

ONE TECHNOLOGY MULTIPLE SOLUTIONS

SOLUTIONS

FOR COMMUNICATION

- Why you should be here and why we are here
- Who we are
- What you should learn today
 - First of all pulling things together
 - Enabling the Management Plane
 - Installing the Data Plane
 - Enabling the Data Plane
 - Configuring the Data Plane
 - Operating the MTCA.4 system
- What you can do as well
- What you (should) have learned today

- Why you should be here and why we are here
- Who we are
- What you should learn today
 - First of all pulling things together
 - Enabling the Management Plane
 - Installing the Data Plane
 - Enabling the Data Plane
 - Configuring the Data Plane
 - Operating the MTCA.4 system
- What you can do as well
- What you (should) have learned today

MTCA Workshop for Industry and Research Why we are here and why you should be here

- 1 or 2 "big" standards in our work life
 - VME, PCI, cPCI
- MicroTCA and AMCs will be the next dominating standards for industrial systems
 - nothing real new but better and different
 - one standard meeting requirements of many different vertical markets

MICROTCA

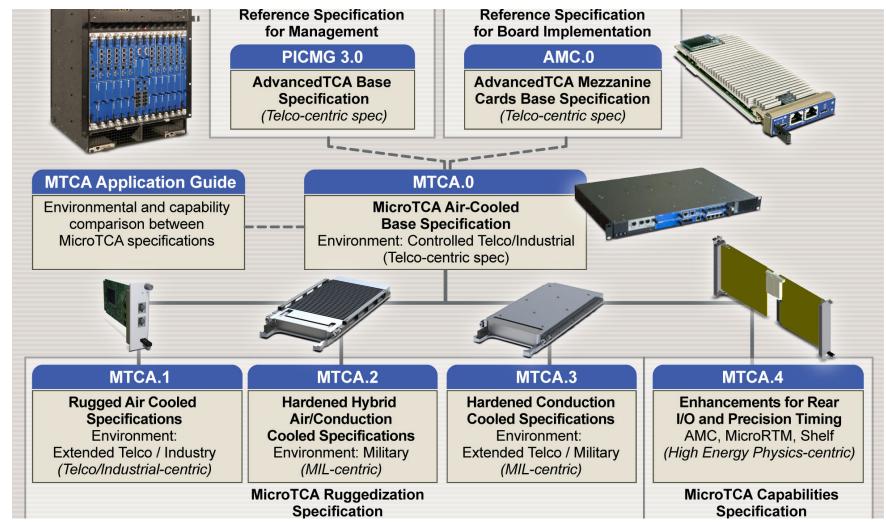
ENERGY

MEDICAL

COMMUNICATION

INFOTAINMENT

TRANSPORTATION


INDUSTRIAL
CONTROL

INNOVATION IN COMMUNICATION

- → MicroTCA is important already!
- → MicroTCA will become even more important in the future!

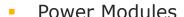
MTCA Workshop for Industry and Research Why we are here and why you should be here

- Why you should be here and why we are here
- Who we are
- What you should learn today
 - First of all pulling things together
 - Enabling the Management Plane
 - Installing the Data Plane
 - Enabling the Data Plane
 - Configuring the Data Plane
 - Operating the MTCA.4 system
- What you can do as well
- What you (should) have learned today

About N.A.T. Network and Automation Technology

- Dipl. Ing. Vollrath Dirksen and Dipl. Phys Heiko Körte
- Founded in 1990, privately owned
- Hard- and Software design and manufacturing
- Focus on innovation in communication
- international and worldwide operations
- Headquarters

