Generator Effects For $t\bar{t}$ Pairs Top Mass In Semileptonic Decays

Alexander Floßdorf

DESY

CMS Hamburg Meeting, January 16th 2008

Contents

Introduction Reconstruction UE / FSR Hadronisation

1 Introduction

Generator events Semileptonic $t\bar{t}$ decay

2 Reconstruction

Top mass

3 UE / FSR

FSR influence UE influence

4 Hadronisation

Correction factors Comparison with full simulation

Introduction Reconstruction UE / FSR Hadronisation

The structure of an event

Warning: schematic only, everything simplified, nothing to scale, ...

Incoming beams: parton densities

Introduction Reconstruction UE / FSR Hadronisation

Hard subprocess: described by matrix elements

Introduction Reconstruction UE / FSR Hadronisation

Resonance decays: correlated with hard subprocess

Introduction Reconstruction UE / FSR Hadronisation

Initial-state radiation: spacelike parton showers

Introduction Reconstruction UE / FSR Hadronisation

Final-state radiation: timelike parton showers

Introduction Reconstruction UE / FSR Hadronisation

Multiple parton-parton interactions

Introduction Reconstruction UE / FSR Hadronisation

... with its initial- and final-state radiation

Introduction Reconstruction UE / FSR Hadronisation

Beam remnants and other outgoing partons

Introduction Reconstruction UE / FSR Hadronisation

Everything is connected by colour confinement strings Recall! Not to scale: strings are of hadronic widths

Introduction Reconstruction UE / FSR Hadronisation

The strings fragment to produce primary hadrons

Introduction Reconstruction UE / FSR Hadronisation

Semileptonic $t\bar{t}$ decay

Introduction Reconstruction UE / FSR Hadronisation

• only signal events are considered ($m_t = 172.3 \text{GeV}$, $\sigma_{m_t} = 3.2 \text{GeV}$)

- only signal events are considered ($m_t = 172.3 \text{GeV}$, $\sigma_{m_t} = 3.2 \text{GeV}$)
- lepton and neutrino four momentums are taken from the generator information

- only signal events are considered ($m_t = 172.3 \text{GeV}$, $\sigma_{m_t} = 3.2 \text{GeV}$)
- lepton and neutrino four momentums are taken from the generator information
- iterative cone jets with a cone 0.5 are used
- jets are required to have $p_T > 20 \text{GeV}$

Introduction Reconstruction UE / FSR Hadronisation

• jets with $\Delta R \ge 0.3$ with respect to the lepton are discarded, i.e. the lepton is isolated

- jets with $\Delta R \ge 0.3$ with respect to the lepton are discarded, i.e. the lepton is isolated
- jets are assigned to the four initial quarks by minimizing ΔR sum between them

- jets with $\Delta R \ge 0.3$ with respect to the lepton are discarded, i.e. the lepton is isolated
- jets are assigned to the four initial quarks by minimizing ΔR sum between them
- $\Delta R < 0.3$ for each quark jet pair is required

- jets with $\Delta R \ge 0.3$ with respect to the lepton are discarded, i.e. the lepton is isolated
- jets are assigned to the four initial quarks by minimizing ΔR sum between them
- $\Delta R < 0.3$ for each quark jet pair is required
- result is an event with only four (correct) jets

Introduction Reconstruction UE / FSR Hadronisation

 perfect b-tagging: the two jets assigned to the quarks are known to be b jets

- perfect b-tagging: the two jets assigned to the quarks are known to be b jets
- leptonic W reconstructed from lepton and neutrino

- perfect b-tagging: the two jets assigned to the quarks are known to be b jets
- leptonic W reconstructed from lepton and neutrino
- hadronic W reconstructed from the two non-b jets

- perfect b-tagging: the two jets assigned to the quarks are known to be b jets
- leptonic W reconstructed from lepton and neutrino
- hadronic W reconstructed from the two non-b jets
- b jets are assigned to the Ws in the way, that the difference in the invariant mass of the two systems is minimized

Mass of hadronically decaying top

- Reconstruction on final state hadrons
- in good agreement with result from Skands and Wicke: shift of approx. 15GeV

Mass of hadronically decaying top

- Reconstruction on final state hadrons
- in good agreement with result from Skands and Wicke: shift of approx. 15GeV

- ISR/MI, FSR and Hadronisation switched off
- Reconstruction on parton level

Top mass with FSR

- FSR switched on
- missing energy in parton level jets shifts mass

Top mass with FSR

Introduction Reconstruction UE / FSR Hadronisation

- FSR switched on
- missing energy in parton level jets shifts mass

• FSR lost outside cone 0.5

FSR of different quark types

Introduction Reconstruction UE / FSR Hadronisation

• FSR outside cone 0.5 for b quarks

• FSR outside cone 0.5 for quarks from W decay

Top mass with $\ensuremath{\mathsf{ISR}}/\ensuremath{\mathsf{MI}}$

- ISR and MI switched on
- mass distribution shifted due to additional particles collected by the jet algorithm

