A posteriori inclusion of parton density functions in NLO QCD final state calculations

Pavel Starovoitov

DESY

October 23, 2012

Pavel Starovoitov (DESY)

APPLGRID

PDF school 1 / 25

A T N

Outline

Details of method

- 2 Scale dependence
- ③ APPLGRID applications
 - Inclusive jets
 - 5 W[±] production
- 6 APPLGRID accuracy

- The second sec

Proton-proton collision

- hard scattering can be calculated to NLO(NNLO) precision
- description of showers and non-perturbative effects comes from MC
- PDFs and strong coupling are determined from precision data (LEP, HERA, TEVATRON, ...).

Pavel Starovoitov (DESY)

NLO QCD cross section

$$\frac{d\sigma}{dX} \sim \sum_{(i,j,p)} \int d\Gamma \alpha_s^p(Q_R^2) \ q_i(x_1, Q_F^2) q_j(x_2, Q_F^2) \ \frac{d\hat{\sigma}_{(p)}^y}{dX}(x_1, x_2, Q_F^2, Q_R^2; \ S)$$

- Coupling and parton density functions are non-perturbative inputs to calculation (extracted from data)
- Perturbative coefficients are essentially independent from PDF functions due to factorization theorem

Calculating NLO cross-sections takes a long time ($\sim days$)

 \implies we can split calculation into two parts

APPLGRID method

- Step 1 (long run): Collect perturbative weights to grids .
 - binning (+ interpolation)
 - partonic sub-processes : 13 \times 13 \rightarrow $\mathcal L$

$$d\hat{\sigma}^{ij}_{(p)}/dX \to w^{(p)(l)}(x_1^m, x_2^n, Q^{2^k})$$
 (3D-grid) $(Q_R^2 \equiv Q_F^2)$

- Step 2 (\sim 10–100 ms): Convolute grid with PDF's .
 - ▶ integral → sum
 - any coupling, pdf

$$\sum_{p} \sum_{l=0}^{L} \sum_{m,n,k} \mathbf{w}^{(p)(l)}_{m,n,k} \left(\frac{\alpha_{s}(Q_{k}^{2})}{2\pi} \right)^{p_{l}} F^{(l)}\left(x_{1m}, x_{2n}, Q_{k}^{2} \right) \rightarrow \frac{d\sigma}{dX}$$

Details of the method (I)

Binning

- user defined number of bins N_x and N_{Q^2} in x and Q^2
- variable transformation $(x, Q^2) \rightarrow (y, \tau)$ facilitates fine binning in regions of the phase-space where PDFs are quickly changing

$$y(x) = \ln \frac{1}{x} + a(1-x); \quad \tau(Q^2) = \ln \left(\ln \frac{Q^2}{\Lambda^2} \right)$$

and provides the good coverage of the full x and Q^2 range

- the parameter a allows user to control the density of points in the large x region.
- $\Lambda \sim \Lambda_{QCD}$, is user defined.

向下 イヨト イヨト

Details of the method : x_1x_2 phasespace

User just defines max/min possible values of x, Q^2 . The optimisation procedure finds appropriate limits for each

subprocess/order/observable bin.

(日) (周) (日) (日)

Details of the method (II) Interpolation :

• user defined interpolation orders n_y , n_τ

$$f(x, Q^2) = \sum_{i=0}^{n_y} \sum_{\iota=0}^{n_\tau} f_{k+i,\kappa+\iota} I_i^{(n)} \left(\frac{y(x)}{\delta y} - k\right) I_i^{(n')} \left(\frac{\tau(Q^2)}{\delta \tau} - \kappa\right)$$

Subprocess PDFs :

 $13 \times 13 \rightarrow L$ due to the symmetries of the ME weights

$$\sum_{m,n} \nu_{mn}^{(l)} f_{m/H_1}\left(x_1, Q^2\right) f_{n/H_2}\left(x_2, Q^2\right) \equiv F^{(l)}\left(x_1, x_2, Q^2\right),$$

