Introduction	Fixed-Order Studies	New Jet Variables and Resummation	GENEVA Monte Carlo Framework

Jet Physics for Higgs

Frank Tackmann

Deutsches Elektronen-Synchrotron

Higgs@DESY Discussion June 12, 2012

Jets are used extensively in Higgs searches/measurements

- Jet selections and categorization of events used to increase sensitivity to various production and decay channels
 - Suppress backgrounds: Jet veto in $gg \rightarrow H \rightarrow WW$ to kill $t\bar{t}$
 - Distinguish Higgs production mechanisms: VBF vs. ggF
 - ► Higgs decay: boosted $H \rightarrow b\bar{b}$ is prime example of a jet substructure analysis
- ⇒ Recently formed Jets subgroup in the Higgs cross section working group Conveners: B. Mellado (ATLAS), D. del Re (CMS), G. Salam, FT

Main issues that appear in all uses of jets

- Jet definition and jet selection cuts, improved theory predictions and uncertainty estimates
 - Our main focus at the moment
- Impact of underlying event, nonperturbative corrections and uncertainties
 - Something to really think about
- Experimental issues: pile-up, resolution, jet-energy scale
 - I'd be curious if there are things theory could help?

Introduction	Fixed-Order Studies	New Jet Variables and Resummation	GENEVA Monte Carlo Framev

Fixed-Order Studies

Large Logarithms from Jet Selection

Jet selection cuts (or other types of exclusive measurements) can be sensitive to additional soft and collinear emissions

 \Rightarrow Restricting or cutting into soft radiation, ISR, or FSR causes large logarithms

Example: $gg \rightarrow H + 0$ jets

• Jet veto restricts ISR $\rightarrow t$ -channel singularities produce Sudakov double logarithms

$$\sigma_0(p_T^{
m cut}) \propto 1 - rac{lpha_s}{\pi} \, 6 \ln^2 rac{p_T^{
m cut}}{m_H} + \cdots$$

- \Rightarrow Perturbative corrections get large at small cuts
- ⇒ Should be reflected in perturbative uncertainties

Introduction

Fixed-Order Studies

New Jet Variables and Resummation

GENEVA Monte Carlo Framework

$gg ightarrow { m Higgs} + 0$ Jets

blue: central scale choice green: standard scale variation orange: including estimate of the size of p_T^{cut} -logarithms

Higgs + 0 Jets $gg \rightarrow H+0$ jet (NNLO) 8 $\sigma_0(p_T^{ m cut})~[m pb]$ $E_{\rm cm} = 7 \, {\rm TeV}$ $m_{H} = 165 \, \text{GeV}$ $\mu = m_H/2$ $\cdots \mu = m_H$ $- - - \mu = m_H/4$ combined incl. unc. ու վարութվարութվարութվարութվարութվարութվարությո 20503060 70 80 100 p_T^{cut} [GeV]

[using fixed-order programs: HNNLO, FEHiP, MCFM]

- Typical experimental range $p_T^{\text{cut}} = 20 40 \,\text{GeV}$
- Logs at small p_T^{cut} degrade fixed-order perturbation theory
- Resummation of exclusive logs can give improved predictions and uncertainty estimates
 - $(\rightarrow \text{see later})$

< 67 >

blue: central scale choice green: standard scale variation orange: including estimate of the size of p_T^{cut} -logarithms

Logs get stronger with an additional hard jet (as expected)

Frank Tackmann (DESY)

Central jet veto (CJV) in VBF selection is a (nontrivial) jet binning $\sigma_{\geq 2}^{\rm VBF\,cuts} = \sigma_2^{\rm VBF\,cuts}(\rm CJV) + \sigma_{\geq 3}^{\rm VBF\,cuts}(\rm inverse\ CJV)$

- VBF signal process looks safe (color structure and incoming quarks)
- $gg \rightarrow H$ contribution to VBF selection needs to be studied carefully
 - Important question how much $gg \rightarrow H$ "dilutes" the VBF signal both in terms of purity and theory uncertainties
 - Something we have started to look into

< 67 >

Introduction	Fixed-Order Studies	New Jet Variables and Resummation	GENEVA Monte Carlo Fra

New Jet Variables and Resummation

< 67 >

nework

Introduction	Fixed-Order Studies	New Jet Variables and Resummation •••••••	GENEVA Monte Carlo Framework	
N-Jettiness Event Shape				

$$\mathcal{T}_N = \sum_k |ec{p}_{kT}| \min\left\{rac{2q_a \cdot p_k}{Q_a}, rac{2q_b \cdot p_k}{Q_b}, rac{2q_1 \cdot p_k}{Q_1}, rac{2q_2 \cdot p_k}{Q_2}, \dots, rac{2q_N \cdot p_k}{Q_N}
ight\}$$

 $\equiv \mathcal{T}_N^a + \mathcal{T}_N^b + \mathcal{T}_N^1 + \dots + \mathcal{T}_N^N$

- Q_{a,b}, Q_j: determine distance measure of particle k to beam and jet directions
- q_{a,b}, q_j: light-like reference directions from overall minimization (or other jet algorithm like anti-kT)
- Divides phase space into
 N jet regions and 2 beam regions

For small $T_N \ll Q$ final state contains exactly N jets (+ 2 ISR jets) (Generalization of thrust for $e^+e^- \rightarrow 2$ jets to $pp \rightarrow N$ jets)

E			
Introduction	Fixed-Order Studies	New Jet Variables and Resummation	GENEVA Monte Carlo Framework

