

Measurement of Collins Asymmetries in inclusive production of pion pairs in e⁺e⁻ interaction at BaBar

Isabella Garzia On behalf of the BaBar Collaboration INFN-Sezione di Ferrara University of Ferrara

3rd Workshop on the QCD Structure of the Nucleon October 22-26 2012 BILBAO, SPAIN

OUTLINE

INTRODUCTION

- Theoretical framework
 - Collins effect in di-hadron correlations
 - Reference frames
- PEP-II and the BaBar detector at SLAC

ANALYSIS OVERVIEW

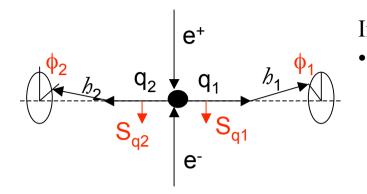
- Analysis method
- Extraction of the asymmetry for light quarks
- Asymmetry corrections and studies of systematic uncertainty

RESULTS

- Asymmetries vs. fractional energies, pion transverse momentum, and analysis axis polar angle
- Comparison with Belle measurements

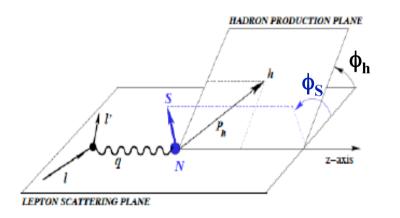
CONCLUSIONS

Collins Fragmentation Function


Fragmentation Functions (FFs) are dimensionless functions that describe the final state particles in hard processes. For spinless hadrons production (π or K) in e⁺e⁻ interaction, the process is described by two FFs:

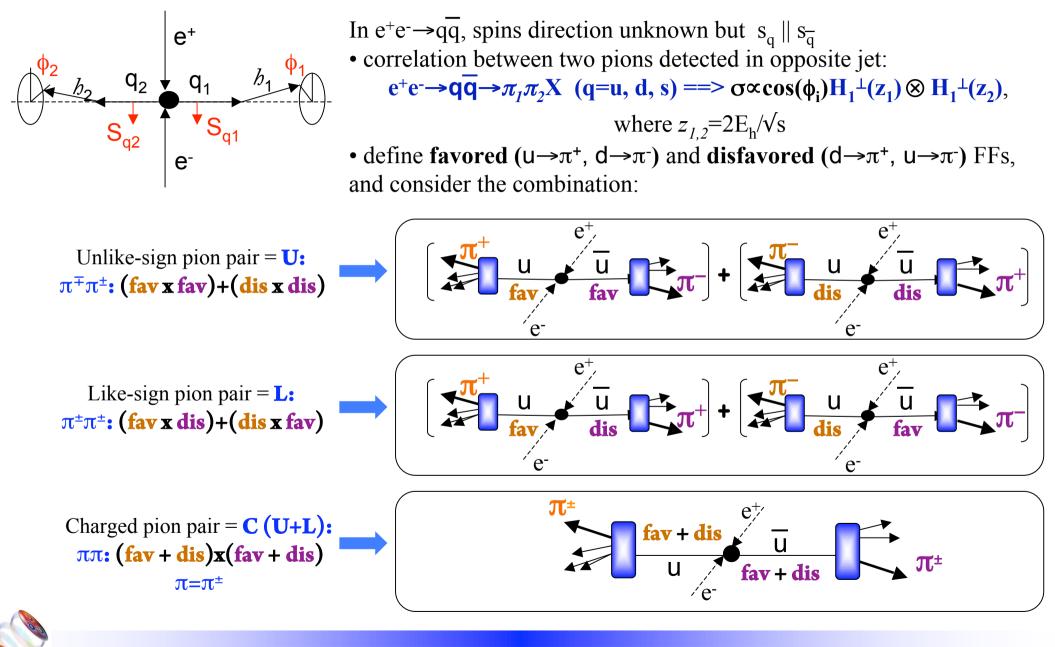
• \mathbf{H}_1^{\perp} is the **polarized** fragmentation function or **Collins FF** \rightarrow it describes the fragmentation of a transversely polarized quark into a spinless (or unpolarized) hadron *h*;

- Nucl.Phys. **B396**, 161 (1993);
- **Chiral-odd** function ==> it is the ideal partner to access chiral-odd parton distribution functions in Semi Inclusive Deep Inelastic Scattering (SIDIS)