"generalised" PDFs depend on the process and the perturbative order Final result :

$$\frac{d\sigma}{dX} = \sum_{p} \sum_{l=0}^{L} \sum_{m,n,k} \boldsymbol{w}_{m,n,k}^{(p)(l)} \left(\frac{\alpha_s(Q_k^2)}{2\pi}\right)^{p_l} F^{(l)}\left(x_{1m}, x_{2n}, Q_k^2\right)$$

(日) (周) (日) (日)

Scale dependence I

Having the weights $w_{m,n,k}^{(p)(l)}$ determined separately order by order in α_s , it is straightforward to vary the renormalisation μ_R and factorisation μ_F scales a posteriori.

We assume scales to be equal

$$\mu_{R} = \mu_{F} = Q$$

in the original calculation.

Let we introduce ξ_R and ξ_F corresponding to the factors by which one varies μ_R and μ_F respectively,

$$\mu_R = \xi_R \times Q$$
$$\mu_F = \xi_F \times Q$$

Scale dependence II

Then for arbitrary ξ_R and ξ_F we may write:

$$\begin{aligned} \frac{d\sigma}{dX} & (\xi_{R},\xi_{F}) = \sum_{l=0}^{L} \sum_{m} \sum_{n} \sum_{k} \left\{ \left(\frac{\alpha_{s}\left(\xi_{R}^{2} Q^{2}_{k}\right)}{2\pi} \right)^{p_{\text{LO}}} \\ & \times W_{m,n,k}^{(p_{\text{LO}})(l)} F^{(l)}\left(x_{1m}, x_{1n}, \xi_{F}^{2} Q^{2}_{k}\right) + \left(\frac{\alpha_{s}\left(\xi_{R}^{2} Q^{2}_{k}\right)}{2\pi} \right)^{p_{\text{NLO}}} \\ & \times \left[\left(W_{m,n,k}^{(p_{\text{NLO}})(l)} + 2\pi\beta_{0}p_{\text{LO}}\ln\xi_{R}^{2} W_{m,n,k}^{(p_{\text{LO}})(l)} \right) F^{(l)}\left(x_{1m}, x_{2n}, \xi_{F}^{2} Q^{2}_{k}\right) \\ & - \ln\xi_{F}^{2} W_{m,n,k}^{(p_{\text{LO}})(l)} \\ & \times \left(F_{q_{1} \to p_{0} \otimes q_{1}}^{(l)}\left(x_{1m}, x_{2n}, \xi_{F}^{2} Q^{2}_{k}\right) + F_{q_{2} \to P_{0} \otimes q_{2}}^{(l)}\left(x_{1m}, x_{2n}, \xi_{F}^{2} Q^{2}_{k}\right) \right) \right] \end{aligned}$$

where $F_{q_1 \rightarrow P_0 \otimes q_1}^{(l)}$ is calculated as $F^{(l)}$, but with q_1 replaced with $P_0 \otimes q_1$ (LO splitting function convoluted with PDF), and analogously for $F_{q_2 \rightarrow P_0 \otimes q_2}^{(l)}$.

APPLGRID applications.

Theoretical uncertainties:

- PDF uncertainty
- Scale uncertainty (Arbitrary simultaneous variation of renormalisation and factorisation scales a posteriori)
- Strong coupling uncertainty
- Can be calculated for any PDF and α_s in \sim 10 ms
- A posteriori variation of centre-of-mass energy and fast evaluation of theoretical uncertainty in total cross section.

Allows rigorous inclusion of jet and electroweak cross sections in NLOQCD PDF fit.

