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Introduction

Higgs and Jets

Higgs Production and Decay is a QCD Laboratory
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Jets are used extensively in Higgs searches/measurements

@ Jet selections and categorization of events used to increase sensitivity to
various production and decay channels

» Suppress backgrounds: Jet veto in gg — H — WW to kill t¢
» Distinguish Higgs production mechanisms: VBF vs. ggF

» Higgs decay: boosted H — bb is prime example of a jet
substructure analysis

=- Recently formed Jets subgroup in the Higgs cross section working group
Conveners: B. Mellado (ATLAS), D. del Re (CMS), G. Salam, FT
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Overview

Main issues that appear in all uses of jets

@ Jet definition and jet selection cuts, improved theory predictions and
uncertainty estimates

» Our main focus at the moment

@ Impact of underlying event, nonperturbative corrections and uncertainties
» Something to really think about

@ Experimental issues: pile-up, resolution, jet-energy scale
» I'd be curious if there are things theory could help?
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Fixed-Order Studies
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Large Logarithms from Jet Selection

Jet selection cuts (or other types of exclusive
measurements) can be sensitive to additional
soft and collinear emissions

Jet

= Restricting or cutting into
ISR, or FSR causes large logarithms

3

Jet |

Example: gg — H + 0 jets

@ Jet veto restricts ISR — t-channel singularities produce
Sudakov double logarithms
cut

a
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= Perturbative corrections get large at small cuts
= Should be reflected in perturbative uncertainties
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Fixed-Order Studies
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gg — Higgs + 0 Jets

blue: central scale choice
green: standard scale variation

orange: including estimate of the size of pSt-logarithms

Higgs + 0 Jets
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[using fixed-order programs: HNNLO, FEHiP, MCFM]
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@ Typical experimental range
pSt = 20 — 40 GeV

@ Logs at small p$*** degrade
fixed-order perturbation theory

@ Resummation of exclusive logs
can give improved predictions and
uncertainty estimates
(— see later)
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Fixed-Order Studies
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gg — Higgs + 1 Jet

blue: central scale choice
green: standard scale variation
orange: including estimate of the size of p$*t-logarithms
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@ Logs get stronger with an additional hard jet (as expected)
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VBF and gg — Higgs + 2 Jets

LHC, Vs = 14 TeV
T T T T
1250~ py(j)>40 GeV, |n(j)|<4.5, D=0.8, anti~ky

o = My = 160 GeV
1000~ - q

parton fusion A

da/d(lmy,—ny)) [tb]
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Ing=ngel

Central jet veto (CJV) in VBF selection is a (nontrivial) jet binning

BF cut BF cut BF cuts ;
0'¥2 cuts _ 0';[ cu S(CJV) + 0-¥3 cu S(mverse CJV)

@ VBF signal process looks safe (color structure and incoming quarks)
@ gg — H contribution to VBF selection needs to be studied carefully

» Important question how much gg — H “dilutes” the VBF signal both
in terms of purity and theory uncertainties
» Something we have started to look into
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New Jet Variables and Resummation
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N-Jettiness Event Shape

T Z|ﬁ Imin{an-pk 2qy-Pr. 291°Pr 292Dk 2QN'pk}
N = kT PP
- Qe @ Q1 Q7 Qn

=T +To+Ta+ -+ T
® Q. Q;: determine distance measure
of particle k to beam and jet directions

@ qa.5, g;: light-like reference directions
from overall minimization
(or other jet algorithm like anti-kT)

9a

@ Divides phase space into
N jet regions and 2 beam regions

For small Ty < Q final state contains exactly N jets (4 2 ISR jets)
(Generalization of thrust for ete~ — 2 jets to pp — N jets)
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Example: Higgs + 0 Jets Using 0-Jettiness

0-jettiness Ty is equivalent to “beam thrust” 7T¢pm,

Tem = ZIﬁkT|e_|nk| = Z(Ek — Ipil)
k

k

Tem <K myr: 0 hard central jets Tem ~ mpy: at least 1 hard central jet

Jet |\
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New Jet Variables and Resummation
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Resummed Higgs + 0 and > 1 Jets

N-Jettiness has a very simple and well-understood perturbative structure

@ Factorization and resummation is known to NNLL+(N)NLO
(2 orders beyond parton shower)

@ Allows reliable estimates of perturbative uncertainties

oo (TSRt >1(T5RE) = Trotal — To(Tem®
10 Qo T T T T 10 o T T T
F B NNLL-+NNLO Egn="T7TeV E
8E 8 my=165GeV 7
=z [ =) BN NNLL+NNLO ]
B 6 — E=E NLL'+NLO e
R o N\ E
Ear = E
- ¢ ]
2 Eepn=T7TeV E
£ myg=165GeV
0 \H‘\HHHH‘HHHH\‘HHH\H‘\HHHH OHHHH\‘HH\HH‘\HHHH‘HHH\HHH
10 20 30 40 50 0 10 20 30 40 50
Tt [GeV] Tt [GeV]