 \Rightarrow The second term originates from a **spin-orbit correlation** in the fragmentation process \rightarrow asymmetry in the angular distribution of final state particles (**Collins effect**)

e⁺e⁻ annihilation: Collins effect in di-hadron correlation

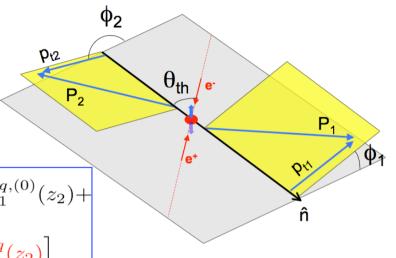
In e⁺e⁻ \rightarrow qq, spins direction unknown but s_q || s_q • correlation between two pions detected in opposite jet: e⁺e⁻ \rightarrow qq $\rightarrow \pi_1 \pi_2 X$ (q=u, d, s) ==> $\sigma \propto \cos(\phi_i) H_1^{\perp}(z_1) \otimes H_1^{\perp}(z_2)$, where $z_{1,2}=2E_h/\sqrt{s}$

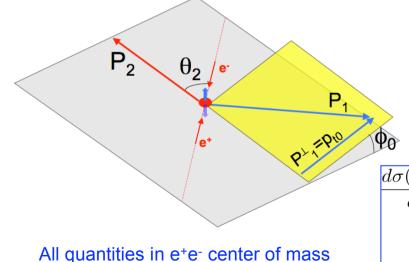

Comparison with SIDIS experiment:

- Unpolarized lepton beam (l) off transversely polarized target (N)
 - spin direction knows (S)
- $\ell N \rightarrow \ell' \pi X \Longrightarrow \sigma \propto \sin(\phi_h + \phi_s) h_1(x_B) \otimes H_1^{\perp}(z_1)$
 - Two chiral-odd functions
 - Flavor tagging
 - Collins effect gives rise to azimuthal Single Spin Asymmetry

e⁺e⁻ annihilation: Collins effect in di-hadron correlation

Analysis Reference Rrame (RF)


Two reference frames in literature: Nucl. Phys. B 806, 23 (2009), PRD 78, 032011 (2008)


All quantities in e⁺e⁻ center of mass

RF12 or Thrust RF

 θ_{th} : angle between the e⁺e⁻ axis and the thrust axis; $\phi_{1,2}$: azimuthal angles between $p_{t1(t2)}$ and the scattering plane:

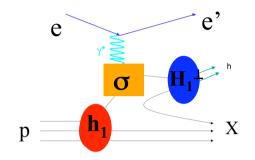
 $\frac{d\sigma(e^+e^- \to h_1h_2X)}{d\Omega dz_1 dz_2 d\phi_1 d\phi_2} = \sum_{q,\bar{q}} \frac{3\alpha^2}{Q^2} \frac{e_q^2}{4} z_1^2 z_2^2 \left[(1 + \cos^2\theta) D_1^{q,(0)}(z_1) \bar{D}_1^{q,(0)}(z_2) + sin^2(\theta) \cos(\phi_1 + \phi_2) H_1^{\perp,(1),q}(z_1) \bar{H}_1^{\perp,(1),q}(z_2) \right]$

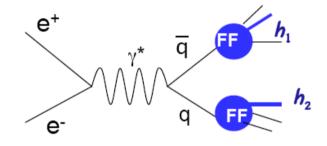
)CD-N'12

RF0 or Second hadron momentum **RF**

 θ_2 : angle between the e⁺e⁻ axis and P_{h2} ;

 ϕ_0 : azimuthal angle between the plane spanned by P_{h2} and the e⁺e⁻ axis, and the direction of P_{h1} perpendicular to P_{h2} :


$$\frac{d\sigma(e^+e^- \to h_1h_2X)}{d\Omega dz_1 dz_2 d^2 \vec{q}_T} = \frac{3\alpha^2}{Q^2} z_1^2 z_2^2 \left\{ A(y) \mathcal{F}[D_1 \bar{D}_2] + B(y) \cos(2\phi_0) \mathcal{F}\left[(2\hat{h} \cdot \vec{k}_T \hat{h} \cdot \vec{p}_T - \vec{k}_T \cdot \vec{p}_T) \frac{H_1^{\perp} \bar{H}_2^{\perp}}{M_1 M_2} \right] \right\}$$


Extraction of Collins FF from data

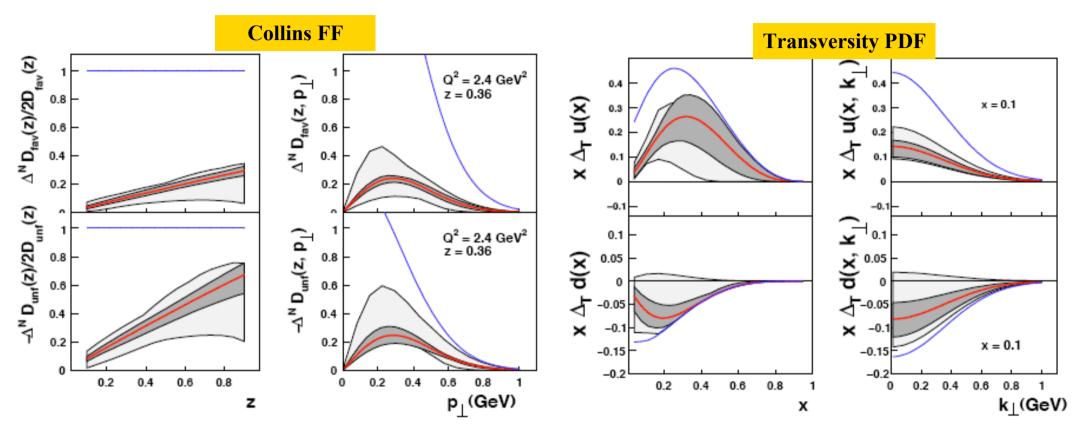
First observation of non-zero Collins effects from SIDIS (HERMES and COMPASS Collaboration):