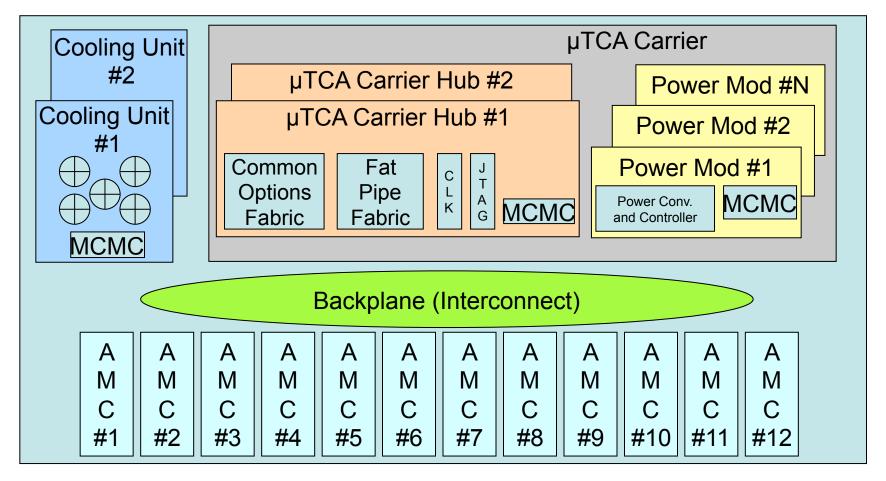
Konrad-Zuse-Platz 9 53227 Bonn Germany


- Why you should be here and why we are here
- Who we are
- What you should learn today
 - First of all pulling things together
 - Enabling the Management Plane
 - Installing the Data Plane
 - Enabling the Data Plane
 - Configuring the Data Plane
 - Operating the MTCA.4 system
- What you can do as well
- What you (should) have learned today

- Why you should be here and why we are here
- Who we are
- What you should learn today
 - First of all pulling things together
 - Enabling the Management Plane
 - Installing the Data Plane
 - Enabling the Data Plane
 - Configuring the Data Plane
 - Operating the MTCA.4 system
- What you can do as well
- What you (should) have learned today

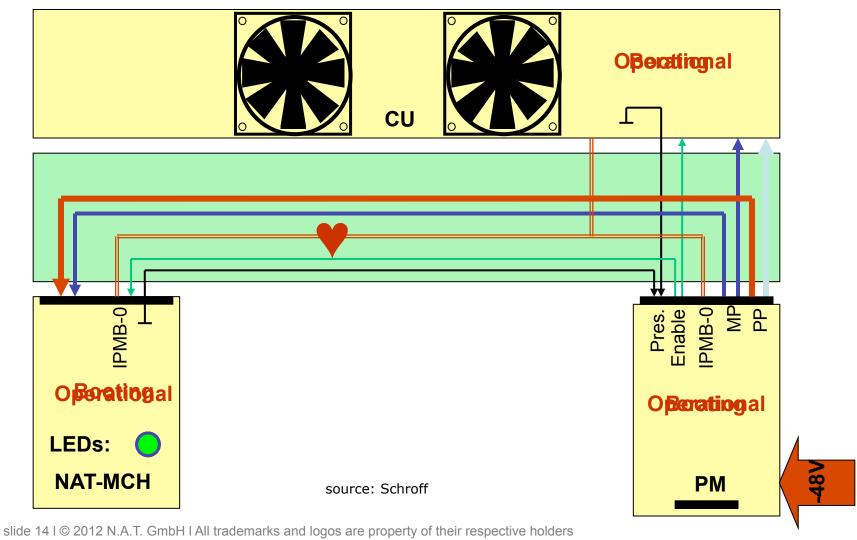
First of all ... pulling things together

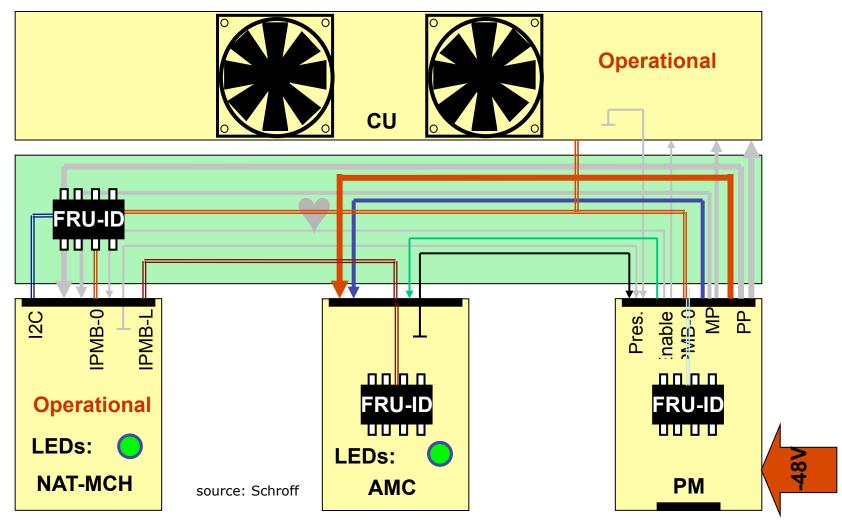
- What does "pulling things together" mean ?
- Selection of basic components: the "infrastructure"
 - Chassis and Cooling Unit(s)
 - use case determines geometry and air flow
 - air flow most important thing for operation