99

0-jettiness \mathcal{T}_0 is equivalent to "beam thrust" \mathcal{T}_{cm}

$$\mathcal{T}_{ ext{cm}} = \sum_{m{k}} ert ec{p}_{m{k}T} ert e^{-ert \eta_{m{k}} ert} = \sum_{m{k}} ig(E_{m{k}} - ert p_{m{k}}^{m{z}} ert ig)$$

 $\mathcal{T}_{cm} \sim m_H$: at least 1 hard central jet

Resummed Higgs + 0 and ≥ 1 Jets

N-Jettiness has a very simple and well-understood perturbative structure

- Factorization and resummation is known to NNLL+(N)NLO (2 orders beyond parton shower)
- Allows reliable estimates of perturbative uncertainties

- It is feasible to further reduce uncertainties by going to N³LL
- Irreducible backgrounds with the same cut can be computed as well
- Working on extension to more jets
- Studying resummation for more exclusive jet variables: ${\cal T}^{
 m jet}, p_T^{
 m jet}$

Frank Tackmann (DESY)

N-Jettiness as Exclusive Jet Algorithm

Provides a theoretically ideal exclusive N-jet algorithm

- Yields jets with regular shape (similar to anti-kT)
- \Rightarrow Try using directly for exclusive jet selection, e.g. VBF selection

Introduction Fixed-Order Studies New Jet Variables and Resummation GENEVA Monte Carlo Framework

Application to Jet Substructure: N-Subjettiness

Restricting sum to a given large jet makes it a jet shape: N-subjettiness τ_N [Thaler, Van Tilburg]

- au_2/ au_1 can be used to identify boosted W/Z/H
 - ullet Feasible to compute and resum for $H o b ar{b}$
- τ_3/τ_2 can be used as a boosted top tagger

< 67 →

Introduction	Fixed-Order Studies	New Jet Variables and Resummation

GENEVA Monte Carlo Framework

< 🗗 🕨

Constructing a Monte-Carlo framework based on resummed calculations

- Make resummed calculations directly usable by experiments
- Use benefits of resummation to improve Monte-Carlo itself
 - Higher-order corrections: NⁿLL, N^mLO
 - Better control and estimate of perturbative uncertainties

< 67 >

Using N-Jettiness as jet resolution variable in the Monte Carlo

- NNLL resummation allows to combine several jet-multiplicities at NLO
- MC with event-by-event theory uncertainties
- Looks very promising for e⁺e⁻

Goal: Full implementation of $pp \rightarrow H + 0, 1, 2$ jets at NNLL_T+(N)NLO

Introduction	Fixed-Order Studies	New Jet Variables and Resummation	GENEVA Monte Carlo Framework
			000

The End

< 🗗 >

Backup

2012-06-12 15 / 15

< **∂** >

Frank Tackmann (DESY)

Perturbative Structure of Jet Cross Sections

$$\sigma_{\text{total}} = \underbrace{\int_{0}^{p^{\text{cut}}} dp \frac{d\sigma}{dp}}_{\sigma_0(p^{\text{cut}})} + \underbrace{\int_{p^{\text{cut}}}^{\infty} dp \frac{d\sigma}{dp}}_{\sigma_{\geq 1}(p^{\text{cut}})}$$

$$\sigma_{\text{total}} = 1 + \alpha_s + \alpha_s^2 + \cdots$$

$$\sigma_{\geq 1}(p^{\text{cut}}) = \alpha_s(L^2 + L + 1) + \alpha_s^2(L^4 + L^3 + L^2 + L + 1) + \cdots$$

$$\sigma_0(p^{\text{cut}}) = \sigma_{\text{total}} - \sigma_{\geq 1}(p^{\text{cut}})$$

$$= [1 + \alpha_s + \alpha_s^2 + \cdots] - [\alpha_s(L^2 + \cdots) + \alpha_s^2(L^4 + \cdots) + \cdots]$$

where $L = \ln(p^{\mathrm{cut}}/Q)$

Backup

- Logarithms are important for $p^{
 m cut} \ll Q \sim$ hard-interaction scale
- Same logarithms appear in the exclusive N-jet and inclusive (≥ N+1)-jet cross section (and cancel in their sum)

Higher-Order Logarithmic Structure

Log-counting is defined in the exponent: $\ln \sigma = \alpha_s^n L^{n+1} (1 + \alpha_s + \alpha_s^2 + \cdots)$

Corresponding terms in the cross section

• Parton shower resums LL (plus some NLL)

NLO+PS MCs combine parton-shower LL with NLO [MC@NLO, POWHEG]

Backup

Higher-Order Logarithmic Structure

Log-counting is defined in the exponent: $\ln \sigma = \alpha_s^n L^{n+1} (1 + \alpha_s + \alpha_s^2 + \cdots)$

Corresponding terms in the cross section

- Parton shower resums LL (plus some NLL)
- NLO+PS MCs combine parton-shower LL with NLO [MC@NLO, POWHEG]
- Traditional coherent branching can go to NLL [e.g. CAESAR]

Backup

Higher-Order Logarithmic Structure

Log-counting is defined in the exponent: $\ln \sigma = \alpha_s^n L^{n+1} (1 + \alpha_s + \alpha_s^2 + \cdots)$

Corresponding terms in the cross section

- Parton shower resums LL (plus some NLL)
- NLO+PS MCs combine parton-shower LL with NLO [MC@NLO, POWHEG]
- Traditional coherent branching can go to NLL [e.g. CAESAR]
- ⇒ We want to go (at least) to full NNLL where fixed NLO formally enters

Backup