伺 と く ヨ と く ヨ と

APPLGRID subprocesses for jet production

perturbative coefficients for jet production could be organised in seven subprocesses (calculated using NLOJET++)

$$\begin{array}{rcl} \mathrm{gg}: & F^{(0)}(x_1, x_2; Q^2) & = & G_1(x_1)G_2(x_2) \\ \mathrm{qg}: & F^{(1)}(x_1, x_2; Q^2) & = & \left(Q_1(x_1) + \overline{Q}_1(x_1)\right)G_2(x_2) \\ \mathrm{gq}: & F^{(2)}(x_1, x_2; Q^2) & = & G_1(x_1)\left(Q_2(x_2) + \overline{Q}_2(x_2)\right) \\ \mathrm{qq}': & F^{(3)}(x_1, x_2; Q^2) & = & Q_1(x_1)Q_2(x_2) + \overline{Q}_1(x_1)\overline{Q}_2(x_2) - D(x_1, x_2) \\ \mathrm{qq}: & F^{(4)}(x_1, x_2; Q^2) & = & D(x_1, x_2) \\ \mathrm{q\bar{q}}: & F^{(5)}(x_1, x_2; Q^2) & = & \overline{D}(x_1, x_2) \\ \mathrm{q\bar{q}}': & F^{(6)}(x_1, x_2; Q^2) & = & Q_1(x_1)\overline{Q}_2(x_2) + \overline{Q}_1(x_1)Q_2(x_2) - \overline{D}(x_1, x_2) \end{array}$$

$$D(x_1, x_2) = \sum_{\substack{i=-6\\i\neq 0}}^{6} f_{i/H_1}(x_1, Q^2) f_{i/H_2}(x_2, Q^2), \quad \overline{D}(x_1, x_2) = \sum_{\substack{i=-6\\i\neq 0}}^{6} f_{i/H_1}(x_1, Q^2) f_{-i/H_2}(x_2, Q^2)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Inclusive jets: 7TeV collisions

Ratios of inclusive jet double-differential cross section to the theoretical prediction obtained using nlojet++ with the CT10 PDF set. The ratios are shown as a function of jet $p_{\rm T}$ in different regions of |y| for jets identified using the anti-kt algorithm with R = 0.6.

D	<u></u>	(DEO)
Davol	Storovoltov	
	SIGUVUIUV	

Inclusive jets: 2.76TeV collisions

Ratio of the measured inclusive double-differential jet cross section to the NLO pQCD prediction calculated with nlojet++ with the CT10 PDF set corrected for non-perturbative effects. The ratio is shown as a function of the jet p_T in bins of jet rapidity, for anti-kt

		14/05
jets with $H = 0.6$.		 2.40

ATLAS jet data fit results

By including the ATLAS jet data, a harder gluon distribution and a softer sea quark distribution in the high Bjorken-x region are obtained with respect to the fit of HERA-I data only. The presented measurement is an interesting input for various PDF studies.

very good fit quality for both distance parameters

Pavel Starovoitov (DESY)

APPLGRID subprocesses for W^{\pm} production

The weights for W^+ -production can be organized in six possible initial state combinations (calculated using MCFM)

$$\begin{split} \bar{D}U : & F^{(0)}\left(x_{1}, x_{2}, Q^{2}\right) = \sum_{j=1,3,5} f_{-j/H_{1}}\left(x_{1}\right) \sum_{i=2,4,6} f_{i/H_{2}}\left(x_{2}\right) V_{ij}^{2} \\ U\bar{D} : & F^{(1)}\left(x_{1}, x_{2}, Q^{2}\right) = \sum_{i=2,4,6} f_{i/H_{1}}\left(x_{1}\right) \sum_{j=1,3,5} f_{-j/H_{2}}\left(x_{2}\right) V_{ij}^{2} \\ Ug : & F^{(3)}\left(x_{1}, x_{2}, Q^{2}\right) = \sum_{i=2,4,6} f_{i/H_{1}}\left(x_{1}\right) \left(V_{id}^{2} + V_{is}^{2} + V_{ib}^{2}\right) f_{0/H_{2}}\left(x_{2}\right) \end{split}$$