- type: AC/DC vs. DC/DC, power-through vs. converter
- efficiency: thermal loss
- reserve
- MicroTCA Carrier Hub (MCH)
 - management
 - CLK distribution and switching
 - switching: base fabric and fat pipe

First of all ... pulling things together

Infrastructure of a MicroTCA system

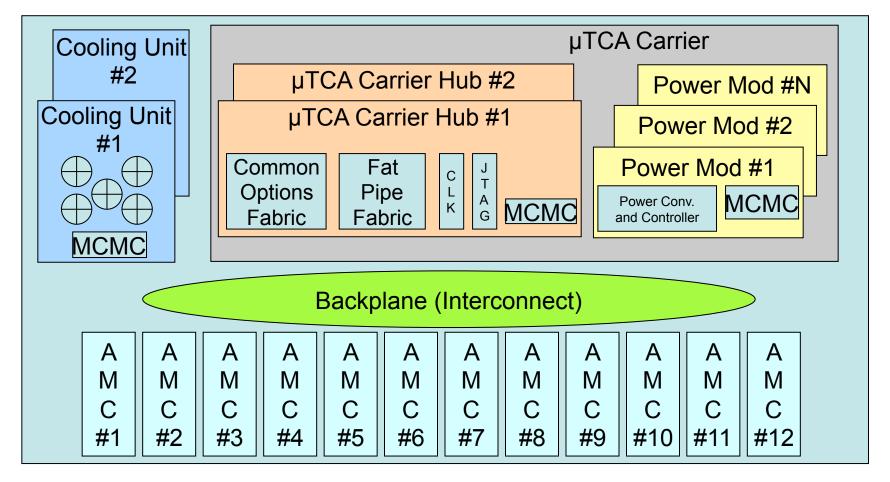



- Why you should be here and why we are here
- Who we are
- What you should learn today
 - First of all pulling things together
 - Enabling the Management Plane
 - Installing the Data Plane
 - Enabling the Data Plane
 - Configuring the Data Plane
 - Operating the MTCA.4 system
- What you can do as well
- What you (should) have learned today

- What does "Enabling the Managment Plane" mean?
- Getting the infrastructure from the power-off state into the managed state
 - understand the expectation
 - put power to the system
 - check the basics and find out if the expected has happend
 - in theory
 - in practise

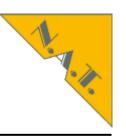
T. A. A.

No. Associated in the second s



- Why you should be here and why we are here
- Who we are
- What you should learn today
 - First of all pulling things together
 - Enabling the Management Plane
 - Installing the Data Plane
 - Enabling the Data Plane
 - Configuring the Data Plane
 - Operating the MTCA.4 system
- What you can do as well
- What you (should) have learned today

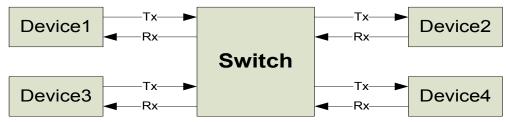
Installing the Data Plane


Infrastructure of a MicroTCA system

Installing the Data Plane

- What does "Installing the Data Plane" mean?
- Establishing the physical link between the AMCs and the MCH switches for the Base Fabric and the Fat Pipes
 - Base Fabric: MCH fabric A ⇔ AMC ports #0 and #1
 - Fat Pipe: MCH fabric D-G ⇔ AMC ports #4-7 and #8-11
 - understand the expectation
 - insert AMCs
 - check the basics and find out if the expected has happend
 - in theory
 - in practise using PCIe

Installing the Data Plane – what is a Fat Pipe?