Underlying event content in $|\eta| < 5$

Introduction Reconstruction UE / FSR Hadronisation

UE includes everything except the hard process, i. e. ISR, MI and proton remnant

Underlying event content in $|\eta| < 5$

Introduction Reconstruction UE / FSR Hadronisation

UE includes everything except the hard process, i. e. ISR, MI and proton remnant

• significant amount of p_T in $|\eta| < 5$ due to UE

Underlying event content in $|\eta| < 5$

Introduction Reconstruction UE / FSR Hadronisation

UE includes everything except the hard process, i. e. ISR, MI and proton remnant

• significant amount of p_T in $|\eta| < 5$ due to UE

 influence of UE per jet approx. half as big as influence of FSR

Top mass with $\ensuremath{\mathsf{ISR}}/\ensuremath{\mathsf{MI}}$ and $\ensuremath{\mathsf{FSR}}$

Introduction Reconstruction UE / FSR Hadronisation

Without corrections

Top mass with ISR/MI and FSR

Introduction Reconstruction UE / FSR Hadronisation

Without corrections

Corrected for UE and FSR

Top mass with $\ensuremath{\mathsf{ISR}}/\ensuremath{\mathsf{MI}}$ and $\ensuremath{\mathsf{FSR}}$

Introduction Reconstruction UE / FSR Hadronisation

Without corrections

Corrected for UE and FSR

Sample	mean	sigma	shift	sigma ratio
Pure parton level	172.4	2.3	0.1	1
With UE and FSR	170.5	9.9	1.7	4.3
With UE/FSR correction	181.0	11.1	8.7	4.8

Hadronisation corrections

Introduction Reconstruction UE / FSR Hadronisation

- jets are matched to initial quark ($\Delta R < 0.1$)
- jets are corrected for p_T according whether they are b or non-b jets

- Jet Pt: 50 GeV

Jet Pt: 100 GeV

Jet Pt: 150 GeV

Top mass with hadronisation

Introduction Reconstruction UE / FSR Hadronisation

Without corrections

Top mass with hadronisation

Introduction Reconstruction UE / FSR Hadronisation

Without corrections

With corrected jets

Top mass with hadronisation

Introduction Reconstruction UE / FSR Hadronisation

Without corrections

With corrected jets

Sample	mean	sigma	shift	sigma ratio
Pure parton level	172.4	2.3	0.1	1
With hadronisation	155.8	13.6	16.5	5.9
With hadronisation corrected	175.3	12.4	3.0	5.4

Introduction Reconstruction UE / FSR Hadronisation

- only muon decays
- muon assignment is uniquely

Introduction Reconstruction UE / FSR Hadronisation

- only muon decays
- muon assignment is uniquely
- reconstruct neutrino with MET and W mass constraint (ambiguity in p_z)

Introduction Reconstruction UE / FSR Hadronisation

- only muon decays
- muon assignment is uniquely
- reconstruct neutrino with MET and W mass constraint (ambiguity in p_z)
- four jets with highest p_T with correction factors, no b-tagging

Introduction Reconstruction UE / FSR Hadronisation

- only muon decays
- muon assignment is uniquely
- reconstruct neutrino with MET and W mass constraint (ambiguity in p_z)
- four jets with highest p_T with correction factors, no b-tagging
- assign those two jets to hadronically decaying W which are cloest to W mass

Introduction Reconstruction UE / FSR Hadronisation

- only muon decays
- muon assignment is uniquely
- reconstruct neutrino with MET and W mass constraint (ambiguity in p_z)
- four jets with highest p_T with correction factors, no b-tagging
- assign those two jets to hadronically decaying W which are cloest to W mass
- assign b jets to tops by minimizing the difference of the top masses

	mean	sigma
Generator level	168.4	19.0
Reco level	177.5	41.6

- ISR, FSR, hadronisation on the one hand and detector effects on the other hand both have big influences on the width of the mass distribution
- detector effect approx. twice as big as generator effect

Summary

Introduction Reconstruction UE / FSR Hadronisation

Influences on top mass distribution

- ISR/MI and FSR lead to a widening of the distribution
- hadronisation widens the distribution and shifts the mean significantly
- on generator level reasonable corrections can be applied
- detector effects influence mean and width as well

Summary

Introduction Reconstruction UE / FSR Hadronisation

Influences on top mass distribution

- ISR/MI and FSR lead to a widening of the distribution
- hadronisation widens the distribution and shifts the mean significantly
- on generator level reasonable corrections can be applied
- detector effects influence mean and width as well

Influence on the width

effect	widening
ISR/MI and FSR	4.3
hadronisation	1.4
detector	2
total	12