

Proton Structure in the LHC Era

Klaus Rabbertz, Daniel Britzger KIT Karlsruhe, DESY

D. Britzger, K. Rabbertz Hamburg, Germany, 23.10.2012

PDF School 2012

1

- Introductory Part
 - Motivation

- General Concept and Application Overview
- Application to Jet Analysis at LHC
- News/Outlook
- Tutorial Part
 - Walk-through of Installation
 - Demonstration of Example Evaluation
 - Code Explanation
- Exercise: Your Turn for at least 45 min !!!

- This is not meant as a report giving all the latest details on the fastNLO development!
- For this you can go for example to the fastNLO web page at http://fastnlo.hepforge.org and check Daniels presentation at the QCDatLHC 2012 conference
- My aims for the tutorial today are much more modest and concentrate on a simple application example

FastNLO at HepForge

4

					Heimion			
🍠 FastNLO - Hepforge - SeaM	onkey				- D ×			
<u>File Edit View Go B</u> ookmarks	<u>T</u> ools <u>W</u> indow <u>H</u> elp							
Back Forward Reload Stop Attp://fastnlo.hepforge.org/docs/								
💁 Home 🖻 Bookmarks 🖻 UniKA 🖻 CMS 🖻 Theorie 🖻 Weitere Kollaboratio 🖻 CERN 🖻 Grid 🖻 Pubs & Confs 🖻 Teilchenphysik - Org »								
Proton Structure in FastNLO – Hepforge ×								
				FastNLO is hoste	ed by Hepforge, IPPP Durham 📤			
fastNLO								
fast pQCD calculations for hadron-induced processes								
Home	Documentation	Interactive	Code	Links				
Documentation	 Last update: 12. 10. 2012 recent talks added, more info to c fastNLO publications, articles D. Britzger, K. Rabbertz, F. Stobe in the proceedings of the XX Inter 2012 hep-ph/1208.3641. D. Britzger, T. Kluge, K. Rabbertz in Hadron-Induced Processes", a T. Kluge, K. Rabbertz, M. Wobisc Workshop on Deep Inelastic Scale 	ome. and proceedings er, M. Wobisch, "New features in v national Workshop on Deep Inela ; F. Stober, M. Wobisch, "Theory- rXiv:1109.1310. h, "Fast pQCD calculations for PE ttering (DIS 2006), 20-24 Apr 200	rersion 2 of the fas stic Scattering (D Data Comparisor DF fits'', in procee 16'', hep-ph/06092	stNLO project", IS12), 26-30th March ns for Jet Measurements dings "14th International 85.				
	 Talks on fastNLO v2 D. Britzger, H1 Collaboration Mee "fastNLO for Jetproduction in Diff D. Britzger, QCD@LHC Conference, E D. Britzger, DIS12 Conference, E "New features in version 2 of the formation of the second s	eting, Munich, Germany, Septemb ractive DIS'', (slides) nce, East Lansing, Ml, USA, Augu ionn, Germany, March 2012, 'astNLO project'', (slides) leeting, Marseille, France, Februa	er 2012, ist 2012: (slides) ary 2012: (slides)					
D. Britzger, K. Rabbertz	Hamburg, Germai	ny, 23.10.2012		PDF Schoo	2012			

- Interpretation of experiment data relies on:
 - Availability of reasonably fast theory calculations
 - Often needed: Repeated computation of same cross section
- Examples for a specific analysis:
 - Estimate accuracy of perturbative QCD (scale uncertainties)
 - Use of various PDFs (CTEQ, MSTW, NNPDF, HERAPDF, AB(K)M ...)
 - Determine PDF uncertainties (PDF error sets)
 - Use data set in fit of PDFs and/or $\alpha_s(M_7)$
- Sometimes NLO predictions can be computed fast
- But some are very slow, esp. jets, O(1000 CPU h)
- Need procedure for fast repeated computations of NLO cross sections
- Even more so at NNLO when available!

