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A few words about this talk

● Software development is sometimes considered an “Art”
– Any artist needs to learn some basic techniques before starting to paint

● There is no such thing as “perfect coding styles”
– All programmers have their own personal preferences and we are all just human beings!

● But...
– All of us can try to follow very simple rules in order to write better software

● This talk...
– Will highlight some of the most important “basic rules”
– Will focus on rules which are programming language independent
– Hopefully will convince many of us to stick to some of the rules :)
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Outline



Good practices in software development
Jan Engels 4

Analysis & Design

● Analysis & Design
– Analysis
– Use cases
– Requirements
– Specification
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Analysis

● Analysis

– What is the software supposed to do?
– Who will be the end users?
– How much time to invest in development?
– Is security relevant?
– Scalability
– Compatibility
– Performance
– What will be the maintenance costs?
– ...

● Defining use cases

– Types of users
– Description of tasks and workflows
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Analysis

● Requirements

– What must the software be able to do?
– What environment will the software need to run on?
– Performance requirements
– Storage requirements
– Security requirements
– Scalability requirements
– Compatibility

● Specification

– How should the requirements be fulfilled
– Technologies, standards, services ...
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Design

● Design

– Develop a concrete plan to solve the problem defined in the Analysis phase
– Design patterns, e.g. Model View Controler Pattern (MVC)
– Use of modeling languages
– What programming language(s)/tools to choose?

● Development time Vs. Application performance
– Security

● Not something that can be added later on!
– Dependencies

● Can I (or do I need to) use existing libraries?
● Evaluate existing solutions
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Implementation

● Implementation
– Source control management tools
– Libraries
– Logging
– Configurability
– Coding guidelines
– Tips and good programming practices
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Implementation

● Source code management tools (SCM)

– CVS, SVN, Git, Mercurial...
● https://svnsrv.desy.de

– Start using SCM as soon as possible in your project!
– Code is automatically backed up
– Share code with other people

● Other people might help fixing bugs or even adding features
– Go back to a previous state in time

● Freedom to experiment without fear of breaking things
– Branching, Tagging, Patching
– Code Sign Off
– Crucial for defining workflows

● production vs. development branches
● Releasing

– Request tracker
● https://rt-system.desy.de

https://svnsrv.desy.de/
https://rt-system.desy.de/
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Implementation

● Libraries

– Why libraries?
– Share code/functionality in and/or between applications
– Help prevent the “spaghetti-code” phenomena
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Implementation

● Libraries

– Difference between private and public!
– Every method exposed in a public API involves documentation and a bit maintenance
– Building a good library generally increases the overall development time but code 

becomes usually well documented and tested
– Versioning

● Increase major version when API changes and backwards compatibility is broken
● Increase minor version when changes are made but API is still backwards compatible
● Increase patch version when only bugfixes/patches are made
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Implementation

● Libraries (C++ only)

– Static libraries
● Includes all dependencies (good for shipping pre-compiled binaries)
● Slightly faster when loading binary into memory

– Shared libraries
● As name suggests the library is shared (in disk and in memory)
● Applications do not need to be recompiled for using a newer library

– unless major version changes
● Can be loaded dynamically at run-time (plugins)
● Smaller binaries
● RPATH vs RUNPATH vs LD_LIBRARY_PATH and LD_PRELOAD

– LD_LIBRARY_PATH: environment variable to specify additional search paths for libraries
– LD_PRELOAD: preload a library before executing any application (DANGER!)
– RPATH: hardcoded path NOT overwritten by LD_LIBRARY_PATH
– RUNPATH: same as RPATH but overwritten by LD_LIBRARY_PATH (--enable-new-dtags)
– readelf -d <bin> # display hard-coded rpaths in libraries/binaries

● Difference between putting code in source or in header files
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Implementation

● Logging

– Start using a logging library from the very beginning in your project
● Saves you time in the long term..

– Some programming languages have a logging library “built-in”
– Easily add an option to run applications “quietly” or in debug mode
– Using a logging library makes debugging applications easier

● Splitting different logging levels into different files
● Configurable logging for different libraries/classes

– Logging across the network
– Log file rotation

● One of sysadmin's favorite problems are disks getting full due to log files!
● Either provided by logging library or linux standard logging facility

– Linux standard logging facility: syslog, logger, logrotate
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Implementation

● Configurability

– Command line options
● Make your application more portable and easier to maintain
● There are many standards and libraries out there: e.g. getopt

– Configuration files
● Useful for storing profiles or different settings of configurations
● Some languages include standard libraries for this purpose

– Environment variables
● Useful for sharing configuration settings across applications
● Use only for settings which must be common at any time between all applications

– Dependencies between configuration settings

– Use a database?
● Object-relational mapping
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Implementation

● Tips and good programming practices

– Lazy programmers are good programmers ;)
● DRY principle: Only change things in one single place in code