HERMES: PRL **94**, 012002 (2005) COMPASS: NP **B765**, 31 (2007)

 $\mathsf{A}_{\mathsf{T}} \propto \mathbf{h}_{\mathsf{1}}(\boldsymbol{x}_{\mathcal{B}}) \otimes \mathsf{H}_{\mathsf{1}}^{\perp}(\boldsymbol{z})$

B-Factories e⁺e⁻ → <u>direct evidence of non-zero Collins FF</u>

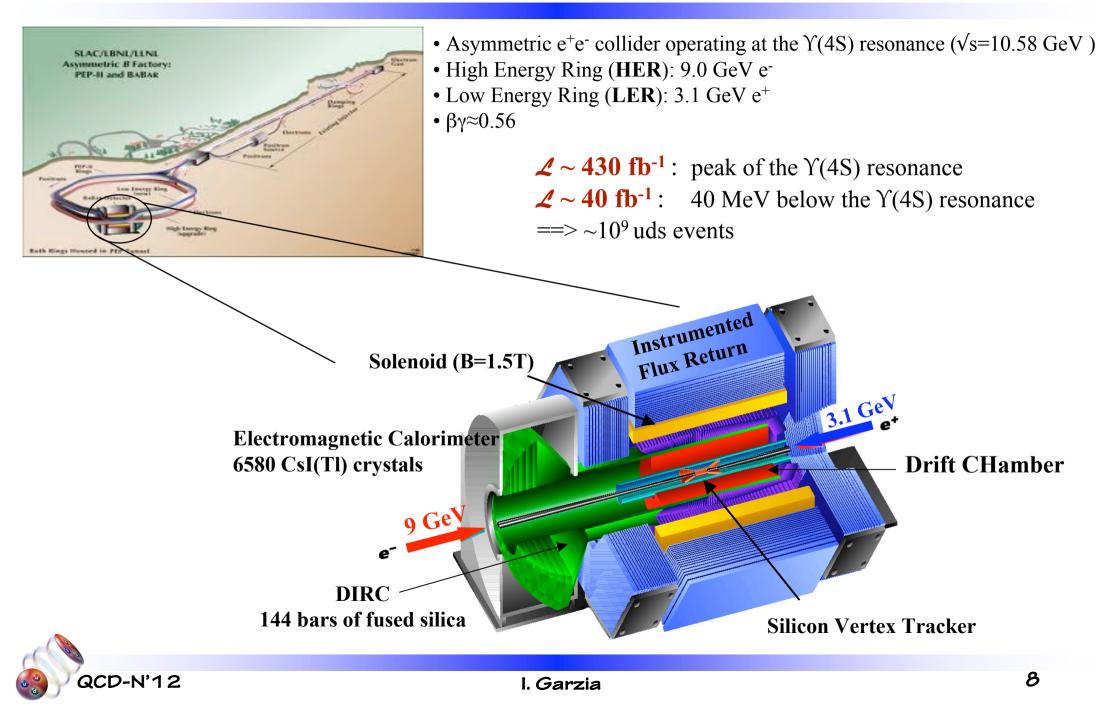
• BELLE: PRL 96, 232002(2006), PRD 78, 032011(2008)


• BaBar preliminary: arXiv:1201.4678 (procceding for Transversity-2011 workshop)