Frank Tackmann (DESY) 2012-06-12 9/15



New Jet Variables and Resummation
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Comparison to Fixed-Order

blue: fixed NNLO, orange: including resummation to NNLL
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@ It is feasible to further reduce uncertainties by going to N3LL
@ Irreducible backgrounds with the same cut can be computed as well
@ Working on extension to more jets

jet

@ Studying resummation for more exclusive jet variables: 74¢t, p’
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New Jet Variables and Resummation
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N-Jettiness as Exclusive Jet Algorithm
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Provides a theoretically ideal exclusive N-jet algorithm
@ Yields jets with regular shape (similar to anti-kT)
= Try using directly for exclusive jet selection, e.g. VBF selection
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Application to Jet Substructure: N-Subjettiness

Restricting sum to a given large jet makes it a jet shape: N-subjettiness 7
[Thaler, Van Tilburg]

@ 75 /71 can be used to identify boosted W/Z/H
» Feasible to compute and resum for H — bb
@ 73/72 can be used as a boosted top tagger
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GENEVA Monte Carlo Framework
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GENEVA

HH rH
. Resummed
Matrix elements .
Calculation
“““““ Y. Hmatch : S g Mmatch
Parton shower Parton shower
Hecut y Hcut

[Alioli, Bauer, Berggren, Hornig, FT, Vermilion, Walsh, Zuberi]

.G F N EVA @  “GENerate EVents Analytically*
[ ]
o

Constructing a Monte-Carlo framework based on resummed calculations
@ Make resummed calculations directly usable by experiments
@ Use benefits of resummation to improve Monte-Carlo itself

» Higher-order corrections: N™LL, N™LO
» Better control and estimate of perturbative uncertainties
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GENEVA Monte Carlo Framework
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Going Beyond Standard NLO+-PS Merging

To < Teut To > Teut, 7, < Jeut

Using N-Jettiness as jet resolution variable

25 g e e 5

VT S - O NLL/
in the Monte Carlo GENEVA
. . B NNLL7, +NLO; El
@ NNLL resummation allows to combine | NNLL7, +NLOj+PY

several jet-multiplicities at NLO

@ MC with event-by-event theory
uncertainties

@ Looks very promising for ete~

do/dros [pb]

Goal: Full implementation of pp — H + 0,1, 2 jets at NNLL++(N)NLO
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GENEVA Monte Carlo Framewor
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The End
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Perturbative Structure of Jet Cross Sections

p do e do
Ototal = dp 7]) + / dp d7p
£ _

oo (pcut) + UZl(pCUt)
Ototal = 1+as+a§+"‘
o>1(p™) =a (L’ +L+1)+2(L*+L*+L*+L+1)+---

0o (pwt) = Ototal — 0'21(PCUt)

=l+as+a?+--] —[a(L*+---)+a?(L* + )+ -]
where L = In(p*t/Q)

@ Logarithms are important for pc** < @Q ~ hard-interaction scale

@ Same logarithms appear in the exclusive N-jet and inclusive (> N+1)-jet
cross section (and cancel in their sum)
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Higher-Order Logarithmic Structure

Log-counting is defined in the exponent: Ino = a?L™" (1 + as+a?+---)
Corresponding terms in the cross section
o=1

+ asl? + asL + as+ agni(p™) NLO

+ o?L* 4+ o2L® + oa?L? + o?L + a? + a?nq(p*) NNLO

+ a3L% + o®L% 4+ o3L* + a3L® + o3L% + 3L +

+ o+ 4+ 4+ o+ 4+ o+

LL NLL NNLL N3LL

@ Parton shower resums LL (plus some NLL)
@ NLO+PS MCs combine parton-shower LL with NLO Mc@NLO, POWHEG]
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Higher-Order Logarithmic Structure

Log-counting is defined in the exponent: Ino = a?L™" (1 + as+a?+---)
Corresponding terms in the cross section
o=1

+ asL? + asL + as+ asng(p™*) NLO

+ a?L* 4+ o?2L® + oa?L? + o?L + a? + a?nq(p*) NNLO

+ a3L% + o®L° 4+ o3L* + a3L® + o3L% + 3L +

+ o+ 4+ 4+ 4+ 4+

LL NLL NNLL N3LL

@ Parton shower resums LL (plus some NLL)
@ NLO+PS MCs combine parton-shower LL with NLO Mc@NLO, POWHEG]
@ Traditional coherent branching can go to NLL [e.g. CAESAR]
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Higher-Order Logarithmic Structure

Log-counting is defined in the exponent: Ino = a?L™" (1 4+ as+a?+---

Corresponding terms in the cross section
o=1
+ asL? + oL + a;+ asn;(ptt) NLO
+ a?L* 4+ o2L® + o?L? + o?L + a? 4+ a?nq(p*) NNLO
+ a3L% + o®L% 4+ o3L* + 3L + o3L% + 3L +
+ o+ 4+ 4+ 4+ 4+
LL NLL NNLL N3LL

@ Parton shower resums LL (plus some NLL)
@ NLO+PS MCs combine parton-shower LL with NLO Mc@NLO, POWHEG]
@ Traditional coherent branching can go to NLL [e.g. CAESAR]

= We want to go (at least) to full NNLL where fixed NLO formally enters

Frank Tackmann (DESY) 2012-06-12

17/15



	Introduction
	Fixed-Order Studies
	

	New Jet Variables and Resummation
	

	GENEVA Monte Carlo Framework
	

	Appendix
	Backup
	