$$gU: \qquad F^{(5)}\left(x_{1}, x_{2}, Q^{2}\right) = \sum_{i=2,4,6} f_{0/H_{1}}\left(x_{1}\right) \left(V_{id}^{2} + V_{is}^{2} + V_{ib}^{2}\right) f_{i/H_{2}}\left(x_{2}\right)$$

$$g\bar{D}: \qquad F^{(4)}\left(x_{1}, x_{2}, Q^{2}\right) = \sum_{i=1,3,5} f_{0/H_{1}}\left(x_{1}\right) \left(V_{iu}^{2} + V_{ic}^{2} + V_{it}^{2}\right) f_{-i/H_{2}}\left(x_{2}\right)$$

$$\bar{D}g: \quad F^{(2)}\left(x_{1}, x_{2}, Q^{2}\right) = \sum_{i=1,3,5} f_{-i/H_{1}}\left(x_{1}\right) \left(V_{iu}^{2} + V_{ic}^{2} + V_{it}^{2}\right) f_{0/H_{2}}\left(x_{2}\right)$$

We separate $u\bar{d}$ from $\bar{d}u$ in order to get the right rapidity distribution for the electron,

because of the chiral nature of the W^{\pm} couplings

W^{\pm} production theory uncertainties

positron p_T

- theoretical uncertainy decreases when adding more data (and more precise data) to pdf fits
- the scale uncertainty is the dominant one

(日) (周) (日) (日)

W^{\pm} production lepton rapidity. PDF comparison

different PDFs predict slightly different normalisation and shape

Pavel	Starovoitov	(DESY)
		(

APPLGRID subprocesses for $Q\overline{Q}$ production

The weights for $Q\bar{Q}$ -production can be organized in six possible initial state combinations (calculated using MCFM)

$$\begin{array}{ll} \mathrm{gg}: & F^{(0)}(x_1, x_2; Q^2) = G_1(x_1)G_2(x_2) \\ \mathrm{qg}: & F^{(1)}(x_1, x_2; Q^2) = Q_1(x_1)G_2(x_2) \\ \mathrm{gq}: & F^{(2)}(x_1, x_2; Q^2) = G_1(x_1)Q_2(x_2) \\ \mathrm{\bar{qg}}: & F^{(3)}(x_1, x_2; Q^2) = \bar{Q}_1(x_1)G_2(x_2) \\ \mathrm{g\bar{q}}: & F^{(4)}(x_1, x_2; Q^2) = G_1(x_1)\bar{Q}_2(x_2) \\ \mathrm{q\bar{q}}: & F^{(5)}(x_1, x_2; Q^2) = D_{12}(x_1, x_2) \\ \mathrm{\bar{qq}}: & F^{(6)}(x_1, x_2; Q^2) = \bar{D}_{12}(x_1, x_2) \end{array}$$

number of quark flavours : $3(c\bar{c})$, $4(b\bar{b})$, $5(t\bar{t})$

$Q\overline{Q}$ production theory uncertainties

$Q\overline{Q}$ production PDF comparison

top rapidity

different PDFs predict different shape

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

APPLGRID accuracy.

New physics : Quark contact interactions

Question : Could small deviations from SM predictions be absorbed by a N(N)LO QCD PDF fit?

$$\frac{d\sigma}{d\mathcal{O}} = \frac{d\sigma_{QCD}}{d\mathcal{O}} + \eta \frac{\alpha_s}{\Lambda_{Cl}^2} \frac{d\sigma_{Cl}^{(1)}}{d\mathcal{O}} + \frac{1}{\Lambda_{Cl}^4} \frac{d\sigma_{Cl}^{(2)}}{d\mathcal{O}}$$

Phys.Lett. B253 (1991) 489-493

イロト イポト イヨト イヨト 二日

- Λ CI scale; $\eta = \pm 1$ interference with QCD
 - generate phasespace using NLOJET++
 - fill grids with CI ME
 - convolute with PDF + QCD coupling + CI coupling within fit

Impact of CI on distributions

A 10

Summary

Precision measurements test of QCD can improve knowledge of proton parton density functions and strong coupling constant and facilitate discoveries at LHC.