Jet production in hadron-hadron collisions depends on

$$\sigma = \sum_{a,b,n_0} \int_0^1 dx_1 \int_0^1 dx_2 \alpha_s^n(\mu_r) \cdot c_{a,b,n}(x_1, x_2, \mu_r, \mu_f) \cdot f_{1,a}(x_1, \mu_f) f_{2,b}(x_2, \mu_f)$$

- > strong coupling α_s to order n
- PDFs of two hadrons f₁, f₂
- Parton flavors a, b
- perturbative coefficients c_{a,b,n}
- renormalization and factorization scales
- Parton momentum fractions x

f(x)

f(x)

PDF and α_s are external input

Perturbative coefficients are independent from PDF and $\boldsymbol{\alpha}_s$

Idea: Avoid folding integrals and factorize the PDFs and α_s

D. Britzger, K. Rabbertz Hamburg, Germany, 23.10.2012

The fastNLO concept

Use interpolation kernel

- Introduce set of n discrete x-nodes, x_i's being equidistant in a function f(x)

- Take set of Eigenfunctions $E_i(x)$ around nodes x_i

- \rightarrow Interpolation kernels
- Actually a rather old idea, see e.g.

C. Pascaud, F. Zomer (Orsay, LAL), LAL-94-42

→ Single PDF is replaced by a linear combination of interpolation kernels

$$f_a(x) \cong \sum_i f_a(x_i) \cdot E^{(i)}(x)$$

- \rightarrow Then the integrals are done only once
- → Afterwards only summation required to change PDF

Store a table with the convolution of the pert. coefficients with the interpolation kernel

D. Britzger, K. Rabbertz Hamburg, Germany, 23.10.2012

- In detail a bit more complicated. For each observable bin:
 - Cubic interpolation in x (also used in digital imaging)
 - 2-dimensional binning in (log) x for hh collisions
 - Use reasonable number of x nodes and lower x limit
 - Interpolate reweighted PDFs for improved approximation
 - Scale bins also need interpolation
 - Exploit symmetries between different QCD subprocesses
 - Many optimizations done to keep table small and programs fast
- Strategy applicable in general, NOT restricted to NLO or jets or ...
- Here: Concentrate on jets with NLOJet++ and fastNLO
- Assume that the APPLGRID tutorial covers e.g. other processes

NLOJet++, Z.Nagy, PRD68 2003, PRL88 2002

Partonic Subprocesses

- Don't want to deal with 13 X 13 PDFs
- For hh \rightarrow jets seven relevant partonic subprocesses
 - 1) $gg \Rightarrow jets$ $\propto H_1(x_1, x_2)$ 2) $\propto H_2(x_1, x_2)$ $qq, \bar{q}q \Rightarrow \text{jets}$ 3) $\propto H_3(x_1,x_2)$ $gq, g\bar{q} \Rightarrow \text{jets}$ **4**) $\propto H_4(x_1, x_2)$ $q_i q_j, \bar{q_i} \bar{q_j} \Rightarrow \text{jets}$ 5) $\propto H_5(x_1,x_2)$ $q_i q_i, \bar{q}_i \bar{q}_i \Rightarrow \text{jets}$ **6**) $q_i \bar{q_i}, \bar{q_i} q_i \Rightarrow \text{jets}$ $\propto H_6(x_1, x_2)$ 7) $q_i \bar{q_j}, \bar{q_i} q_j \Rightarrow \text{jets}$ $\propto H_7(x_1,x_2)$

Need only seven linear combinations H_i of PDFs
 D. Britzger, K. Rabbertz
 Hamburg, Germany, 23.10.2012
 PDF School 2012

In addition, symmetries can be exploited:

$$H_n(x_1, x_2) = H_n(x_2, x_1)$$
 for $n = 1, 4, 5, 6, 7$
 $H_2(x_1, x_2) = H_3(x_2, x_1)$