- Bits are transmitted one after the other over single data line
- Every data byte (8bit) is transformed to 10bit symbol that contains enough transitions

→ 8B/10B Coding

- Clock is recovered from serial stream
- Bidirectional transmission via dedicated Tx and Rx lines

Device1 Tx—Device2

- One Tx/Rx pair is called "Lane"
- Interconnect between multiple devices realized by switches

Installing the Data Plane – what is a Fat Pipe?

- Very high frequencies: > 1Ghz
 - No per-cycle-relation to other signal needed
 - point-to-point connections only
- Differential Signaling
 - Better immunity to disturbances and interferences
- Bandwidth is determined/limited by:
 - Maximum frequency depends on chip technology and interconnect quality
 - Example: Harting MCH/AMC plugs and backplane connectors are specified with 6,25GHz
 - Multiple Lanes are used in parallel to increase bandwidth
- The whole signal path is important!

Installing the Data Plane – what is a Fat Pipe?

- Defined in PICMG AMC.x series (the "Fabrics"):
 - AMC.0 Base Specification
 - AMC.1 PCI Express (PCIe)
 - AMC.2 Ethernet (1GbE and 10GbE/XAUI)
 - AMC.3 Storage (SAS/SATA)
 - AMC.4 Serial Rapid I/O (SRIO)

Installing the Data Plane – what is a Fat Pipe?

Protocol	PCIe	1GbE and 10 GbE	SRIO			
Advantage	 Memory mapped access Software compatible to PCI 	 Not only for system internal connectivity Data is ready for connect direct to LAN 	Hardware data integrityMemory mapped access			
Disadvantage	Host centric architecture	High Software Overhead	• ???			
Typical Application	Processing BladeNext generation Industrial PC	 Media Gateway Network Convergence 	 Distributed Data processing or Data Acquisition 			
Bandwidth per lane	2.5Gbps (Gen1)5.0Gbps (Gen2)	1.25Gbps (1GbE)3.125Gbps (XAUI)	3.125Gbps (Gen1)6.25Gbps (Gen2)			

Installing the Data Plane

- Expectation when inserting AMCs
 - AMCs are recognized by MCH
 - AMCs and MCH exchange their capabilities ("e-keying process")
 - AMCs and MCH establish fabric links if e-keying successful

Installing the Data Plane

- Why you should be here and why we are here
- Who we are
- What you should learn today
 - First of all pulling things together
 - Enabling the Management Plane
 - Installing the Data Plane
 - Enabling the Data Plane
 - Configuring the Data Plane
 - Operating the MTCA.4 system
- What you can do as well
- What you (should) have learned today

Enabling the Data Plane

- What does "Enabling the Data Plane" mean?
- Establishing the logical link between the PCIe Root
 Complex and related AMCs
 - Enabling a certain AMC slot to host the Root Complex by configuring the upstream port of the PCIe switch on the MCH by using
 - either the CLT
 - or the web interface

Enabling the Data Plane

- Why you should be here and why we are here
- Who we are
- What you should learn today
 - First of all pulling things together
 - Enabling the Management Plane
 - Installing the Data Plane
 - Enabling the Data Plane
 - Configuring the Data Plane
 - Operating the MTCA.4 system
- What you can do as well
- What you (should) have learned today

Configuring the Data Plane

- What does "Configuring the Data Plane" mean?
- Using special capabilities of the fat pipe switch in order to achieve certain system functionalities
 - XAUI: i.e. port based or tagged VLAN, IGMP
 - SRIO: i.e. configuring peer matrix
 - PCIe: i.e. clustering
 - A "PCIe Cluster" is defined as a set of at least two PCIe end points with one of them acting
 as a Root Complex
 - i.e. a PrAMC and one or multiple I/O or DAC AMCs

Question: how to hide the different Clusters from each other?

