3.2) is implemented by the HOPPET code. The
fitting procedure consists then in minimizing the usual �2 function, defined as

�2 =
X

Nd

⇣
x

d

h
P/D

1,data

(x
d

, Q2
d

) � x
d

h
P/D

1,theo

(x
d

, Q2
d

)
⌘2

⇣
�h

P/D

1,data

(x
d

, Q2
d

)
⌘2 (3.3)

with ��2 = 1. The sum over N
d

means that we sum over the data points h
P/D

1,data

(x
d

, Q2
d

) of
Table 5. The �2/d.o.f. is 1.13 for the combined proton and deuteron analysis. The best fit
parameters and their 1 � � error at the initial scale Q2

0 = 1GeV2 are given in Table 4.
2

The lower limit constraint can be relaxed so the functional form does only have to be zero at x = 1.
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2
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Our Rigid Functional Form   1st order polynomial
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Comparison with extraction
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✦ the error band is now made by  68% of the n replica point by point
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The Error Analysis:     the Monte Carlo approach
                                                       2nd order polynomial

Best fit central curve @2.4 GeV2

and standard 1σ error band
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Best fit central curve @2.4 GeV2

and standard 1σ error band

1σ error band from replicas @2.4 GeV2

The Error Analysis:     the Monte Carlo approach
                                                         1st order polynomial
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Can we find “unforeseen” replica?



Monte Carlo Approach: 
                                                        some illustrations

Can we find “unforeseen” replica?

Χ2/dof

1.56557
1.42199
1.79911
2.07397
1.75523

Yes, here at 1GeV2



Tensor Charge                       where we have data 

 0.00  0.10  0.20  0.30  0.40  0.50  0.60  0.70

Truncated tensor charge u at 1GeV2

-1.00 -0.80 -0.60 -0.40 -0.20  0.00  0.20

Truncated tensor charge d at 1GeV2

�q =

Z 0.28

6.4⇥10�3

dxh

q
1(x)

1-flexible
2-hybrid
3-rigid

1

1

2

3

2

3



Tensor Charge                       where we have data 

 0.00  0.10  0.20  0.30  0.40  0.50  0.60  0.70

Truncated tensor charge u at 1GeV2

-1.00 -0.80 -0.60 -0.40 -0.20  0.00  0.20

Truncated tensor charge d at 1GeV2

�q =

Z 0.28

6.4⇥10�3

dxh

q
1(x)

1-flexible
2-hybrid
3-rigid

1

1

2

3

2

3

 MC flexible



Tensor Charge                       full range 10-10- 1 

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0
x

Tensor charge u at 1GeV2

-1.0 -0.8 -0.6 -0.4 -0.2  0.0  0.2
x

Tensor charge d at 1GeV2

1-flexible
2-hybrid
3-rigid

1

1

2

3

2

3



Tensor Charge                       full range 10-10- 1 

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0
x

Tensor charge u at 1GeV2

-1.0 -0.8 -0.6 -0.4 -0.2  0.0  0.2
x

Tensor charge d at 1GeV2

1-flexible
2-hybrid
3-rigid

1

1

2

3

2

3

 MC flexible



Torino result @ different scale (0.8 GeV2)
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• Transversity via DiFF

• Flavor decomposition thanks to the available proton and deuteron data                                      

• Fits for  h1u & h1d                                                             drafting... [Bacchetta, Courtoy, Radici]

• Functional Form crucial to standard fitting procedure

➡ Highly unconstrained outside data range

➡ Important! e.g., for tensor charge 

➡ We NEED more data at higher x-values → JLab@12GeV

• Monte Carlo-like error analysis

➡  Compatible with standard analysis

➡ Bigger errorbands

Conclusion 
                 Extraction of valence transversities from collinear framework



• Dihadron Fragmentation Functions

• Fits in (z, Mh, Q2) with more accurate Q2 evolution             [Bacchetta, Bianconi, Courtoy, Radici]

• Data for Unpolarized DiFF                                               Talk by N. Makke

• Transversity via DiFF

• Flavor decomposition                                      we need  Kaon data from Belle as well

• Fits for  h1u & h1d                                         we need data for x>0.3 !