- APPLGrid is an open project, complete source code is available as HEPforge package:https://projects.hepforge.org/applgrid
- A posteriori evaluation of uncertainties from renormalisation and factorisation scale variations, strong coupling measurement and PDFs error sets in a very short time
- Allows rigorous inclusion of jet and electroweak cross sections in PDF fit.
- Other functionality, such as a posteriori \sqrt{S} rescaling
- A list of QCD and electroweak processes can be studied
 - Jet production cross sections studied using NLOJET++
 - Electroweak observables included using MCFM
- New physics effects can be included in the fits

イロト 不得 トイヨト イヨト 二日

BACK-UP

Pavel Starovoitov (DESY)

イロト イポト イヨト イヨト

APPLGRID interface to MCFM.

 MCFM : parton-level NLO QCD cross sections calculator for various femtobarn-level processes at hadron-hadron colliders.

► $V, V + nJet, V + b\bar{b}, VV, Q\bar{Q}, ... (~ O(300))$ http://mcfm.fnal.gov/

- Standard analysis :
 - at the end of each event MCFM provides the event record and the weight.
 - user routine (User/nplotter.f): calculates observable(s), applies cuts, fills weight
- APPLGRID is interfaced via common block
 - kinematics : x₁, x₂, Q, ...; dynamics :order, weights[]
 - C++ wrapper :
 - * reads event record, calculates observable ${\cal O}$, fills the grid gridObject \rightarrow fillMCFM(${\cal O});$
 - fillMCFM(...) reads common block , performs subprocess decomposition, fills the weights

イロト 不得 トイヨト イヨト 二日

APPLGRID subprocesses for Z^0 production We can introduce 12 sub-processes in Z production (calculated using

MCFM)

	UŪ :	$F^{(0)}\left(x_{1},x_{2},Q^{2} ight)=U_{12}(x_{1},x_{2})$
	D <i>D</i> :	$F^{(1)}\left(x_{1},x_{2},Q^{2} ight)=D_{12}(x_{1},x_{2})$
	<i>ŪU</i> :	$F^{(2)}\left(x_{1},x_{2},Q^{2} ight)=U_{21}(x_{1},x_{2})$
	D D :	$F^{(3)}\left(x_{1},x_{2},Q^{2} ight)=D_{21}(x_{1},x_{2})$
	gU :	$F^{(4)}\left(x_{1},x_{2},Q^{2} ight)=G_{1}(x_{1})U_{2}(x_{2})$
u	$gar{U}$:	$F^{(5)}\left(x_1,x_2,Q^2 ight)=G_1(x_1)\overline{U}_2(x_2)$
	gD :	$F^{(6)}\left(x_{1},x_{2},Q^{2} ight)=G_{1}(x_{1})D_{2}(x_{2})$
	g D :	$F^{(7)}\left(x_1,x_2,Q^2 ight)=G_1(x_1)\overline{D}_2(x_2)$
	Ug :	$F^{(8)}\left(x_{1},x_{2},Q^{2} ight)=U_{1}(x_{1})G_{2}(x_{2})$
	Ūg :	$F^{(9)}(x_1, x_2, Q^2) = \overline{U}_1(x_1)G_2(x_2)$
	Dg :	$F^{(10)}(x_1, x_2, Q^2) = D_1(x_1)G_2(x_2)$
	<i>Dg</i> :	$F^{(11)}(x_1, x_2, Q^2) = \overline{D}_1(x_1)G_2(x_2)$

We separate $u\bar{u}$ from $\bar{u}u$ contributions to include

 γ/Z interference

(日) (周) (日) (日)