Answer: use "virtual switches" and their "non-transparent upstream ports"

Configuring the Data Plane

Select Host AMCs (Upstream) for each virtual switch that shall be enabled first.

Select Host AMCs (Non-Transparent Upstream) for each virtual switch that shall be enabled afterwards.

Select which AMCs shall be connected to each virtual switch as downstream in the end.

Virtual Switch	Upstream AMC	NT-Upstream AMC	A M C 1	A M C 2	A M C 3	A M C 4	A M C 5	A M C 6	A M C 7	A M C 8	A M C 9	A M C 10	A M C 11	A M C 12
none			0	0	0	0	0	0	0	0	0	0	0	0
Virtual Switch 0	AMC1 💌	-none- 💌	0	•	•	•	0	0	0	0	0	0	0	0
Virtual Switch 1	AMC5 💌	-none- 💌	0	0	0	0	0	•	•	•	0	0	0	0
Virtual Switch 2	AMC9 💌	- none - 💌	0	0	0	0	0	0	0	0	0	•	•	•
Virtual Switch 3	-none- 💌	-none- 💙	0	0	0	0	0	0	0	0	0	0	0	0
Virtual Switch 4	-none- 💌	-none- 🕶	0	0	0	0	0	0	0	0	0	0	0	0
Virtual Switch 5	-none- 💙	-none- 💌	0	0	0	0	0	0	0	0	0	0	0	0

Apply

You need to click apply to save your changes.

Save | current configuration to PCIe EEPROM

Restore current configuration from PCIe EEPROM

Disable PCIe Virtual Switches

Disable

Enabling the Data Plane

- Why you should be here and why we are here
- Who we are
- What you should learn today
 - First of all pulling things together
 - Enabling the Management Plane
 - Installing the Data Plane
 - Enabling the Data Plane
 - Configuring the Data Plane
 - Operating the MTCA.4 system
- What you can do as well
- What you (should) have learned today

Operating the MTCA.4 system

- What will happen during "Operation of the MTCA.4"?
- Sensors in the system will generate events
 - How to log these events ?
 - How are these events flagged/signalled?
 - Can certain sensors be monitored?

Live Demo using temperature events and hot-swap events as examples

To the second se

Operating the MTCA.4 system

Live

Demo

- Why you should be here and why we are here
- Who we are
- What you should learn today
 - First of all pulling things together
 - Enabling the Management Plane
 - Installing the Data Plane
 - Enabling the Data Plane
 - Configuring the Data Plane
 - Operating the MTCA.4 system
- What you can do as well
- What you (should) have learned today

Operating the MTCA.4 system

- Most important:
 - use vendors that guarantee interoperability of their Products with other MTCX.x and AMC.x compliant products from other vendors
 - → PICMG interoperability workshops ("IW")

- No need for redundancy or so many slots or RTMs?
 - → Use a smaller or different system!

- Need more AMC or RTMs slots?
 - → Use different system components,

i.e. NAT-MCH-PHYS +RTM (Session 5 tomorrow at 3pm)

- Why you should be here and why we are here
- Who we are
- What you should learn today
 - First of all pulling things together
 - Enabling the Management Plane
 - Installing the Data Plane
 - Enabling the Data Plane
 - Configuring the Data Plane
 - Operating the MTCA.4 system
- What you can do as well
- What you (should) have learned today

- Summary:
 - MTCA is the coming standard for industrial embedded systems
 - When thinking about MTCA, think of N.A.T.

Our credo: Talk to us, we care ...

- We showed and demonstrated:
 - First of all pulling things together
 - Enabling the Management Plane
 - Installing the Data Plane
 - Enabling the Data Plane
 - Configuring the Data Plane
 - Operating the MTCA.4 system
 - Alternatives for some requirements

Thank you very much! Questions?

Heiko Körte

Director Sales & Marketing

heiko@nateurope.com

Vollrath Dirksen

Strategic Business Development

vollrath@nateurope.com

N.A.T. GmbH Konrad-Zuse-Platz 9 53227 Bonn, Germany

www.nateurope.com

Further presentation:

Session 5 tomorrow at 3pm

or see us at the booth