– Readability counts!
● pol=$(echo "scale=3 ;$([[ $pol =~ L$|R$ ]] && pol=${pol}100 ; echo $pol | tr "LR" "- " ) / 100.0" | bc) 
● Numerous conventions exist for different programming languages
● What do you think is easier to read?
● NumberValves = NumberValvesPerCylinder * NumberCylinders
● nv=nvpc*nc

– Comments
● Imagine looking at your code in 2 years from now on :)
● Be able to hand over your code to someone else
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Implementation

● Tips and good programming practices

– Never trust user input under any circumstances!
– Never trust user input under any circumstances!
– Never trust user input under any circumstances!
– ...
– On client-server applications, always make sure to check user input on server side!
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Implementation

● Tips and good programming practices

– Recursion
● Try to avoid recursion unless you are programming in “recursive-friendly” languages ;)
● Performance...
● Memory consumption...
● No control over the calling sequence

Recursive Iterative

N = 35 10 sec 0.05 sec

N = 40 1 min 30 sec 0.05 sec

N = 45 20 min 0.05 sec

N = 100.000 ZzzZzZz... 0.5 sec
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Testing

● Testing
– Different types of testing
– Automated testing
– Writing tests
– Test driven development
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Testing

● Different types of testing

– Unit tests
● Very useful to test fundamental building blocks in your application
● Many standard libraries available
● Generally requires writing many tests

– Smoke tests
● Does software compile?
● Memory coverage
● Does some test/example run without crashing?

– White/Black-box tests
● White-box tests aim at stressing potential failure points in code
● Black-box tests ensure the API works as defined
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Testing

● Different types of testing

– Functional tests
● Concept similar to unit tests
● Tests functionality

– Regression/integrity tests
● Ensure test results do not change over time or platform
● Good for testing overall interaction of components in your project
● Sometimes it's harder to find exactly what went wrong in this kind of tests

– Scalability tests
● Useful if you expect your application to deal with very large quantities
● Often hard to realize
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Testing

● Writing tests

– Test suites provide you some guidelines and tools
– Try to avoid parsing logfiles and matching regular expressions
– Program examples can often serve as test cases
– Test definitions vary greatly

● Test suites generally provide flexible tools to allow writing all kind of tests
● When writing test macros be careful not to restrict too much!
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Testing

● Automated testing

– If possible, run tests on many different platforms
– Nightly/Commit-tests / Nightly/Commit-builds

● Crucial to spot errors as soon as possible
● Reduces debugging time dramatically

– Test suites
● ctest, hudson, ...

– Valgrind
● valgrind -v --tool=memcheck --leak-check=full <bin>

– Virtual machines
● Snapshots

– /dev/null
● very useful for some types of tests!
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Testing

● Test Suites (e.g. CTest)
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Testing

● Test Suites (e.g. CTest)
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Testing

● Test driven development

– Write tests before starting the implementation
– Enforces testing from the very beginning
– Good for projects having many algorithm libraries
– Improves documentation
– Helpful if more than one person is involved in the project
– Also helpful for establishing priorities
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Maintenance

● Maintenance
– Dependencies
– Releasing
– Deployment
– Documentation
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Maintenance

● Dependencies

– Internal dependencies
● Create subpackages or rather re-organize internal code/package directory structure?
● Each subpackage requires additional maintenance when releasing
● Some tools can generate dependency graphs (e.g. cmake)
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Maintenance

● External dependencies

– Adding new dependency is easy, removing can be quite painful
● Wrappers around API's / typedefs

– Requires substantial amount of additional development time and maintenance!

– Platform provided packages
● Usually support is good
● Must use system version... Not always possible :(

– Build external packages yourself
● Requires additional maintenance

– Don't copy external code into your project...
● Only hides the real dependency!
● In the end can cost you more work than it saves you in the beginning
● You become responsible for updates and security

– Support provided? Is it good? For how long?
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Maintenance

● Releasing

– Create a release policy
● Once release branch is announced only patches and bugfixes allowed!
● Distinguish between development and production releases
● Debug vs stripped binaries
● Packaging (see next slide)
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Maintenance

● Deployment

– Who are the end users?
– What environment will the software need to run on?
– Need to pack dependencies?
– Tarball Vs. System packages
– Some build tools provide nice tools for packaging, e.g. cpack
– Debug, Release, Source packages
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Maintenance

● Documentation

– Undocumented code is unwritten code

– Use auto-generating doctools in your project, such as doxygen, javadoc...

– Try to find someone else to read your documentation

– Importance of good documentation is usually underestimated

– Documentation increases maintenance but reduces the overall support costs
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Summary

● Do some analysis and design before starting your project
● Evaluate what libraries/tools might be helpful to use in your project
● Start using source code management tools as soon as possible
● Testing is as important as code!
● Use logging
● Split configuration and settings from source code
● Use standard cmd line argument parsing tools
● Don't neglet configurability
● Don't trust user input under any circumstances!
● Don't give end users more than they need
● Don't forget the documentation
● Try to keep it simple!

Thanks for listening, your feedback is welcome!
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