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Why?

* Including new data in global PDF fits is usually a job for a restricted set
of people who have access to complicated, massive and (mostly) private
codes

* This is especially true when considering hadronic processes, for which the
computations of higher order corrections is computationally very intensive

* Wouldnt it be nice to have a method to quickly assess the impact of new
data on a PDF determination, which is based only on public tools and is as

fast as producing a theory-experiment comparison plot for the dataset
under study?

* Bayesian reweighting provides such a method ... so lets have a closer look!
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Brief history

% First implementation suggested by Giele and Keller, who thought of it as
method for producing new PDF fits

[W. Giele & S. Keller, hep-ph/9803393]

% Reformulated in the context of the NNPDF fits (based on Monte Carlo
methodology for uncertainties estimation) and applied for the first time to

include data in a global PDF fit (NNPDF2.2)
[R.D. Ball et al., arXiv:1012.0836]
[R.D. Ball et al., arXiv:1108.1758]

* Recently extended by G. Watt and R. Thorne to PDF based on the Hessian
method for estimation of uncertainties (see also LHCb studies, De Lorenzi et

al., arXiv:1011.4260)
[G. Watt & R.S. Thorne, arXiv:1205.4024]




Bayesian Rehing
The Idea

* The Nrep replicas of a Monte Carlo PDF set provide a sampling of the
probability density in the space of parton distribution functions

* Expectation values for observables which depend on PDFs are obtained by
taking the average for a given observable over the replica set
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... With corresponding expressions for variances, correlations, etc.

* The central idea of Bayesian reweighting is to assess the impact of
including new data in a PDF determination by updating the probability
density of PDFs without performing a complete refit




Bayesian Reng

The weights formula

* We can apply Bayes Theorem to determine the conditional probability of
the PDF upon inclusion of the new data
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% Averages over the sample are no weighted sums
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% The original sample of replica was constructed through importance sampling

of the old probability distribution and it is thus maximally efficient (i.e. all
replicas are equiprobabile and it gives the best representation of the
probability density for a given number replicas)

* After reweighting the new replicas set will not give anymore a maximally
efficient representation of the new probability distribution

% This loss of efficiency can be quantified using the Shannon Entropy

N
Neg = exp {% Z W ln(N/wk)}
k=1

.,

to estimate the “effective number of replicas” left after reweighting

* The smaller the Shannon entropy the more constraining the new data are




Bayesian Reing

How compatible are the new data with the old ones?

Nt

* If the value of the Shannon entropy obtained after reweighting a prior set
with a given dataset becomes too small the reweighting procedure becomes
unreliable

* There are two reasons why that can happen

** the new data contain a lot of information on PDFs not present in the
prior fit (= refit)

** the new data are incompatible with data included in the prior PDF set

* We can distinguish the two cases by looking at the probability density of
the nuisance parameter (), defined as a rescaling factor for the
uncertainties on the new data

N
P(a) % Zwk(a)
k=1
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Bayesian Reng

How compatible are the new data with the old ones?

*

If the probability density peaks close to one (or below one) the new data
are compatible with the data included in the prior fit

*

If the probability density peaks far above one the uncertainties on the
new data are probably underestimated and these data are thus
incompatible with the data included in the prior fit
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Unweighting PDFs

Obtaining a standard PDF set from a reweighted one

* We want to define a procedure to

generate an unweighted PDF set
(i.e. a set in which all replicas are
equiprobable) starting from one we
constructed via reweighting

* To do that we define the probability
cumulants of the original fit as

k
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* The weights in the new, unweighted,

set are the defined as
Nye
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This is equivalent to the graphical

procedure of picking a number of
replicas from the original reweighted
set which is equal to the number of
lower segments whose right edge is
contained in the upper segment
corresponding fo the specific replica
T — T —




Validating Bayesian re‘ging

Validating the reweighting procedure
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* We now validate the reweighting procedure checking that our methodology
yields results which satisfy a number of consistency tests

* Including a given dataset in a prior fit by reweighting or refitting should
yield statistically equivalent results

% If we include two or more datasets we can choose to include them in a
single step (as a single dataset) or in successive ones: the two procedures
should yield statistically equivalent results

* When including sets in successive steps results should not depend on the
order in which the reweighting is performed

* We will assess the statistical equivalence of different fits by looking at
PDFs and at distances between central values and uncertainties
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Quantitavely measuring equivalence of PDF sets

- . ] t ,'\. _‘, .
> te Abe Lgoas : 1.3 : ae : e
AR s L, G0 U e A L i b Tt G

* We define the distances between central values of two PDF sets as

(<qj>(1) _<q]’>(2))2
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Npart

and similarly for the distances between Standard deviations

* We compute averages over samples of 100 replicas picked from the Monte

Carlo ensembles allowing for repetitions (and we average over 1000 such
samples to tame statistical fluctuations)

* Two statistically equivalent fits have distances ~1

* If two PDFs have a distance of 10 they differ by 1-sigma




Validating Bayesian reweighting

Inclusive jet production at the Tevatron

% Start from NNPDF2.0 DIS+DY fit as a
prior fit

* Add CDF and DO inclusive jet data
through refitting (NNPDF2.0)

