LHC Measurements Sensitive to the Proton Structure

João Guimarães da Costa Harvard University

Results included from: ATLAS, CMS, LHCb

Proton Structure in the LHC Era, DESY

October 24, 2012

The Experiments

ector

Outline

- **W and Z production at LHC**
 - Inclusive and differential cross sections
- **W+HF**
- Drell-Yan production
- Inclusive jet production
- **Dijet production**

W/Z inclusive production in e/μ channel

pp-Z + X→ ee

Hadronic W Production

xf

0.8

0.6

0.4

0.2

 10^{-3}

A. Cooper-Sarkar

10-2

10⁻¹

Additional valence u compared to $d \Rightarrow W^+$ production favored over W⁻

х

W⁺ and W⁻ Rapidity

Rapidity dependence of W⁺/W⁻ production sensitive to differences in u and d

Flavor Decomposition

 Dominant W production mode is ud quark annihilation

- Valence u gives broader structure in y for W^+
- Significant contribution of sea quarks
 - **•** Total about 30%, particularly at low y

2

0

-2

n

2

0

-2

2

W/Z cross section measurements

 ATLAS, CMS and LHCb published precision measurements with 2010 data --> relatively recent publications

Phys. Rev. D85 (2012) 072004

JHEP 10 (2011) 132

Much larger datasets are now available $\sqrt{s} = 7 \text{ TeV}, 5 \text{ fb}^{-1}$ $\begin{cases} W \rightarrow e/\mu v : \sim 25 \text{ Million} \\ Z \rightarrow ee/\mu\mu : \sim 3 \text{ Million} \end{cases} + \begin{cases} \sqrt{s} = 8 \text{ TeV} \\ \sim 6 \text{ fb}^{-1} \end{cases}$

Fiducial phase space

	$W \to e\nu$:	$p_{T,e} > 20 \text{ GeV}, \eta_e < 2.47,$
,		excluding $1.37 < \eta_e < 1.52$,
l))		$p_{T,\nu} > 25 \text{ GeV}, m_T > 40 \text{ GeV};$
~	$W o \mu \nu$:	$p_{T,\mu} > 20 \text{ GeV}, \eta_{\mu} < 2.4,$
		$p_{T,\nu} > 25 \text{ GeV}, m_T > 40 \text{ GeV};$
	$Z \rightarrow ee:$	$p_{T,e} > 20 \text{ GeV}$, both $ \eta_e < 2.47$,
		excluding $1.37 < \eta_e < 1.52$,
		$66 < m_{ee} < 116 \mathrm{GeV};$
	Forward $Z \rightarrow ee$:	$p_{T,e} > 20 \text{ GeV}$, one $ \eta_e < 2.47$,
4		excluding $1.37 < \eta_e < 1.52$,
1		other $2.5 < \eta_e < 4.9$,
		$66 < m_{ee} < 116 \mathrm{GeV};$
	$Z ightarrow \mu \mu$:	$p_{T,\mu} > 20 \text{ GeV}$, both $ \eta_{\mu} < 2.4$,
		$66 < m_{\mu\mu} < 116 \text{GeV}$.

Fiducial cross section

Uncertainties: Electron channel

	$\delta\sigma_{W^{\pm}}$	$\delta\sigma_{W+}$	$\delta\sigma_{W-}$	$\delta\sigma_Z$	
Trigger	0.4	0.4	0.4	< 0.1	
Electron reconstruction	0.8	0.8	0.8	1.6	
Electron identification	0.9	0.8	1.1	1.8	
Electron isolation	0.3	0.3	0.3		
Electron energy scale and resolution	0.5	0.5	0.5	0.2	
Non-operational LAr channels	0.4	0.4	0.4	0.8	
Charge misidentification	0.0	0.1	0.1	0.6	
QCD background	0.4	0.4	0.4	0.7	
$Electroweak+t\overline{t}$ background	0.2	0.2	0.2	< 0.1	
$E_{\rm T}^{\rm miss}$ scale and resolution	0.8	0.7	1.0	_ <	
Pile-up modeling	0.3	0.3	0.3	0.3	
Vertex position	0.1	0.1	0.1	0.1	
$C_{W/Z}$ theoretical uncertainty	0.6	0.6	0.6	0.3	
Total experimental uncertainty	1.8	1.8	2.0	2.7	
$A_{W/Z}$ theoretical uncertainty	1.5	1.7	2.0	2.0	
Total excluding luminosity	2.3	2.4	2.8	3.3	
Luminosity	3.4				