Outlook



Back-up slides
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Figure 2: The top panels show Asin(φR⊥+φS) sin θ
U⊥ versus Mππ, x, and z. The bottom panels show

the average values of the variables that were integrated over. For the dependence on x and z,
Mππ was constrained to the range 0.5 GeV < Mππ < 1.0 GeV, where the signal is expected to be
largest. The error bars show the statistical uncertainty. A scale uncertainty of 8.1% arises from
the uncertainty in the target polarization. Other contributions to the systematic uncertainty are
summed in quadrature and represented by the asymmetric error band.

The modulation amplitudes extracted are not influenced by the addition in the fit of

terms of the form sinφS (which appears at subleading twist in the polarized cross section

σUT ), or of the form cosφR⊥ sin θ (which appears at subleading twist in the unpolarized

cross section σUU ). These angular combinations exhaust the possibilities up to subleading

twist. In order to eliminate effects of the natural polarization of the Hera lepton beam,

data with both beam-helicity states were combined. The resulting net beam polarization is

−0.020 ± 0.001. The influence of this small but nonzero net polarization on the amplitude

extracted was shown to be negligible by analyzing separately the data of the two beam-

helicity states. There is also no influence from the addition to the fit of a constant term,

the latter being consistent with zero. Identical results were obtained using an unbinned

maximum-likelihood fit.

Tracking corrections that are applied for the deflections of the scattered particles caused

by the vertical 0.3 T target holding field have also a negligible effect on the extracted

asymmetries.

The fully differential asymmetry depends on nine kinematic variables: x, y, z, φR⊥,

φS , and θ, Mππ, and Ph⊥ ( d2Ph⊥ = |Ph⊥|d|Ph⊥|dφh). Due to the limited statistical

precision, it is not possible to measure the asymmetry AU⊥ fully differential in all relevant

variables. Combined with the fact that the Hermes spectrometer does not have a full 4π

acceptance, this implies that the measured number of events is always convolved with the
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twist. In order to eliminate effects of the natural polarization of the Hera lepton beam,

data with both beam-helicity states were combined. The resulting net beam polarization is

−0.020 ± 0.001. The influence of this small but nonzero net polarization on the amplitude

extracted was shown to be negligible by analyzing separately the data of the two beam-

helicity states. There is also no influence from the addition to the fit of a constant term,

the latter being consistent with zero. Identical results were obtained using an unbinned

maximum-likelihood fit.

Tracking corrections that are applied for the deflections of the scattered particles caused

by the vertical 0.3 T target holding field have also a negligible effect on the extracted

asymmetries.

The fully differential asymmetry depends on nine kinematic variables: x, y, z, φR⊥,

φS , and θ, Mππ, and Ph⊥ ( d2Ph⊥ = |Ph⊥|d|Ph⊥|dφh). Due to the limited statistical

precision, it is not possible to measure the asymmetry AU⊥ fully differential in all relevant

variables. Combined with the fact that the Hermes spectrometer does not have a full 4π
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terms of the form sinφS (which appears at subleading twist in the polarized cross section

σUT ), or of the form cosφR⊥ sin θ (which appears at subleading twist in the unpolarized

cross section σUU ). These angular combinations exhaust the possibilities up to subleading

twist. In order to eliminate effects of the natural polarization of the Hera lepton beam,

data with both beam-helicity states were combined. The resulting net beam polarization is

−0.020 ± 0.001. The influence of this small but nonzero net polarization on the amplitude

extracted was shown to be negligible by analyzing separately the data of the two beam-

helicity states. There is also no influence from the addition to the fit of a constant term,

the latter being consistent with zero. Identical results were obtained using an unbinned

maximum-likelihood fit.

Tracking corrections that are applied for the deflections of the scattered particles caused

by the vertical 0.3 T target holding field have also a negligible effect on the extracted

asymmetries.

