

Karlsruher Institut für Technologie

Searches for Higgs Bosons in Supersymmetric Models

G. Quast, A. Raspereza Course "Higgs Physics"

Lecture 10, 03/07/2012

KIT – Universität des Landes Baden-Württemberg und

www.kit.edu

Nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Deficiencies of Standard Model

One Higgs doublet is miminum, which required to generate particle masses

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \qquad V(\Phi^{\dagger}\Phi) = \lambda \left(\Phi^{\dagger}\Phi - \frac{v^2}{2}\right)^2$$

• No strong theoretical arguments favoring this minimal choice

Flaws of Standard Model

• Higgs mechanism ad hoc

- more than 20 unexplained model parameters
- does not include gravity in a consistent way as a quantum field theory
- does not explain the source of CP-violation
- Does not give explanation of Cold Dark Matter in Universe
- Hierarchy (fune-tuning) problem

....

Supersymmetry

fermions ↔ bosons

 stabilizes radiative corrections to Higgs self-energy

- Both contribution chancel if $\ \lambda_s = 2\lambda_f^2$
- Points towards unification of gauge constants

Materieteilchen Quarks U C C d S D Leptonen V V V C P V C	Sfermionen Squarks (1) (2) (1) (1) (2) (2) (1) (2)
Kräfteteilchen	Gauginos
Photon (?)	Photino î
W, Z Boson (W) (Z)	W-ino, Z-ino î î
Gluon (9)	Gluino î
Graviton (6)	Gravitino î
Higgsteilchen	Higgsinos
b 🕕 A 🕀	6 🔋 🏔 🔂
5 60 1/2	₫ 60 - 1/a

- Provides a candidate for dark matter
 - Lightest supersymmetric particle, e.g. in R-parity conserving SUSY models

Higgs Sector in MSSM

Higgs Sector in MSSM → Two Higgs Doublet Model

$$\Phi_{1} = \begin{pmatrix} \Phi_{1}^{+} \\ \Phi_{1}^{0} \end{pmatrix} \qquad \Phi_{2} = \begin{pmatrix} \Phi_{2}^{+} \\ \Phi_{2}^{0} \end{pmatrix}$$
$$\left\langle \Phi_{1} \right\rangle = \begin{pmatrix} 0 \\ \nu_{1} \end{pmatrix} \qquad \left\langle \Phi_{2} \right\rangle = \begin{pmatrix} 0 \\ \nu_{2} \end{pmatrix}$$

5 physical states: h, H, A, H[±]

$$\tan \beta = \nu_1 / \nu_2$$

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_1^0 \\ \phi_2^0 \end{pmatrix}$$

Decoupling limit : large *m*_A

 $m_{\rm A} \approx m_{\rm H} \approx m_{\rm H+}$

 $\cos(\beta - \alpha) \rightarrow 0$: H decouples from W, Z

 $sin(\beta - \alpha) \rightarrow 1$: h has properties of the SM Higgs

- 2HDM in MSSM
- $\begin{array}{rl} & & \Phi_1 \text{ couples to down-type quarks} \\ & \text{ and charged leptons} \end{array}$
- Φ_2 couples to up-type quarks
- <u>Modified couplings to gauge</u> and fermion fields

	h	Н	А
W^+W^-	$\sin(\beta - \alpha)$	$\cos(\beta - \alpha)$	0
ZZ	$\sin(\beta - \alpha)$	$\cos(\beta - \alpha)$	0
u ū (up-type quarks)	$\cos \alpha / \sin \beta$	$\sin lpha / \sin eta$	\coteta
$d\bar{d}$ (down-type quarks)	$\sin lpha / \cos eta$	$\cos lpha / \cos eta$	an eta
$\ell \bar{\ell}$ (charged leptons)	$\sin \alpha / \cos \beta$	$\cos \alpha / \cos \beta$	$\tan\beta$

MSSM Higgs Searches at LEP

dominates at low tanß

is complemented by Higgs-pair production

dominates at high tanß

- Low tanβ : SM-like properties of h, e⁺e⁻→hZ dominates
- → reuse SM Higgs analyses
- High tanβ : e⁺e⁻→hA dominates
- Br(h,A→bb)≈90%,
 Br(h,A→ττ)≈10%
- → dedicated analyses of 4b and bbττ final states

LEP Limits on MSSM Higgs Bosons

"m_h-max" scenario: •m_A , m_h > 93 GeV @ 95% C.L.

•0.7<tanβ<2.1 excluded @ 95C.L. for m_{top} = 174.3 GeV

CPX scenarios: reduced couplings to Z boson \rightarrow reduced production rates not all complicated final states covered $(H_2H_1 \rightarrow H_1H_1H_1 \rightarrow 6f)$ \rightarrow Exclusions are weaker

SUSY Higgs at TEVATRON : bΦ→3b Search

- Challenging final state
- B-tagging essential
- Cannot rely on simulation of multi-jet QCD background
- → Data-driven determination of multi-jet template shapes with different flavor composition
- Fit templates to data → normalizations for different multi-jet backgrounds

SUSY Higgs at Tevatron : bΦ→3b Search

- No evidence for signal...
- but both experiments see ≈2σ excess over background expectation in the mass range 120 GeV < m_A < 160 GeV
- Analyses of larger datasets and combination in progress
- motivated LHC experiments to pursue similar searches

Search for MSSM Higgs bosons at CMS

channels used so far in CMS : $H \rightarrow \tau\tau \rightarrow e+\mu$, $\mu+\tau_{had}$, $e+\tau_{had}$, $\tau\tau \rightarrow \mu\mu$ ($\tau_{had}\tau_{had}$) $H \rightarrow \mu\mu$ channels are being analyzed

DESY

Search for Charged Higgs Bosons at ATLAS

Search for H⁺ is pursued in tt decays