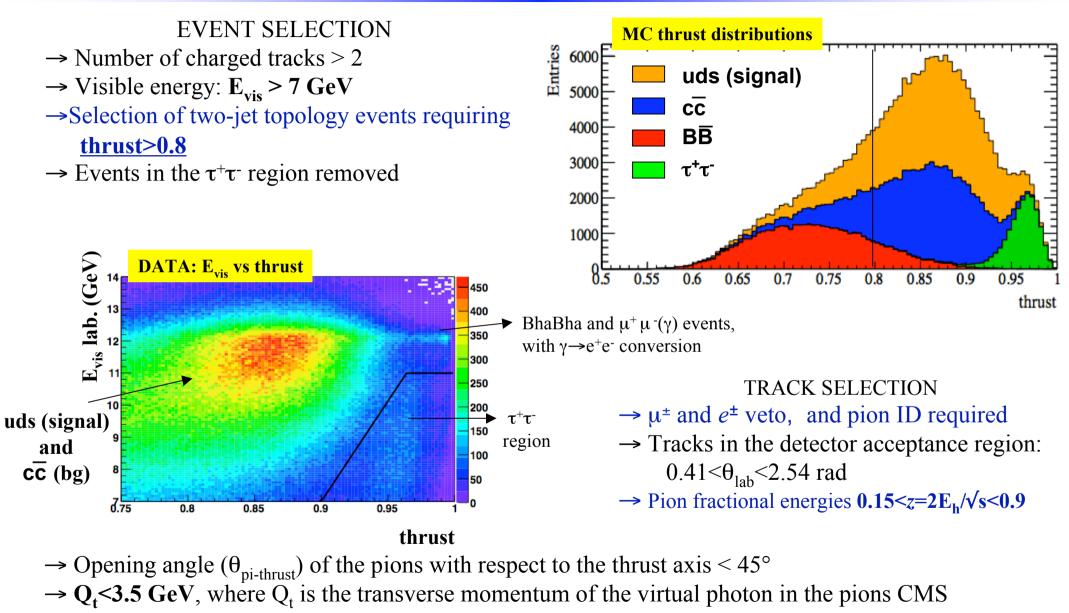
A \propto **H**₁[⊥](**z**₁) \otimes **H**₁[⊥](**z**₂) where $z_{1,2}=2E_h/\sqrt{s}$

<u>GLOBAL ANALYSIS</u>: SIDIS + e^+e^- (HERMES, COMPASS, BELLE) ==> simultaneous determination of \mathbf{H}_1^{\perp} and the transversity parton distribution function h_1 [PRD 75, 054032 (2008)].

Extraction of Collins FF from data

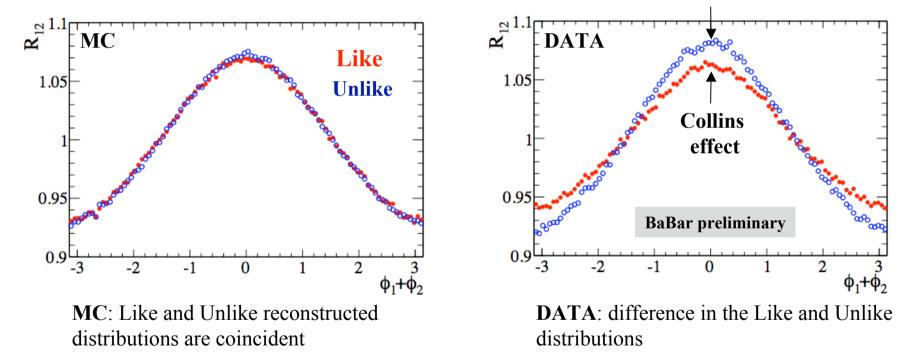

Anselmino et al., Phys. Rev. D 75, 054032 (2006) Nucl.Phys.Proc.Suppl. 191, 98 (2009)

Improvements from BaBar studies:


- Increase in the number of pion fractional energies intervals
- Collins asymmetry behavior vs. pion transverse momenta

PEP-II and the BaBar detector at SLAC

Event and track selection


Raw Asymmetries

- Collins asymmetry
 - fit to the normalized azimuthal distribution: R

$$R_{\alpha} = \frac{N(\phi_{\alpha})}{\langle N_{\alpha} \rangle} = a + \mathbf{b} \cdot \cos(\phi_{\alpha}) \ (\alpha = 12 \text{ or } 0)$$

NT()

Unpolarized distribution <N_α> is flat
Collins FF contained in the cosine moment *b*


- The MC generator (JETSET) does not include the Collins effects
 - observed modulation in MC sample produced by detector acceptances

Double ratio methods

==> Acceptances effects can be removed performing the ratio of Unlike/Like sign pion pairs (or Unlike/Charged)

- small deviation from zero still present in MC sample ==> systematic errors

Asymmetry corrections and systematic effects

We study the Collins asymmetry in

- RF12 (thrust RF): $6x6 z_{1,2}$ bins and $4x4 p_{t1,t2}$ bins
- RF0 (second hadron RF): $6x6 z_{1,2}$ bins and $4 p_{t0}$ bins (with $p_{t1,t2,t0}$ defined in slide 6)

The asymmetry measurement is affected by a number of systematic effects ==> we correct the asymmetries and assign a systematic error independently for each z and p_t bin

The main contributions to systematic effects are:

• Asymmetry dilution due to the thrust axis approximation. The corrections in the RF12 frame range between:

 \Rightarrow 1.3-2.3 as a function of *z*

 \Rightarrow 1.3-3 as a function of p_t

 \Rightarrow No correction needed in the RF0 frame

The statistical error of the correction is taken as systematic errors

•Asymmetries measured in the *uds* Monte Carlo

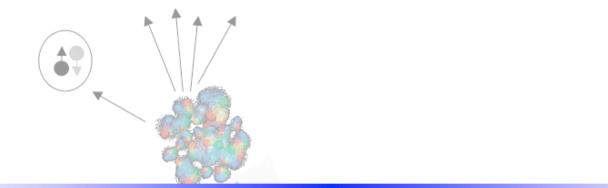
 \Rightarrow We subtract the small asymmetry observed in the MC sample

 \Rightarrow We vary the track selection criteria in order to evaluate the systematic error

Extraction of the uds asymmetry

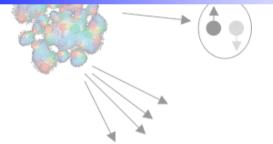
$$A_{\alpha}^{meas} = \begin{pmatrix} 1 - \sum_{i} F_{i} \end{pmatrix} \cdot \underbrace{A_{\alpha}}_{r} + \sum_{i} F_{i} \cdot A_{\alpha}^{i}$$
Fraction of pion pairs due to the ith Asymmetry measured in the background process background process

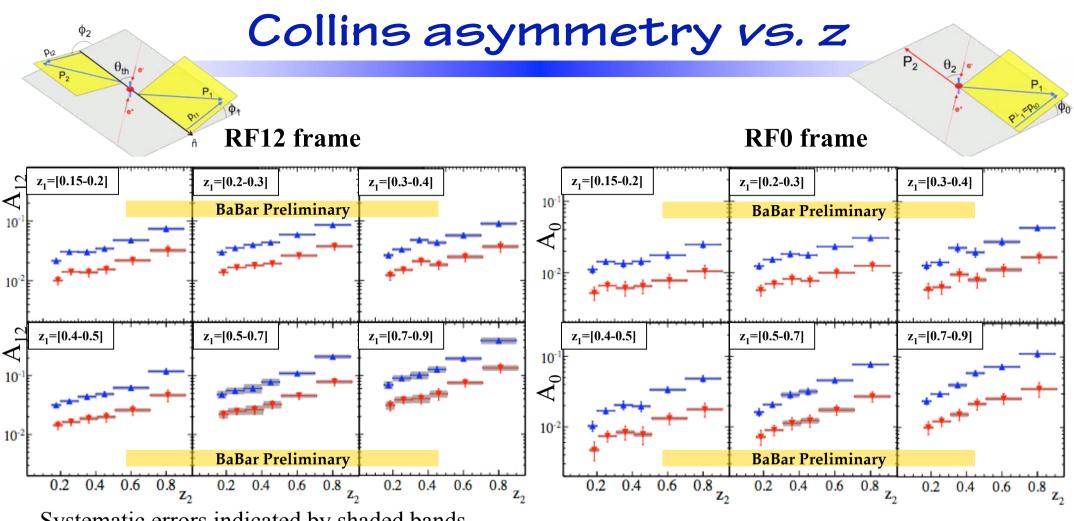
⇒ $B\overline{B}$ background: small $F_{B\overline{B}} \Rightarrow A_{bottom} = 0$ ⇒ $\tau^+\tau^-$ background: $F_{\tau+\tau^-}$ is small at lower fractional energies, and A_{τ} consistent with zero ⇒ Charm background contribution is about 30% on average


• Both fragmentation processes and weak decays can introduce azimuthal asymmetries ==> we used

a **D*±-enhanced control sample** to estimate its effect on a **bin-by-bin basis**

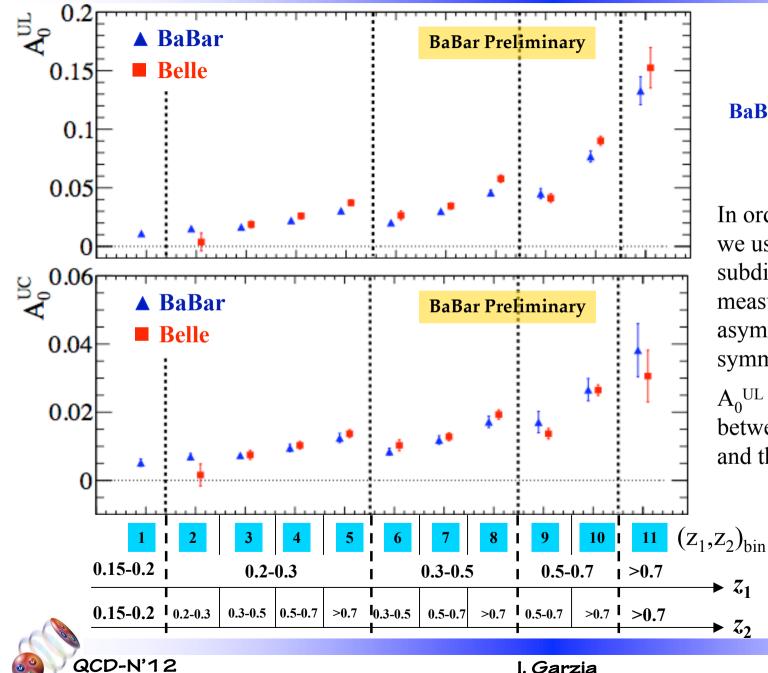
$$A_{\alpha}^{meas} = (1 - F_c - F_B - F_{\tau}) \cdot \underline{A_{\alpha}} + F_c \cdot A_{\alpha}^{ch}$$
$$A_{\alpha}^{D^*} = f_c \cdot A_{\alpha}^{ch} + (1 - f_c - f_b) \cdot \underline{A_{\alpha}},$$