The fully differential asymmetry depends on nine kinematic variables: x, y, z, φR⊥,

φS , and θ, Mππ, and Ph⊥ ( d2Ph⊥ = |Ph⊥|d|Ph⊥|dφh). Due to the limited statistical

precision, it is not possible to measure the asymmetry AU⊥ fully differential in all relevant

variables. Combined with the fact that the Hermes spectrometer does not have a full 4π

acceptance, this implies that the measured number of events is always convolved with the
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twist. In order to eliminate effects of the natural polarization of the Hera lepton beam,

data with both beam-helicity states were combined. The resulting net beam polarization is

−0.020 ± 0.001. The influence of this small but nonzero net polarization on the amplitude

extracted was shown to be negligible by analyzing separately the data of the two beam-

helicity states. There is also no influence from the addition to the fit of a constant term,

the latter being consistent with zero. Identical results were obtained using an unbinned

maximum-likelihood fit.

Tracking corrections that are applied for the deflections of the scattered particles caused

by the vertical 0.3 T target holding field have also a negligible effect on the extracted
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The fully differential asymmetry depends on nine kinematic variables: x, y, z, φR⊥,
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FIG. 6. The ratio R of Eq. (28), summed over all channels,
at the hadronic scale Q2

0 = 1 GeV2. Upper panel for R as
a function of Mh for z = 0.25 (solid line), z = 0.45 (dashed
line), and z = 0.65 (dot-dashed line). Lower panel for R as a
function of z for Mh = 0.4 GeV (solid line), Mh = 0.8 GeV
(dashed line), and Mh = 1.0 GeV (dot-dashed line). For the
calculation of the uncertainty bands, see details in the text.

B. Results for H^
1

In Fig. 6, we show the ratio

R(z, Mh) =
|R|
Mh

H^u
1,sp(z, Mh;Q2

0

)

Du
1

(z, Mh;Q2

0

)
, (28)

summed over all channel, at the hadronic scale Q2

0

= 1
GeV2. The upper panel displays the ratio as a function
of Mh at three values of z: 0.25 (solid line), 0.45 (dashed
line), and 0.65 (dot-dashed line). The lower panel dis-
plays it as a function of z at Mh = 0.4 GeV (solid line),
0.8 GeV (dashed line), and 1 GeV (dot-dashed line).
The uncertainty bands correspond to the statistical er-
rors of the fitting parameters (see Tab. III). They are
calculated through the standard procedure of error prop-
agation using the covariance matrix provided by MINUIT
(with ��2 = 1). In the upper panel, the solid line stops
at Mh = 0.9 GeV because there are no experimental data

at higher invariant masses for z = 0.25. The fit is less
constrained in that region and the error band becomes
larger. The same e↵ect is visible in the lower panel for the
highest displayed Mh (dot-dashed line) at low z. Note
that in the upper panel all three curves display a dip
at Mh ⇠ 0.5 GeV. It corresponds to the peak for the
K0

S ! ⇡+⇡� decay, which is present in the denominator
of R (via Du

1

) but not in the numerator (we recall that
we assume H^u

1,sp ⇡ 0 for this channel, see the discussion
after Eqs. (20) and (21)).
In Fig. 7, we show the Artru–Collins asymmetry at

Q2 = 100 GeV2. Each panel corresponds to the indicated
experimental z bin, ranging from [0.2, 0.27] to [0.7, 0.8].
In each panel, the points with error bars indicate the
Belle measurement for the experimental Mh bins [41].
For each bin (zi, Mh j), the solid line represents the top
side of the histogram for the fitting asymmetry obtained
by inverting Eq. (22), i.e.