For hadron anti-hadron collisions, replace:

$$\begin{array}{rcccc} H_4(x_1, x_2) & \leftrightarrow & H_7(x_1, x_2) \\ H_5(x_1, x_2) & \leftrightarrow & H_6(x_1, x_2) \end{array} \end{array}$$

- Minimize required table size and computing time!
- Otherwise number of bins in observable times x₁-, x₂-, µnodes, ... can quickly get huge

hh Jet Cross-Section with fastNLO

Hadron-hadron collisions •2D interpolation kernels

$$E^{(i,j)}(x_1,x_2) = E^{(i)}(x_1)E^{(j)}(x_2)$$

PDF School 2012

$$\sum_{a,b}^{13\times13} f_{1,a}(x_1,\mu_f) f_{2,b}(x_2,\mu_f) \to \sum_{k}^{7} H_k(x_1,x_2,\mu_f)$$

Final fastNLO cross sections

D. Britzger, K. Rabbertz

 \succ Compute σ -table in each bin and store it in fastNLO table

$$\widetilde{\sigma}_{k,n}^{(i,j)(m)} = \sigma_{k,n}(\mu) \otimes E^{(i,j)}(x_1, x_2) \otimes E^{(m)}(\mu)$$

➤Contains all information on the observable

Final cross section formula $\sigma_{hh}^{Bin} = \sum_{i,j,k,n,m} \alpha_s^n(\mu^{(m)}) \cdot H_k(x_1^{(i)}, x_2^{(j)}, \mu^{(m)}) \cdot \widetilde{\sigma}_{k,n}^{(i,j)(m)}$

Table Production

- Not the topic of today's tutorial, somewhat too involved for that
- If somebody wants to try talk to Daniel or me for code and instructions; needs fastNLO, fastjet, slightly mod. NLOJet++.
- Here the general scheme:
 - Program the C++ code for your process, selection and observable (easy when it can be almost copied from existing scenarios)
 - Run a number of NLO jobs to determine lower x and scale limits for each observable bin → to be used in future jobs
 - Do some comparison jobs between original NLOJet++ and rederived fastNLO x sections to make sure the approximation is fine (deviations below permille level or even less); if not start again optimizing settings :-(
 - Start large scale production, i.e. submit O(some 100) jobs on the grid or a batch system in parallel → order of n 1000 CPU hours to harvest
 - Possible to get all tables within a day, fastNLO is set up to combine all the statistically independent calculations into one table
 - As a bonus one gets an estimate of the statistical precision
 D. Britzger, K. Babbertz, Hamburg, Cormany, 22 10 2012

Example Applications

CMS inclusive jets

- Study of PDF dependence
- Determination of PDF envelopes

D0 three-jet invariant mass

- ➤ Study of PDF dependence
- Study of scale dependence

$$\mu_{f} = \mu_{f} = (p_{T1} + p_{T1} + p_{T1})/3$$

$$\mu = 2.0 \times \mu_{o}$$

$$\mu = 0.5 \times \mu_{o}$$

 \succ Study of α_s dependence using $\alpha_{\rm c}$ dependent PDF sets

PLB 704 (2011) 434-441

3138 repeated NLO calculations

Each rederivation takes fractions of a second!

D. Britzger, K. Rabbertz

Hamburg, Germany, 23.10.2012

PDF School 2012

New in fastNLO Version 2.0

No further dependencies (No ROOT, No CERNLIB, etc...)