A significant source of systematic error can arise from the fraction F, estimated using MC samples. \rightarrow We assign the bin-by-bin discrepancies between MC and data as systematic uncertainties


e-

RESULTS

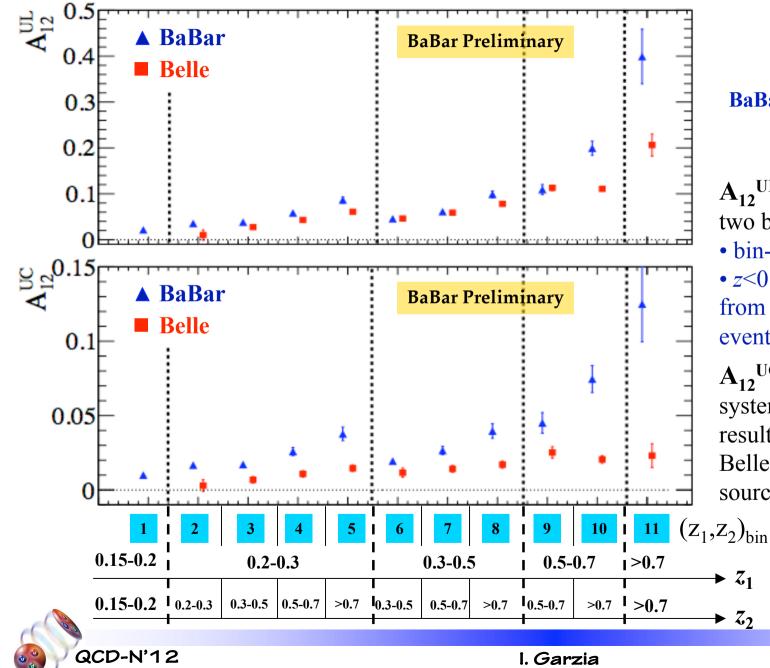
e⁺



Systematic errors indicated by shaded bands

- **1)** The asymmetry increases significantly with *z* (note log y-axis), as expected (RF12: 1-39 %, RF0: 0.5-15 %)
- 2) UC (▼) double ratio significantly smaller than UL (▲)
 - different combination of $H_1^{\perp fav}$ and $H_1^{\perp dis} ==>$ information about the magnitude and sign (PRD 73, 094025 (2006))

RFO:BaBar/Belle asymmetries comparisons


BaBar (0.15<z<0.9) *L*~470 fb⁻¹ PRD 78, 032011 (2008)

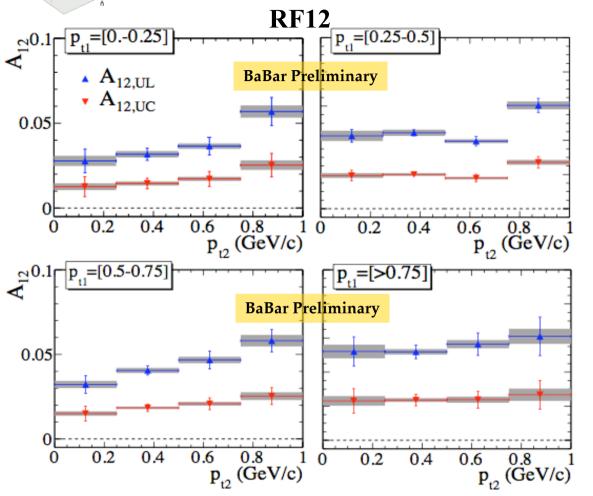
P2

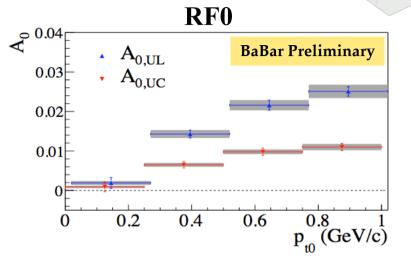
In order to perform this comparison, we used 10 (+1) symmetrized *z*-bin subdivisions, averaging the measured Belle and BaBar asymmetries which fell in the same symmetric bins

 A_0^{UL} and A_0^{UC} : good agreement between the BaBar asymmetries and the Belle results.