Extrapolation

(1.8% in 2011)

Uncertainties: Muon channel

	$\delta\sigma_{W^{\pm}}$	$\delta\sigma_{W+}$	$\delta\sigma_{W-}$	$\delta\sigma_Z$	
Trigger	0.5	0.5	0.5	0.1	
Muon reconstruction	0.3	0.3	0.3	0.6	
Muon isolation	0.2	0.2	0.2	0.3	
Muon $p_{\rm T}$ resolution	0.04	0.03	0.05	0.02	
Muon $p_{\rm T}$ scale	0.4	0.6	0.6	0.2	
QCD background	0.6	0.5	0.8	0.3	
$Electroweak+t\bar{t}$ background	0.4	0.3	0.4	0.02	
$E_{\rm T}^{\rm miss}$ resolution and scale	0.5	0.4	0.6	-	
Pile-up modeling	0.3	0.3	0.3	0.3	
Vertex position	0.1	0.1	0.1	0.1	
$C_{W/Z}$ theoretical uncertainty	0.8	0.8	0.7	0.3	
Total experimental uncertainty	1.6	1.7	1.7	0.9	
$A_{W/Z}$ theoretical uncertainty	1.5	1.6	2.1	2.0	Extrapolation
Total excluding luminosity	2.1	2.3	2.6	2.2	
Luminosity 3.4					(1.8% in 2011)

W inclusive cross section

Z inclusive cross section

Fiducial W and Z Cross Sections

ATLAS measures fiducial cross sections

Phys. Rev. D85 (2012) 072004

OFiducial: W⁺ versus W⁻

No theoretical uncertainty from extrapolation outside experimental acceptance

σTotal: W⁺ versus W⁻

Some differentiation between PDF sets already observed now

JR09 seems to be the most discrepant

Fiducial W and Z Cross Sections

ATLAS measures fiducial cross sections

Phys. Rev. D85 (2012) 072004

 $\sigma_{Fiducial}: W^{\pm} versus Z$

• No theoretical uncertainty from extrapolation outside experimental acceptance

σ_{Total} : W[±] versus Z

Luminosity 3.4%

Some differentiation between PDF sets already observed now

JR09 seems to be the most discrepant

Lepton Universality

Phys. Rev. D85 (2012) 072004

Guimaraes

Structure

in

the

LHC

Era

DESY

2012

Joao

Ratio W and Z Cross Sections

Benefits from experimental and theoretical systematics cancellation JHEP 10 (2011) 132 Phys. Rev. D85 (2012) 072004

Proton Structure in the LHC Era **DESY 2012** Joao Guimaraes 19

W and Z production at $\sqrt{s} = 8$ TeV

Z boson observation at $\sqrt{s} = 8 \text{ TeV}$ **Z** $\rightarrow \mu\mu$

POWHEG+PYTHIA 8 MC CT 10.0

Distributions normalized to data

W and Z production at $\sqrt{s} = 8$ TeV

W and Z Inclusive Cross Sections

CMS-PAS-12-011

W and Z Production at LHCb

LHCb: Measurements extended up to $|\eta_1| = 4.9$

$d\sigma_W/d\eta_I$ versus NNLO PDF predictions

W charge asymmetry: update

arXiv:1206.2598

Discrimination between PDF at low $|\eta|$

Proton Structure in the LHC Era **DESY 2012** Joao Guimaraes

Strangeness in the Proton (from W and Z data) Phys.Rev.Lett. 109 (2012) 012001

- QCD fit of ATLAS differential distributions for W⁺, W⁻ and Z with HERA e[±]p DIS data
 - NNLO pQCD analysis

