
Good practices in software development
Jan Engels 1

Jan Engels
9th. July 2012

Good practices in
Software development

Good practices in software development
Jan Engels 2

A few words about this talk

● Software development is sometimes considered an “Art”
– Any artist needs to learn some basic techniques before starting to paint

● There is no such thing as “perfect coding styles”
– All programmers have their own personal preferences and we are all just human beings!

● But...
– All of us can try to follow very simple rules in order to write better software

● This talk...
– Will highlight some of the most important “basic rules”
– Will focus on rules which are programming language independent
– Hopefully will convince many of us to stick to some of the rules :)

Good practices in software development
Jan Engels 3

Outline

Good practices in software development
Jan Engels 4

Analysis & Design

● Analysis & Design
– Analysis
– Use cases
– Requirements
– Specification

Good practices in software development
Jan Engels 5

Analysis

● Analysis

– What is the software supposed to do?
– Who will be the end users?
– How much time to invest in development?
– Is security relevant?
– Scalability
– Compatibility
– Performance
– What will be the maintenance costs?
– ...

● Defining use cases

– Types of users
– Description of tasks and workflows

Good practices in software development
Jan Engels 6

Analysis

● Requirements

– What must the software be able to do?
– What environment will the software need to run on?
– Performance requirements
– Storage requirements
– Security requirements
– Scalability requirements
– Compatibility

● Specification

– How should the requirements be fulfilled
– Technologies, standards, services ...

Good practices in software development
Jan Engels 7

Design

● Design

– Develop a concrete plan to solve the problem defined in the Analysis phase
– Design patterns, e.g. Model View Controler Pattern (MVC)
– Use of modeling languages
– What programming language(s)/tools to choose?

● Development time Vs. Application performance
– Security

● Not something that can be added later on!
– Dependencies

● Can I (or do I need to) use existing libraries?
● Evaluate existing solutions

Good practices in software development
Jan Engels 8

Implementation

● Implementation
– Source control management tools
– Libraries
– Logging
– Configurability
– Coding guidelines
– Tips and good programming practices

Good practices in software development
Jan Engels 9

Implementation

● Source code management tools (SCM)

– CVS, SVN, Git, Mercurial...
● https://svnsrv.desy.de

– Start using SCM as soon as possible in your project!
– Code is automatically backed up
– Share code with other people

● Other people might help fixing bugs or even adding features
– Go back to a previous state in time

● Freedom to experiment without fear of breaking things
– Branching, Tagging, Patching
– Code Sign Off
– Crucial for defining workflows

● production vs. development branches
● Releasing

– Request tracker
● https://rt-system.desy.de

https://svnsrv.desy.de/
https://rt-system.desy.de/

Good practices in software development
Jan Engels 10

Implementation

● Libraries

– Why libraries?
– Share code/functionality in and/or between applications
– Help prevent the “spaghetti-code” phenomena

Good practices in software development
Jan Engels 11

Implementation

● Libraries

– Difference between private and public!
– Every method exposed in a public API involves documentation and a bit maintenance
– Building a good library generally increases the overall development time but code

becomes usually well documented and tested
– Versioning

● Increase major version when API changes and backwards compatibility is broken
● Increase minor version when changes are made but API is still backwards compatible
● Increase patch version when only bugfixes/patches are made

Good practices in software development
Jan Engels 12

Implementation

● Libraries (C++ only)

– Static libraries
● Includes all dependencies (good for shipping pre-compiled binaries)
● Slightly faster when loading binary into memory

– Shared libraries
● As name suggests the library is shared (in disk and in memory)
● Applications do not need to be recompiled for using a newer library

– unless major version changes
● Can be loaded dynamically at run-time (plugins)
● Smaller binaries
● RPATH vs RUNPATH vs LD_LIBRARY_PATH and LD_PRELOAD

– LD_LIBRARY_PATH: environment variable to specify additional search paths for libraries
– LD_PRELOAD: preload a library before executing any application (DANGER!)
– RPATH: hardcoded path NOT overwritten by LD_LIBRARY_PATH
– RUNPATH: same as RPATH but overwritten by LD_LIBRARY_PATH (--enable-new-dtags)
– readelf -d <bin> # display hard-coded rpaths in libraries/binaries

● Difference between putting code in source or in header files

Good practices in software development
Jan Engels 13

Implementation

● Logging

– Start using a logging library from the very beginning in your project
● Saves you time in the long term..

– Some programming languages have a logging library “built-in”
– Easily add an option to run applications “quietly” or in debug mode
– Using a logging library makes debugging applications easier

● Splitting different logging levels into different files
● Configurable logging for different libraries/classes

– Logging across the network
– Log file rotation

● One of sysadmin's favorite problems are disks getting full due to log files!
● Either provided by logging library or linux standard logging facility

– Linux standard logging facility: syslog, logger, logrotate

Good practices in software development
Jan Engels 14

Implementation

● Configurability

– Command line options
● Make your application more portable and easier to maintain
● There are many standards and libraries out there: e.g. getopt

– Configuration files
● Useful for storing profiles or different settings of configurations
● Some languages include standard libraries for this purpose

– Environment variables
● Useful for sharing configuration settings across applications
● Use only for settings which must be common at any time between all applications

– Dependencies between configuration settings

– Use a database?
● Object-relational mapping

Good practices in software development
Jan Engels 15

Implementation

● Tips and good programming practices

– Lazy programmers are good programmers ;)
● DRY principle: Only change things in one single place in code

– Readability counts!
● pol=$(echo "scale=3 ;$([[$pol =~ L$|R$]] && pol=${pol}100 ; echo $pol | tr "LR" "- ") / 100.0" | bc)
● Numerous conventions exist for different programming languages
● What do you think is easier to read?
● NumberValves = NumberValvesPerCylinder * NumberCylinders
● nv=nvpc*nc

– Comments
● Imagine looking at your code in 2 years from now on :)
● Be able to hand over your code to someone else

Good practices in software development
Jan Engels 16

Implementation

● Tips and good programming practices

– Never trust user input under any circumstances!
– Never trust user input under any circumstances!
– Never trust user input under any circumstances!
– ...
– On client-server applications, always make sure to check user input on server side!