RF12:BaBar/Belle asymmetries comparisons

BaBar (0.15<z<0.9) Belle (0.2<z<1) ∠~470 fb⁻¹ ∠~547 fb⁻¹ PRD 78, 032011 (2008)

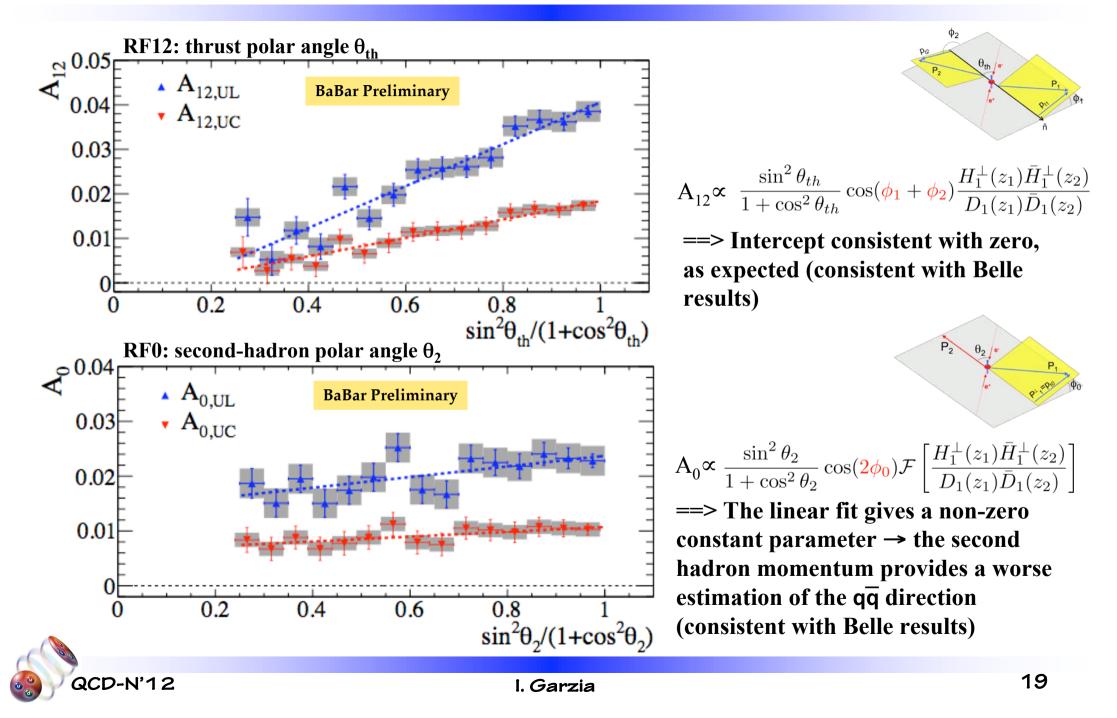

 A_{12}^{UL} : large discrepancy in the last two bins of z


bin-by-bin correction factors (30%)
z<0.9 to remove the contamination from μμγ background and exclusive events

 A_{12}^{UC} : BaBar asymmetry systematically above the Belle results for all *z*.

Belle analysts are investigating the source of discrepancies.

Collins asymmetry vs. p_t


Systematic errors indicated by shaded bands

- Collins asymmetries vs. p_t measured in e⁺e⁻ annihilation at Q²~110 (GeV/c)² (time-like region)
- The asymmetries increase as a function of p_t ; the increase is expected to continue up to a certain value of p_t , and to decrease there after

The combination of these measurements with those from SIDIS (space-like region) at lower Q² (~2.4 (GeV/c)²) [PRD 75,054032 (2007), PRL 94, 012002 (2005), PLB 692, 240 (2010)] provides information about the evolution of the fragmentation functions

Collins asymmetry vs. $sin^2\theta/(1+cos^2\theta)$

Conclusions

We have measured Collins asymmetries for pion pairs in light quark (uds) jetsfrom $e^+e^- \rightarrow q\overline{q}$ in two reference frames $\begin{bmatrix} A_{12} & A_0 \end{bmatrix}$ as a function of: $\Rightarrow \pi^{\pm}$ fractional energy z $\begin{bmatrix} z_1, z_2 & z_1, z_2 \end{bmatrix}$ $\Rightarrow \pi^{\pm}$ transverse momentum p_t $\begin{bmatrix} p_{t1}, p_{t2} & p_{t0} \end{bmatrix}$ \Rightarrow quark polar angle $\begin{bmatrix} \theta_{th} & \theta_2 \end{bmatrix}$