Ath

ij = � hsin2 ✓
2

i
h1 + cos2 ✓

2

i hsin ✓i hsin ✓i 5
9

Hth

ij

Dij
, (29)

where Dij is defined in Eq. (26), Hth

ij is defined in the
discussion about Eq. (27), and the average values of the
angles in the considered bin are taken from Ref. [41].
The shaded areas are the statistical errors of Ath

ij , de-
duced from the parameter errors in Tab. III through the
standard formula for error propagation. Note that the
statistical uncertainty of the fit is very large for the high-
est Mh bin.

V. CONCLUSIONS AND OUTLOOKS

In this paper, we have parametrized for the first time
the full dependence of the dihadron fragmentation func-
tions (DiFFs) that describe the nonperturbative frag-
mentation of a hard parton into two hadrons inside the
same jet, plus other unobserved fragments. The depen-
dence of DiFFs on the invariant mass and on the energy
fraction carried by a (⇡+⇡�) pair produced in e+e� anni-
hilations, is extracted by fitting the recent Belle data [29].
The analytic formulae for both unpolarized and po-

larized DiFFs at a starting hadronic scale are inspired
by previous model calculations of DiFFs [11, 21, 32].
Then, they are evolved at leading order using the HOPPET
code [33], suitably extended to include chiral-odd split-
ting functions that can describe scaling violations of
chiral-odd polarized DiFFs.
In the absence of published data for the unpolarized

cross section, we extract the unpolarized DiFF (appear-
ing in the denominator of the asymmetry) by fitting the
simulation produced by the PYTHIA event generator [34]
at Belle kinematics, since this code is known to give a
good description of the e+e� total cross section [35].
Given the rich structure of the invariant mass distribu-

tion in the selected range [2m⇡, 1.3] GeV, we have con-
sidered three di↵erent channels for producing a (⇡+⇡�)
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“Deep Inelastic Scattering off Polarized Targets: Theory Meets Experiment”

Abstract

I review the ways that have been proposed to measure the quark transversity
distribution in the nucleon. I then explain a proposal, developed by Xuemin Jin,
Jian Tang and myself, to measure transversity through the final state interaction
between two mesons (ππ, KK, or πK) produced in the current fragmentation
region in deep inelastic scattering on a transversely polarized nucleon.

1 Introduction

Three parton distributions characterize the quarks in the nucleon. Two are now quite
well known: the momentum distribution, q(x, Q2), has been studied for decades [1];
the helicity distribution, ∆q(x, Q2), has been measured accurately only recently.[2]
The discovery that the integrated quark helicity accounts for little of the nucleon’s
total spin initially shocked students of QCD and ignited a renaissance in QCD spin
physics.

The third distribution has quite a different history. It escaped notice until 1979
when Ralston and Soper found it in their study of Drell-Yan spin asymmetries.[3]
Its place along with q and ∆q in the complete description of the nucleon spin was
not appreciated until after measurements of ∆q had spurred interest in QCD spin
physics.[4, 5, 6] It is known generally as the “transversity distribution”, denoted
δq(x, Q2).1 δq measures the distribution of quark transverse spin in a nucleon po-
larized transverse to its (infinite) momentum.

1Although the name transversity is fairly universal, the notation is not. In addition to δq, the
notation ∆T q due to Artru and Mekhfi[4] is common, as is the designation δq ↔ h1 in analogy to
∆q ↔ g1.
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✦ Semi-Inclusive DIS :
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Two-Particle Fragmentation → h1 H1<
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http://inspirebeta.net/author/Jin%2C%20Xue-min?recid=448337&ln=en
http://inspirebeta.net/author/Jin%2C%20Xue-min?recid=448337&ln=en
http://inspirebeta.net/author/Tang%2C%20Jian?recid=448337&ln=en
http://inspirebeta.net/author/Tang%2C%20Jian?recid=448337&ln=en
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=MIT,%20LNS
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=MIT,%20LNS


Transversity : flavor decomposition

COMPASS 
Deuteron 2002-2004
Proton 2007

Band: Torino 2009 transversity
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Off the record: COMPASS data on Proton 2010   
	 	 	 	 	 	 	 	 	 	 	 	 2nd order polynomial
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Comparison with extraction
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