 $\mathbf{r}_{\mathbf{s}}$

- HERAFitter framework with MCFM+APPLGRID NLO QCD
- Corrected to NNLO QCD using k factors

 $= \frac{0.5(s + \bar{s})}{\bar{d}} \qquad r_s = 0.5 \text{ fixed: } \chi^2/\text{ndf} = 44.5/30 \\ r_s \text{ free: } \chi^2/\text{ndf} = 33.9/30$

Strangeness in the Proton (from W and Z data)

Phys.Rev.Lett. 109 (2012) 012001

Strangeness in the Proton

Phys.Rev.Lett. 109 (2012) 012001

No strange sea suppresion observed

Proton Structure in the LHC

Era

DESY 2012

Joao

Strangeness in the Proton (from W and Z data)

Phys.Rev.Lett. 109 (2012) 012001

Fit results:

Light quark sea at low x is flavor symmetric (x ~0.023, Q² = 1.9 GeV²)
Total sea enhancement of 8%

W + Charm Production at LHC

Proton Structure in the LHC Era **DESY 2012** Joao Guimaraes 34

W + b Production at LHC

Important background for Higgs and top

Agreement with theoretical expectations at 1.5σ level

Drell-Yan Production

Drell-Yan Production at LHC

Low-mass DY constraints low-x region

DY double-differential cross section (CMS)

CMS-PAS-EWK-11-007

Significant differences between data, POWHEG NLO and FEWZ NNLO calculations at low mass

Drell-Yan production in forward region (LHCb)

LHCb-CONF-2012-013

Proton Structure in the LHC

Era

DESY 2012

Jet Production

Jet Measurements

Jet algorithm:

- anti-kt with distance parameter R=0.4 and R=0.6
 - Defined at parton, particle and detector lever
- Measurement
 - Unfolding data from detector effect (--> particle level)
- Predictions:
 - NLO pQQCD with non-perturbative corrections
 - Compare different generators, tunes and PDFs

Inclusive Jet and Dijet Cross Sections at 7 TeV

Proton Structure in the LHC Era **DESY 2012** Joao Guimaraes 42

Inclusive Jet and Dijet Cross Sections at 7 TeV

Inclusive jet cross section

Good general agreement

Proton

ATLAS-CONF-2012-128

Measurement made in the kinematic regions: $20 \le pT < 430$ GeV and |y| < 4.4

R=0.4

Luminosity uncertainty: 2.8%

ATLAS-CONF-2012-128

Systematic uncertainties

Uncertainty source	y bins						Correlation	
	0-0.3	0.3-0.8	0.8-1.2	1.2-2.1	2.1-2.8	2.8-3.6	3.6-4.4	to 7 TeV
Trigger efficiency	<i>u</i> ₁	u_1	u_1	u_1	u_1	u_1	u_1	N
Jet reconstruction eff.	83	83	83	83	84	85	86	Y
Jet selection eff.	<i>u</i> ₂	u_2	u_2	u_2	u_2	u_2	u_2	N
JES1: Noise thresholds	1	1	2	3	4	5	6	Υ
JES2: Theory UE	7	7	8	9	10	11	12	Y
JES3: Theory showering	13	13	14	15	16	17	18	Y
JES4: Non-closure	19	19	20	21	22	23	24	Y
JES5: Dead material	25	25	26	27	28	29	30	Y
JES6: Forward JES generators	88	88	88	88	88	88	88	*
JES7: E/p response	32	32	33	34	35	36	37	Y
JES8: E/p selection	38	38	39	40	41	42	43	Y
JES9: EM + neutrals	44	44	45	46	47	48	49	Y
JES10: HAD <i>E</i> -scale	50	50	51	52	53	54	55	Y
JES11: High p_T	56	56	57	58	59	60	61	Y
JES12: E/p bias	62	62	63	64	65	66	67	Y
JES13: Test-beam bias	68	68	69	70	71	72	73	Y
JES15: Forward JES detector	89	89	89	89	89	89	89	*
Jet energy resolution	76	76	77	78	79	80	81	Y
Jet angle resolution	82	82	82	82	82	82	82	Y
Unfolding: Closure test	74	74	74	74	74	74	74	N
Unfolding: Jet matching	75	75	75	75	75	75	75	N
Luminosity	87	87	87	87	87	87	87	N