D. Britzger, K. Rabbertz Hamburg, Germany, 23.10.2012

PDF School 2012

PHYSICS

Hamburg, Germany, 23.10.2012

PDF School 2012

16

Scales can be functions of multiple observables

- > e.g. for DIS jets
 Scale observables are p_T and Q²
- > Scales can be $\mu_r^2 = (Q^2 + p_T^2) / 2$ $\mu_r^2 = Q^2$ $\mu_r^2 = p_T^2$ $\mu_r^2 = 0.8 Q^2 + 0.3 p_T^2 + Q \cdot p_T$

Independent scale variations of μ_r and μ_f are possible

 $\mu_{R}^{2} = c_{R}^{2} \times (Q^{2} + p_{T}^{2}) / 2$ $\mu_{F}^{2} = c_{F}^{2} \times Q^{2}$

More flexibility for studies of scale dependencies

New in v2: Scales

Outlook

- Prerelease of fastNLO_reader_2.1.0_1273 for this tutorial
- Changes to previous release of fastNLO_reader_2.1.0_1062
 - Check and reactivate asymmetric scale variations in Fortran part
 - Some small inconsistencies between Fortran and C++ fixed
 - Numerous changes in interface to improve flexibility and user-friendliness - **b** (this is sometimes in contradiction :-)).
 - **Improved documentation**
- Short-term plan
- Your feedback is very welcome here! **Provide this as a linkable library**
- **Further developments**
 - **Provide more and new-type precalculated tables for DIS and LHC**
 - Improve user-friendliness and docu for the production code and release
 - Integrate new processes and corrections, e.g. electroweak, and much more ... -

Tutorial Part

Installation

Install packages produced with standard autotools, just run

- ./configure -prefix=your/local/dir
- make; make install
- In case of different location of LHAPDF use
 - ./configure –prefix=your/local/dir --with-lhapdf=path/to/lhapdf
 - Error message with hints if still not found
- For more options check
 - ./configure -help
- And also look into the README file
- Executables: fnlo-fread and fnlo-cppread, type
 - fnlo-fread -h (or fnlo-cppread -h)
- for command line arguments (table file, PDF file)

Initial Output

Version and svn # fastNL0 reader 2.1.0 1062 # Fortran program to read fastNLO v2 tables and revision number derive QCD cross sections using PDFs from LHAPDF # Copyright (C) 2011 fastNL0 Collaboration People # D. Britzger, T. Kluge, K. Rabbertz, F. Stober, M. Wobisch # This program is free software: you can redistribute it and/or modify **GPLv3** License # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or (at your option) any later version. # # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/>. The projects web page can be found at: Web Page http://projects.hepforge.org/fastnlo # If you use this code, please cite: References T. Kluge, K. Rabbertz, M. Wobisch, hep-ph/0609285 D. Britzger, T. Kluge, K. Rabbertz, F. Stober, M. Wobisch, arXiv:1109.1310 (will be updated)

#######################################	#####	***************************************	
<pre># fnlo-read: Program Steering</pre>			
#			
<pre># fnlo-read: Evaluating table</pre>	: fnl	1014_v2_all.tab	
<pre># fnlo-read: Using PDF set</pre>	: cte	q66.LHgrid	
#######################################	#####	***************************************	
#######################################	#####	***************************************	
<pre># alphas-grv: First call:</pre>			
#######################################	#####	***************************************	S
# ALPHAS-GRV: PI	= 3	. 141592653589793	
# ALPHAS-GRV: M_Z/GeV	= 91	. 187600	
# ALPHAS-GRV: a_s(M_Z)	= 0	. 118500	U
# APLHAS-GRV: a_s loop	= 2		-
<pre># APLHAS-GRV: flavor-matching</pre>	=	F	d
# APLHAS-GRV: nf (M_Z)	= 5		_
#######################################	#####	***************************************	C

Start parameters of default internal alpha_s code for comparison

Basic evaluation code ...