% Add CDF & DO jet data via reweighting
as a single dataset

* Add CDF data then unweight and then
add DO data

* Add DO data then unweight and then
add CDF data

* All procedures vyield statistically
equivalent results
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Validating Bayesian reng

Inclusive jet production at the Tevatron

Distance between central values

% Start from NNPDF2.0 DIS+DY fit as a 4
prior fit oL
* Add CDF and DO inclusive jet data g e
through refitting (NNPDF2.0) e
* Add CDF & DO jet data via reweighting
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Validating Bayesian reng

Inclusive jet production and fixed ftarget Drell-Yan

E605/Inclusive Jets - xg(x,Qi)

% Start from NNPDF2.1 DIS fit as a i
prior fit i

Prior (NNPDF 2.1 DIS)
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W(Jets)W(E605)
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* Add E605 Drell-Yan & Tevatron jet
data via reweighting as a single
dataset
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* Add Tevatron jet data then unweight

E605/Inclusive Jets - xV(x,Qz)

and then add E605 Drell-Yan data g e
i p /4 : \ W(Jets)W(E605)
W(E605)W(Jets)
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Validating Bayesian reng

Inclusive jet production and fixed ftarget Drell-Yan

Distance between central values

% Start from NNPDF2.1 DIS fit as a ¢

* Add E605 Drell-Yan & Tevatron jet § 2‘2 E
data via reweighting as a single S asp I,
dataset O_;

* Add Tevatron jet data then unweight leoe oo oo
and 'I'hen add E605 Drell_Yan da-l-a . | Distance between PDF uncertainties
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* Add E605 Drell-Yan data, unweight I
and then add Tevatron jet data s o

% All procedures vyield statistically i 1’? e e
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% In 2011 the first data from the LHC
providing new constraints for PDF fits
appeared

* In particular the W lepton asysmmetry
measurements from ATLAS and CMS,
provided new constraints on light flavour
separation

ot V)T, M) — oy, M)k, M)
YV ua, MB)d(xe, MB,) + d(xq, M2)T(xz, M2,)

W—_

* NNPDF was the first collaboration to
include these data in a global fit using
the Bayesian reweighting fechnique

Bayesian reweighting at work
The NNPDF2.2 PDF set
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Bayesian reweighting at work

The NNPDF2.2 PDF set
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Reweighting for Hessian sets

The Thorne-Watt methodology

[G. Watt & R.S. Thorne, arXiv:1205.4024]

* For Hessian sets (assuming symmetric uncertainties) the uncertainties on a
given observables can be computed as

N RS - F(S;))

\&

* A set of Monte Carlo replicas can then be generated according to

AF =

DO | —

—*

F(Sk) = F(So) + %Z F(SH) = F(S)| R (k=1 Nyar)

—

where Sp is the “central set” and Rj are gaussianly distributed random
numbers




Reweighting for Hessian sets

The Thorne-Watt methodology

[G. Watt & R.S. Thorne, arXiv:1205.4024]

* How well does the Monte Carlo PDF ensemble we generated reproduce the
original probability distribution of PDFs given by the Hessian eigenvectors?

Up valence distribution at Q? = 10* GeV? Gluon distribution at Q* = 10* GeV?
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Reweighting for Hessian sets

The Thorne-Watt methodology

[G. Watt & R.S. Thorne, arXiv:1205.4024]

* Once replicas are generated according fo the recipe given, the very same
Bayesian reweighting methodology described for NNPDF can be used tfo
compute weights and generate a reweighted PDF set including new data
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A public NNPDF reweigh- ool
The nnpdfrw code

% (Soon to be) Publicly available from the NNPDF Collaboration webpage

http://nnpdf.hepforge.org/

* Included as a module in the HERAfitter package (maintainers K. Lohwasser,
AG)

* It is a C++ code, compiled against ROOT libraries for plotting features (soon
to be changed)

% Takes as input a prior PDF set (Monte Carlo replicas) and a given dataset
(input allowed as theory predictions and Covariance Matrix or x? values)

% Return an LHAPDF compatible file (unweighted PDF set) and debugging plots
(P(a), xdistribution per replica, etc.)



http://nnpdf.hepforge.net
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Conclusions &uﬂook

* Inclusion of new data in global PDF fits is usually performed by PDF fitting
collaborations using complicated, massive and (mostly) private codes

* Bayesian reweighting provides a method to quickly assess the impact of
new data on a PDF determination and is based on the use of public tools

* Bayesian reweighting was initially developed for Monte Carlo sets but the
same techniques have recently been extended to be used with Hessian sefts

* Bayesian reweighting proved effective in studying the impact of Tevatron
and LHC data on PDF fits and even producing a new global PDF fits which

incorporates these data (NNPDF2.2)

* A public tool (nnpdfrw) to perform Bayesian reweighting analyses is (soon to
be) available from the NNPDF website

* nnpdfrw (allowing use of MC and Hessian sets) is also available as a module Q@
of the HERAfitter package