Calorimeter and jet reconstruction common to both analyses at 7 TeV and 2.76 TeV Jet energy scale (JES) systematics are largely correlated between the two analyses

Uncertainties on 2.76TeV jet cross section

Uncertainties on the ratio 2.76 TeV to 7 TeV jet cross sections

Systematic uncertainties are large ==> not easy to assess PDF impact

Cross section ratio 2.76 TeV/7 TeV

Ratio of experimental uncertainties is reduced and generally smaller than the theory uncertainty

Proton Structure in the LHC Era **DESY 2012** Joao Guimaraes 48

Assessment of effect on PDFs

Fit HERA data together with ATLAS 7 TeV and 2.76 TeV data

Jet cross sections at CMS

Double differential cross sections

Inclusive

Using full dataset at 7 TeV

Jet cross sections at CMS

Inclusive

Dijets

Jet cross sections at CMS

Inclusive

Dijets

Conclusions

- Large Hadron Collider program well underway towards precision physics
 - PDF uncertainties are still a major systematic uncertainty for many physics analysis
- ATLAS, CMS and LHCb are already providing interesting constraint to PDFs
 - W and Z production
 - W+heavy flavor
 - **Drell-Yan production**
 - **Inclusive jet production**
 - **Dijet production**
 - **Photon inclusive production**
- Much more data available
 - **Expect significant improvements in the near future**

•φ) silicon stations e:7mm when stable beams + AEROGEL aration for 2<p<60 GeV + straw tubes + 4Tm 45%

RICH2: CF₄

π/K separation for 20<p<100 GeV</p>

CALO:

- ECAL: lead+scintillating tiles
- HCAL: iron+scintillation tiles

MUON

INIVIPUT-GEINI: π/μ separation

ent

 $\sigma(pp \rightarrow W) \times BR(W \rightarrow lv) [nb]$

A. Kropivnitskaya

CMS: W and Z cross sections at $\forall s = 8$ TeV

- CMS requested special LHC conditions during luminosity ramp up period to achieve low pile-up events (~5) for good MET resolution at W:
 - → LHC separate beams in transverse plane to reduce effective overlap
 - → separation was periodically adjust to keep instantaneous L_{inst} ~ 3E32 - 6E32 cm⁻²s⁻¹
 - → Integrated $\mathcal{L} = 18.8 \text{ pb}^{-1}$
 - → Special HLT menu with low t CMS 1s: 22 GeV for e and 15 GeV for
 - minimal ID/Iso requirement to suppress background

Event Selection:

e-channel:

 $E_T > 25$ GeV and $|\eta| < 2.5$, exclude 1.4442 < $|\eta| < 1.566$ (barrel/forward transition) W \rightarrow ev: Reject events with 2nd e with $E_T > 20$ GeV

µ-channel:

- $p_T > 25 \text{ GeV}$ and $|\eta| < 2.1$
- W \rightarrow µv: Reject events with 2nd µ with p_T > 10 GeV
- Z→ll: 60 GeV < M_{ll} < 120 GeV

The dominant source of systematic uncertainty:

- Experimental:
 - Luminosity (4.4%) for absolute cross sections
 - Lepton efficiency (1-3%)
- Theoretical uncertainty in acceptance (2-3%)
- Theoretical:
- PDFs
- Higher order QCD corrections
- Higher order electroweak corrections