APPLGRID subprocesses for Z^0 production II

Use is made of the generalised PDFs defined as:

$$\begin{split} & U_{H}(x) = \sum_{i=2,4,6} f_{i/H}\left(x,Q^{2}\right), \qquad \overline{U}_{H}(x) = \sum_{i=2,4,6} f_{-i/H}\left(x,Q^{2}\right), \\ & D_{H}(x) = \sum_{i=1,3,5} f_{i/H}\left(x,Q^{2}\right), \qquad \overline{D}_{H}(x) = \sum_{i=1,3,5} f_{-i/H}\left(x,Q^{2}\right), \\ & U_{12}(x_{1},x_{2}) = \sum_{i=2,4,6} f_{i/H_{1}}\left(x_{1},Q^{2}\right) f_{-i/H_{2}}\left(x_{2},Q^{2}\right), \\ & D_{12}(x_{1},x_{2}) = \sum_{i=1,3,5} f_{i/H_{1}}\left(x_{1},Q^{2}\right) f_{-i/H_{2}}\left(x_{2},Q^{2}\right), \\ & U_{21}(x_{1},x_{2}) = \sum_{i=2,4,6} f_{-i/H_{1}}\left(x_{1},Q^{2}\right) f_{i/H_{2}}\left(x_{2},Q^{2}\right), \\ & D_{21}(x_{1},x_{2}) = \sum_{i=1,3,5} f_{-i/H_{1}}\left(x_{1},Q^{2}\right) f_{i/H_{2}}\left(x_{2},Q^{2}\right), \end{split}$$

A (10) > A (10) > A

Z^0 production theory uncertainties

Pavel Starovoitov (DESY)

APPLGRID

PDF school 30 / 25

Z^0 production lepton rapidity. PDF comparison

Pavel Starovoitov (DESY)

APPLGRID

Z^0 production Total cross section

different PDFs predict 10% different total cross section, but they all predict quite the same ratio.

			2.40
Pavel Starovoitov (DESY)	APPLGRID	PDF school	32 / 25

NLOJET++

input functions

*void psinput(phasespace_hhc *ps, double& s)* : external phase space generator (if needed), energy [GeV] in C.M.S.

void inputfunc(unsigned int& nj, unsigned int& nu, unsigned int& nd) : number of parton in final state at LO, number of UP(DOWN) quark flavors

```
user class
```

```
class UserHHC : public user1d_hhc {
  public:
    UserHHC(); ~UserHHC();
    void initfunc(unsigned int);
    void userfunc(const event_hhc&, const amplitude_hhc&);
    ... }
```

• UserHHC :: userfunc(...) (called every event)

- ▶ partons → jets
- event selection
- gridObject \rightarrow fill(...)

イロト 不得 トイヨト イヨト 二日

α_s determination

Eur.Phys.J. C72 (2012) 2041

Input :

- unfolded double-differential ATLAS inclusive jet cross section data at 7 TeV collisions.
- NLO jet cross section corrected for NP effects

Method :

- The measured cross section in each (p_T, y) bin is mapped to α_S value.
- All the experimental uncertainties of cross sections, together with their bin-to-bin correlations, are propagated to the determined \alpha_S values, using pseudo-experiments (toys).

A D N A (B) N A B N A B

$$\begin{aligned} \alpha_{S}(M_{Z}^{2}) &= & 0.1151 \pm 0.0001 \text{ (stat.)} \pm 0.0047 \text{ (exp. syst.)} \pm 0.0014 \text{ (}p_{T} \text{ range)} \pm 0.0060 \text{ (jet size)} \\ &+ 0.0044 \text{ (scale)}_{-0.0011}^{+0.0022} \text{ (PDF choice)} \pm 0.0010 \text{ (PDF eig.)}_{-0.0034}^{+0.0009} \text{ (NP corrections)}, \end{aligned}$$

Pavel Starovoitov (DESY)

APPLGRID

PDF school 34 / 25