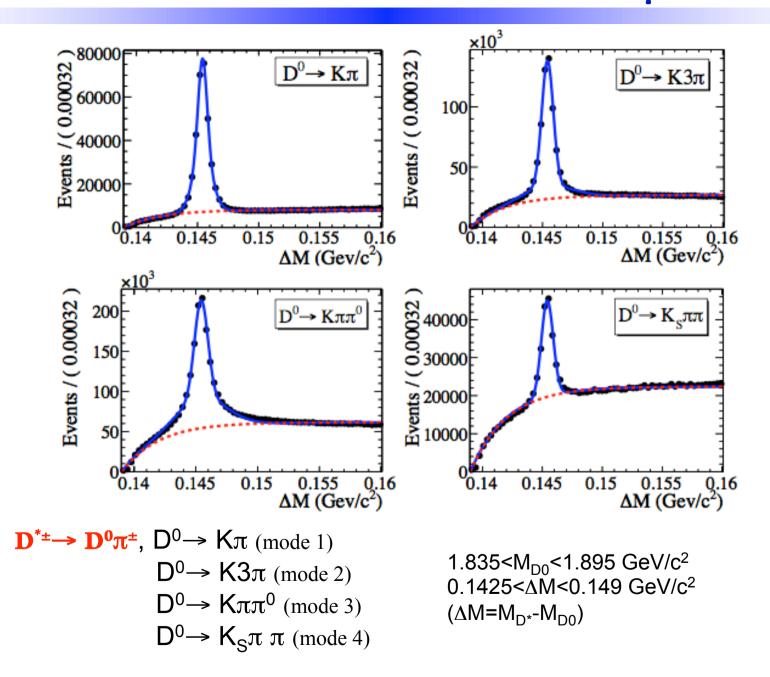
- \bigcirc A₁₂ and A₀ increase with increasing z₁, z₂
 - consistent with theoretical expectations
 - general agreement with Belle results (PRD 78, 032011 (2008)), with some discrepancies in the RF12
 - effect is stronger for leading particles
- A_{12} (A₀) increases with p_{t1}, p_{t2} (p_{t0}) for p_t between 0 to 1 GeV/c
 - first measurement in e^+e^- annihilation at $Q^2 \sim 110 (GeV/c)^2$
 - important for understanding the evolution of the fragmentation function
- **○**A₁₂ is linear in sin²θ_{th}/(1+cos²θ_{th}), with zero intercept **○** A₀ is linear in sin²θ₂/(1+cos²θ₂), but intercept ≠ 0

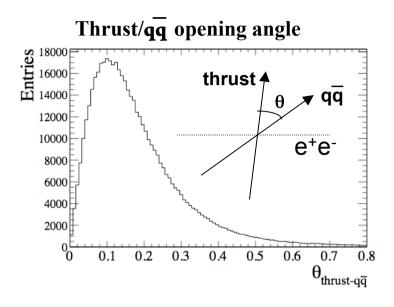
Perspectives and Plans

• PRD draft under review of the Collaboration

This study is the first step of a program of measuring polarized fragmentation function in e^+e^- annihilation at BaBar:

- study of the Collin asymmetries for the kaon system
- study of interference fragmentation function


Stay Tuned Thanks for your attention


BACKUP SLIDES

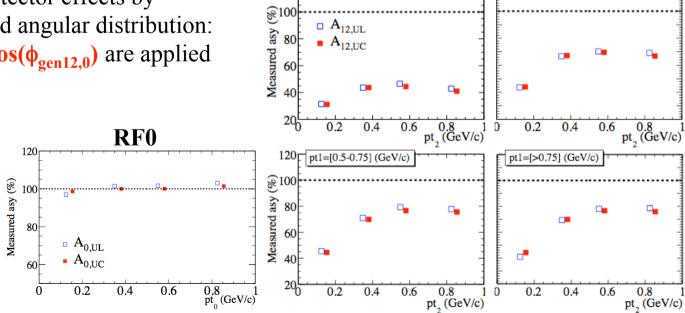
D^{*±}-enhanced control sample

Asymmetry dilution

The experimental method assumes the thrust axis as $q\bar{q}$ direction: this is only a rough approximation

RF12: <u>large smearing</u> since the azimuthal angles ϕ_1 and ϕ_2 are calculated with respect to the thrust axis; additional dilution due to very energetic tracks close to the thrust axis.

RF0: the azimuthal angle ϕ_0 is calculated with respect to the second hadron momenta \rightarrow small smearing due to PID and tracking resolution.


120r pt1=[0.-0.25] (GeV/c)

A12.UL A_{12.UC} **RF12**

pt1=[0.25-0.5] (GeV/c)

 \rightarrow We study the influence of the detector effects by correcting a posteriori the generated angular distribution: weights defined as $w^{UL(UC)}=1\pm a \cdot \cos(\phi_{gen12,0})$ are applied to every selected pion pairs.

RF12: correction performed for each bins of z and p_t: (1.3-2.3) as a function of z, and (1.3-3) as a function of p_t . **RF0:no correction needed.**