56

Monte Carlo Samples

Physics process	Generator	$\sigma \cdot \text{BR [nb]}$	
$W^+ \to \ell^+ \nu \ (\ell = e, \mu)$	Mc@Nlo	$6.16 {\pm} 0.31$	NNLO
$W^- \to \ell^- \bar{\nu} \ (\ell = e, \mu)$	Mc@Nlo	$4.30 {\pm} 0.21$	NNLO
$Z/\gamma^* \to \ell\ell (m_{\ell\ell} > 60 \text{ GeV}, \ \ell = e, \mu)$	Mc@Nlo	$0.99{\pm}0.05$	NNLO
$W \to \tau \nu$	Pythia	$10.46 {\pm} 0.52$	NNLO
$Z/\gamma^* \to \tau \tau (m_{\tau \tau} > 60 \text{ GeV})$	Pythia	$0.99{\pm}0.05$	NNLO
$t\overline{t}$	Mc@Nlo	$0.165\substack{+0.011\\-0.016}$	\approx NNLO
WW	HERWIG	$0.045 {\pm} 0.003$	NLO
WZ	HERWIG	$0.0185 {\pm} 0.0009$	NLO
ZZ	HERWIG	$0.0060 {\pm} 0.0003$	NLO
Dijet (e channel, $\hat{p}_{\rm T} > 15 {\rm ~GeV}$)	Pythia	1.2×10^{6}	LO
Dijet (μ channel, $\hat{p}_{\rm T} > 8 \text{ GeV}$)	Pythia	10.6×10^{6}	LO
$b\overline{b} \ (\mu \text{ channel}, \ \hat{p}_{\mathrm{T}} > 18 \text{ GeV}, \ p_{\mathrm{T}}(\mu) > 15 \text{ GeV})$	Pythia	73.9	LO
$c\overline{c} \ (\mu \text{ channel}, \ \hat{p}_{\mathrm{T}} > 18 \text{ GeV}, \ p_{\mathrm{T}}(\mu) > 15 \text{ GeV})$	Pythia	28.4	LO

QCD normalized with data-driven techniques

Details on MC Simulation

- Signal and background models:
 - **LO MC:**
 - **PYTHIA 6.4 with MRST LO* PDF**
 - **HERWIG with MRST LO* PDF**
 - **NLO MC:**
 - MC@NLO with CTEQ 6.6 (+ HERWIG for hadronization and parton shower)
 - **POWHEG with CTEQ 6.6 (+ HERWIG)**
 - Final state QED radiation
 - **PHOTOS**
 - Minimum bias and underlying event
 - ATLAS tunes from first data
 - **Pile-up simulation:**
 - **Overlay of simulated minimum bias events over hard-scattering**
 - Transverse momentum of W and Z reweighted to match data