Other evolution code can be used/interfaced e.g. from LHAPDF \rightarrow edit, recompile Default output: List of LO and NLO x sections for selected PDF Loop over scale variations, PDF members, alpha_s variations ... \rightarrow edit, recompile

Scenario Information 1

Information on fastNL0 scenario: fnl1014 # Description: d2sigma-jet dpTd|y| [pb GeV] CMS Collaboration # **Measurement** # Inclusive Jet pT # anti-kT R=0.5 # arXiv:1106.0208, Phys. Rev. Lett. 107, 132001 (2011). # Centre-of-mass energy Ecms: 7000. # GeV # Total no. of bins Tot. no. of observable bins: 176 in 2 dimensions: # **Exceptional!** No. of table contributions # No. of contributions 5 Normally 2 or 3. Contribution 1: L0 # # No. of events: 3000000000 # provided by: Info for 1st contribution: # NL0Jet++ 4.1.3 # Z. Nagy, Phys. Rev. Lett. 88, 122003 (2002), LO from NLOJet++ Z. Nagy, Phys. Rev. D68, 094002 (2003). # # Scale dimensions: 1 Referenz for used code is pT jet [GeV] # Scale description for dimension 1: Number of scale variations for dimension 1: 1 # included in table where it # Available scale settings for dimension 1: # Scale factor number 1: 1.0000 belongs! # Number of scale nodes for dimension 1: 6

D. Britzger, K. Rabbertz

Scenario Information 2

Contribution 3: THC 2-loop # # No. of events: 270336000 # provided by: # Owens/Wobisch # 2-loop threshold corrections for the inclusive jet # cross section in pp and ppbar according to: # N. Kidonakis, J.F. Owens, Phys. Rev. D63, 054019 (2001). # Scale dimensions: 1 # Scale description for dimension 1: pT jet [GeV] # Number of scale variations for dimension 1: 1 # Available scale settings for dimension 1: # Scale factor number 1: 1.0000 Number of scale nodes for dimension 1: # 6 Contribution 4: # NP Correction # # No. of events: 0 # provided by: # Pythia6 D6T & Herwig++ 2.3 # T. Sjöstrand, S. Mrenna, P. Skands, JHEP 05, 026 (2006), # R. Field, Acta Phys. Polon. B39, 2611 (2008), M. Bähr et al., Eur. Phys. J. C58, 639 (2008), # CMS Collaboration, arXiv:1106.0208, Phys. Rev. Lett. 107, 132001 (2011). # Scale dimensions: 0

Threshold Corrections

Non-perturbative Corrections

D. Britzger, K. Rabbertz

Jets Data / Theory

- Comparison of jet data from
 - STAR at RHIC
 - H1 and ZEUS at HERA
 - CDF and D0 at Tevatron
- Compatible with QCD
- Includes measurements from LHC
- New: Updated with ATLAS inclusive jets

fastNLO, to be uploaded, arXiv:1109:1310v2, 2012

<u>'</u>4

D. Britzger, K. Rabbertz

Scale flexibility in fastNLO v2.0

Perturbative coefficients beyond LO have scale dependence

$$\boldsymbol{\sigma} \propto \boldsymbol{\alpha}_{s}^{n} \boldsymbol{c}_{born} + \boldsymbol{\alpha}_{s}^{n+1} \boldsymbol{c}_{NLO}(\boldsymbol{\mu}_{r}, \boldsymbol{\mu}_{f})$$

Scale dependence can be factorized

$$\sigma \propto \alpha_s^n c_{born} + \alpha_s^{n+1} \left(c_0 + \log(\mu_r^2) c_r + \log(\mu_f^2) c_f \right)$$

Store individual scale independent coefficients

Scales can be arbitrary values - or functions of observables

> Scales can be functions of multiple variables e.g. p_T and y*

$$\mu_{r/f} \rightarrow \mu_{r/f} (p_T, y^*) \qquad e.g. \mu = 0.5 \cdot p_T \quad or \quad \mu = p_T \cdot e^{0.3y}$$

➢ Final scale can be chosen to be any function of both

Scales can be functions of multiple observables

D. Britzger, K. Rabbertz Hamburg, Germany, 23.10.2012

Jets in diffractive DIS with fastNLO

Integral becomes a standard fastNLO evaluation

Upper integration interval needs to be respected properly

FastNLO procedure improves previously used approachAugust 23 2012Daniel Britzger - QCD@LHC - MSU27