Good practices in software development
Jan Engels 17

Implementation

● Tips and good programming practices

– Recursion
● Try to avoid recursion unless you are programming in “recursive-friendly” languages ;)
● Performance...
● Memory consumption...
● No control over the calling sequence

Recursive Iterative

N = 35 10 sec 0.05 sec

N = 40 1 min 30 sec 0.05 sec

N = 45 20 min 0.05 sec

N = 100.000 ZzzZzZz... 0.5 sec

Good practices in software development
Jan Engels 18

Testing

● Testing
– Different types of testing
– Automated testing
– Writing tests
– Test driven development

Good practices in software development
Jan Engels 19

Testing

● Different types of testing

– Unit tests
● Very useful to test fundamental building blocks in your application
● Many standard libraries available
● Generally requires writing many tests

– Smoke tests
● Does software compile?
● Memory coverage
● Does some test/example run without crashing?

– White/Black-box tests
● White-box tests aim at stressing potential failure points in code
● Black-box tests ensure the API works as defined

Good practices in software development
Jan Engels 20

Testing

● Different types of testing

– Functional tests
● Concept similar to unit tests
● Tests functionality

– Regression/integrity tests
● Ensure test results do not change over time or platform
● Good for testing overall interaction of components in your project
● Sometimes it's harder to find exactly what went wrong in this kind of tests

– Scalability tests
● Useful if you expect your application to deal with very large quantities
● Often hard to realize

Good practices in software development
Jan Engels 21

Testing

● Writing tests

– Test suites provide you some guidelines and tools
– Try to avoid parsing logfiles and matching regular expressions
– Program examples can often serve as test cases
– Test definitions vary greatly

● Test suites generally provide flexible tools to allow writing all kind of tests
● When writing test macros be careful not to restrict too much!

Good practices in software development
Jan Engels 22

Testing

● Automated testing

– If possible, run tests on many different platforms
– Nightly/Commit-tests / Nightly/Commit-builds

● Crucial to spot errors as soon as possible
● Reduces debugging time dramatically

– Test suites
● ctest, hudson, ...

– Valgrind
● valgrind -v --tool=memcheck --leak-check=full <bin>

– Virtual machines
● Snapshots

– /dev/null
● very useful for some types of tests!

Good practices in software development
Jan Engels 23

Testing

● Test Suites (e.g. CTest)

Good practices in software development
Jan Engels 24

Testing

● Test Suites (e.g. CTest)

Good practices in software development
Jan Engels 25

Testing

● Test driven development

– Write tests before starting the implementation
– Enforces testing from the very beginning
– Good for projects having many algorithm libraries
– Improves documentation
– Helpful if more than one person is involved in the project
– Also helpful for establishing priorities

Good practices in software development
Jan Engels 26

Maintenance

● Maintenance
– Dependencies
– Releasing
– Deployment
– Documentation

Good practices in software development
Jan Engels 27

Maintenance

● Dependencies

– Internal dependencies
● Create subpackages or rather re-organize internal code/package directory structure?
● Each subpackage requires additional maintenance when releasing
● Some tools can generate dependency graphs (e.g. cmake)

Good practices in software development
Jan Engels 28

Maintenance

● External dependencies

– Adding new dependency is easy, removing can be quite painful
● Wrappers around API's / typedefs

– Requires substantial amount of additional development time and maintenance!

– Platform provided packages
● Usually support is good
● Must use system version... Not always possible :(

– Build external packages yourself
● Requires additional maintenance

– Don't copy external code into your project...
● Only hides the real dependency!
● In the end can cost you more work than it saves you in the beginning
● You become responsible for updates and security

– Support provided? Is it good? For how long?

Good practices in software development
Jan Engels 29

Maintenance

● Releasing

– Create a release policy
● Once release branch is announced only patches and bugfixes allowed!
● Distinguish between development and production releases
● Debug vs stripped binaries
● Packaging (see next slide)

Good practices in software development
Jan Engels 30

Maintenance

● Deployment

– Who are the end users?
– What environment will the software need to run on?
– Need to pack dependencies?
– Tarball Vs. System packages
– Some build tools provide nice tools for packaging, e.g. cpack
– Debug, Release, Source packages

Good practices in software development
Jan Engels 31

Maintenance

● Documentation

– Undocumented code is unwritten code

– Use auto-generating doctools in your project, such as doxygen, javadoc...

– Try to find someone else to read your documentation

– Importance of good documentation is usually underestimated

– Documentation increases maintenance but reduces the overall support costs

Good practices in software development
Jan Engels 32

Summary

● Do some analysis and design before starting your project
● Evaluate what libraries/tools might be helpful to use in your project
● Start using source code management tools as soon as possible
● Testing is as important as code!
● Use logging
● Split configuration and settings from source code
● Use standard cmd line argument parsing tools
● Don't neglet configurability
● Don't trust user input under any circumstances!
● Don't give end users more than they need
● Don't forget the documentation
● Try to keep it simple!

Thanks for listening, your feedback is welcome!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