ATLAS detector response

GEANT4 1

W/Z Inclusive: ATLAS Systematics

Detailed systematic uncertainties

Luminosity: 3.4%

Electron channels (%)	W^{\pm}	W^+	W^{-}	Z	Muon channels (%)	W^{\pm}	W^+	W^{-}	Z
Trigger	0.4	0.4	0.4	<0.1	Trigger	0.5	0.5	0.5	0.1
Reconstruction	0.8	0.8	0.8	1.6	Reconstruction	0.4	0.3	0.3	0.6
Identification	0.9	0.8	1.1	1.8	Isolation	0.2	0.1	0.2	0.3
Isolation	0.3	0.3	0.3	_	no Resolution	0.04	0.03	0.05	0.02
Energy scale and resolution	0.5	0.5	0.5	0.2		0.04	0.05	0.05	0.02
Defective LAr channels	0.4	0.4	0.4	0.8	p_{T} Scale	0.4	0.6	0.6	0.2
Charge misidentification	<0.1	0.1	0.1	0.6	$E_{\mathrm{T}}^{\mathrm{miss}}$	0.5	0.4	0.6	-
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.8	0.7	1.0		Pile-up	0.3	0.3	0.3	0.3
Pile-up	0.3	0.3	0.3	0.3	Vertex position	0.1	0.1	0.1	0.1
Vertex position	0.1	0.1	0.1	0.1	QCD Background	0.6	0.5	0.8	0.3
QCD Background	0.4	0.4	0.4	0.7	$EWK+t\bar{t}$ Background	0.4	0.3	0.4	0.02
$EWK{+}tar{t}$ Background	0.2	0.2	0.2	<0.1			0.0	0.7	0.2
$C_{W/Z}$ Theor. uncertainty	0.6	0.6	0.6	0.3	C_W/Z Theor. Uncertainty	0.8	0.8	0.7	0.5
Total Exp. uncertainty	1.8	1.8	2.0	2.7	Total Exp. uncertainty	1.6	1.7	1.7	0.9
$A_{W/Z}$ Theor. uncertainty	1.4	1.6	1.9	1.9	$A_{W/Z}$ Theor. uncertainty	1.4	1.6	2.0	2.0
Total excluding Luminosity	2.3	2.4	2.8	3.3	Total excluding Luminosity	2.1	2.3	2.6	2.2

CMS Cross Section Measurements

W/Z Inclusive: CMS Systematics

Detailed systematic uncertainties

Luminosity: 4%

Source	$W \rightarrow e\nu$	$W \rightarrow \mu \nu$	$Z \rightarrow e^+e^-$	$Z \rightarrow \mu^+ \mu^-$
Lepton reconstruction & identification	1.4	0.9	1.8	n/a
Trigger prefiring	n/a	0.5	n/a	0.5
Energy/momentum scale & resolution	0.5	0.22	0.12	0.35
$E_{\rm T}$ scale & resolution	0.3	0.2	n/a	n/a
Background subtraction / modeling	0.35	0.4	0.14	0.28
Trigger changes throughout 2010	n/a	n/a	n/a	0.1
Total experimental	1.6	1.1	1.8	0.7
PDF uncertainty for acceptance	0.6	0.8	0.9	1.1
Other theoretical uncertainties	0.7	0.8	1.4	1.6
Total theoretical	0.9	1.1	1.6	1.9
Total (excluding luminosity)	1.8	1.6	2.4	2.0

Proton Structure in the LHC Era **DESY 2012** Joao Guimaraes

W charge asymmetry: Comparison with first publication

- Change in systematic uncertainties and correction factors
 - efficiency scale-factor
 - * MET
 - momentum scale corrections
 - boson p_T reweighting
 - * theoretical CW

Electron and muon channel combined

cture the oao Guimaraes

Predictions: FEWZ v2.0 + MSTW08

Fiducial measurement

Predictions: Different event generators

Fiducial measurement

Ratio to RESBOS

Transverse momentum distribution of W bosons

Phys.Rev. D85 (2012) 012005

Transverse momentum distribution of W bosons

Phys.Rev. D85 (2012) 012005

Proton Structure in the LHC Era **DESY 2012** Joao Guimaraes 67

Z Transverse Momentum at LHC

Proton Structure in the LHC Era **DESY 2012** Joao Guimaraes 68

Measurement of Z and W P_T

Fully unfolded differential distributions

Comparison with RESBOS

Phys.Rev. D85 (2012) 012005

http://www-cdf.fnal.gov/physics/ewk/2011/zpt21/cdf10699/

CMS Z P_T measurement: Phys. Rev. D 85 (2012) 032002

RESBOS tuned to Tevatron data (but not to LHC yet)

69

Comparison of electron- and muon- channel result

W Boson Polarization

Eur. Phys. J. C72 (2012) 2001

Signal:

- MC@NLO 3.4.2 + HERWIG
- POWHEG 1.0 + PYTHIA

(CTEQ 6.6)

Uncertainties: MSTW08 and HERAPDF 1.0

71

W Polarization

Eur. Phys. J. C72 (2012) 2001

Templates from MC@NLO after background subtraction
W Boson Polarization

Eur. Phys. J. C72 (2012) 2001

Phys. Rev. Lett. 107 (2011) 021802

Event selection in tau polarizatio

- 24 pb-1 from 2010 data with tau (16 GeV) + Missing E_{τ} (22 GeV) trigger
- Offline: single-track tau with $p_{\tau} > 20$ GeV and Missing ET greater than 30 GeV
- Reject events with jet activity in region between the central and endcap detectors
- Reject events with electron or muon greater than 15 GeV E_{τ}
- Reject events with jet activity along direction of event Missing E_τ
- Require Missing ET significance > 6

$$S_{E_{\mathrm{T}}^{\mathrm{miss}}} = \frac{E_{\mathrm{T}}^{\mathrm{miss}}}{\sigma(E_{\mathrm{T}}^{\mathrm{miss}})}$$

Based on ATLAS W-> τν cross section measurement: Phys. Lett. B 706, 276 (2012)

July 5, 2012

Sarah Demers, Yale University

 $pp \longrightarrow W + X$ $\downarrow \quad \tau \nu$

W/Z inclusive production in τ channel

i→ττ an

Excellent tau identification at LHC

- **Z** \rightarrow **tt cross section**
 - **CMS:** Published
 - **ATLAS:** New
- $W \rightarrow \tau v$ cross section
 - **ATLAS:** New
- Good prospects for new physics searches with taus

- Excellent tau identification at LHC
- **Z** \rightarrow **tt cross section**
 - **CMS:** Published
 - **ATLAS:** New
- $W \rightarrow \tau v$ cross section
 - **ATLAS:** New
- Good prospects for new physics searches with taus

Tau Polarization

 $\mathbf{P}_{ au} = -1.06 \pm 0.04 \; (ext{stat})^{+0.05}_{-0.07} \; (ext{syst})$

Z forward-backward asymmetry

at Hadron Colliders

CMS PAS EWK-11-004

Phys. Rev. D 84, 012007 (2011)

Unfolded AFB agrees well with theoretical predictions

No evidence for new physics at high-mass

Effective Weak Mixing Angle

DO

 0.2309 ± 0.0008 (stat) ± 0.0006 (syst)

Most precise measurement from Z to light-quark coupling

Statistical uncertainty still dominant

Dominant systematic uncertainty PDF uncertainty (0.00048)

Production rates at Hadron Colliders

Wand Z Fra - DEC Production

- Performance measurements
- SM tests at TeV scale
- Proton PDFs
- Backgrounds for searches

Electroweak Top Production at Hadron Colliders

O(NNLO) (pb) (m _{top} = 172.5 GeV)	s-channel 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	t-channel 9' - 9 w- Vu b- Vu t	Wt-channel
Tevatron @ 1.96 TeV	1.04 ± 0.4	2.26 ± 0.12	0.28 ± 0.06
LHC @ 7 TeV	4.6 ± 0.2	64.6 ^{+2.7} -2.0	15.7 ± 1.1
	Very difficult at LHC		Not possible at Tevatron

Production cross sections in ATLAS

Proton Structure in the LHC Era **DESY 2012** -Joao Guimaraes

New W Boson Mass at the Tevatron

Constraints Higgs mass:

 $\Delta m_t = 0.9 \text{ GeV} \iff \Delta m_W \approx 5 \text{ MeV}$

Need excellent understanding of detector and MC simulation

New W Boson Mass at the Tevatron

PRL 108, 151803 (2012)

Phys. Rev. Lett. 108, 151804 (2011)

W Boson Mass

Dominant uncertainties:

Parton distribution functions: 10-14 MeV Lepton calibration: 16 MeV (D0) / 5 MeV (CDF)

Improvements still to come

More than double statistics with full run II dataset

Precision Electroweak Constraints

Disentangle if "observed" Higgs boson is SM or SUSY-like

Precision Electroweak Constraints

Disentangle if "observed" Higgs boson is SM or SUSY-like

