Interference Effects in the MSSM.

A Generalised Narrow-Width Approximation.

Elina Fuchs DESY

in collaboration with Silja C. Thewes and Georg Weiglein

Hamburg, 10/10/2012

IRTG PhD Days 2012

Useful approximation

- > SUSY: extended spectrum \rightarrow typical cascade decays
- > many-particle final state not always technically feasible
- > ~ simplified by factorisation into production×decay
- > application in MC generators

 $\sigma_{production} \times BR_1 \times BR_2 \times BR_3 \times BR_4$

Useful approximation

- > SUSY: extended spectrum \rightarrow typical cascade decays
- > many-particle final state not always technically feasible
- $> \rightsquigarrow$ simplified by factorisation into production×decay
- > application in MC generators

 $\sigma_{production} \times BR_1 \times BR_2 \times BR_3 \times BR_4$

Extension necessary!

include interfering diagrams for intermediate particles with similar masses

Motivation: Application

limits on cross-section x BR
 for both production modes

- assumes one scalar boson

Application of NWA

> useful:

$$\sigma(pp \to \phi \to \tau \tau/\mu\mu)$$

 $\approx \sigma_{\phi} \cdot BR(\phi \to \tau \tau/\mu\mu)$

Limitations of $\sigma_{\phi} \cdot BR_{\phi}$

- > several scalar bosons?
- > similar masses
- > interference possible

Schumacher, DESY theory workshop 2012

> Motivation

- > Generalised Narrow-Width Approximation (NWA)
 - Standard NWA
 - Generalised NWA including interference term
- > Tree-level results for example process $\Gamma(\chi_4^0 \to \chi_1^0 \tau^+ \tau^-)$
- > Towards a generalised NWA at 1-loop
- > Conclusion

Standard Narrow-Width Approximation (NWA)

Factorisation of the *n*-particle phase space $d\Phi_n$

>
$$d\Phi_n \equiv dlips(P; p_1, ..., p_f) = (2\pi)^4 \delta^{(4)}(P - \sum_{f=1}^n p_f) \prod_{f=1}^n \frac{d^3 p_f}{(2\pi)^3 2E_f}$$

> here: kinematics of 3-body decay \rightarrow 2-body $d\Phi = dlips(\sqrt{s}; p_c, p_e, p_f) = dlips(\sqrt{s}; p_c, q) \frac{dq^2}{2\pi} dlips(q; p_e, p_f)$

Standard Narrow-Width Approximation (NWA)

Factorisation of the *n*-particle phase space $d\Phi_n$

>
$$d\Phi_n \equiv dlips\left(P; p_1, ..., p_f\right) = (2\pi)^4 \delta^{(4)} \left(P - \sum_{f=1}^n p_f\right) \prod_{f=1}^n \frac{d^3 p_f}{(2\pi)^3 2E_f}$$

> here: kinematics of 3-body decay \rightarrow 2-body $d\Phi = dlips(\sqrt{s}; p_c, p_e, p_f) = dlips(\sqrt{s}; p_c, q) \frac{dq^2}{2\pi} dlips(q; p_e, p_f)$

$\textbf{Production} \times \textbf{decay}$

Conditions and limitations for the NWA

Factorisation into production and decay IF

- > narrow width $\Gamma \ll M$ (off-shell effects: s. Daniel Wiesler's talk)
- > propagator separable from matrix element
- > decaying particle more massive than daughter particles
- > no threshold effects: $\sqrt{s} > M + m$
- > no interference with other processes

Conditions and limitations for the NWA

Factorisation into production and decay IF

- > narrow width $\Gamma \ll M$ (off-shell effects: s. Daniel Wiesler's talk)
- > propagator separable from matrix element
- > decaying particle more massive than daughter particles
- > no threshold effects: $\sqrt{s} > M + m$
- > no interference with other processes

Breakdown for mass degeneracy: Breit-Wigner overlap

- > NWA not applicable for $|M_i M_j| \leq \Gamma_i, \Gamma_j$
- > MSSM: for some parameters, h^0, H^0, A^0 have similar masses
- > also relevant for other models
- > extension of NWA required for interference term [Fowler, PhD Thesis '10]

Generalised NWA with interference term

$$\begin{split} \sigma(ab \rightarrow cef) &= \frac{1}{F} \int d\Phi \left(\frac{|\mathcal{M}(ab \rightarrow ch)|^2 |\mathcal{M}(h \rightarrow ef)|^2}{(q^2 - M_h^2)^2 + M_h^2 \Gamma_h^2} + \frac{|\mathcal{M}(ab \rightarrow cH)|^2 |\mathcal{M}(H \rightarrow ef)|^2}{(q^2 - M_H^2)^2 + M_H^2 \Gamma_H^2} \right. \\ &+ \left. 2Re \left\{ \frac{\mathcal{M}(ab \rightarrow ch)\mathcal{M}^*(ab \rightarrow cH)\mathcal{M}(h \rightarrow ef)\mathcal{M}^*(H \rightarrow ef)}{(q^2 - M_h^2 + iM_h \Gamma_h)(q^2 - M_H^2 - iM_H \Gamma_H)} \right\} \right) \end{split}$$

Generalised NWA with interference term

$$\begin{split} \sigma(ab \to cef) &= \frac{1}{F} \int d\Phi \left(\frac{|\mathcal{M}(ab \to ch)|^2 |\mathcal{M}(h \to ef)|^2}{(q^2 - M_h^2)^2 + M_h^2 \Gamma_h^2} + \frac{|\mathcal{M}(ab \to cH)|^2 |\mathcal{M}(H \to ef)|^2}{(q^2 - M_H^2)^2 + M_H^2 \Gamma_H^2} \right. \\ &+ 2Re \left\{ \frac{\mathcal{M}(ab \to ch) \mathcal{M}^*(ab \to cH) \mathcal{M}(h \to ef) \mathcal{M}^*(H \to ef)}{(q^2 - M_h^2 - iM_H \Gamma_H)} \right\} \end{split}$$

3 steps for approximation of interference term

- > matrix elements on-shell $\mathcal{M}(q^2 = M^2)$, but phase space $\Phi(q^2)$
- > phase space on-shell $\Phi(q^2=M^2)$
- > approximation $M_h \approx M_H$: interference term as R-factors

$$\sigma \approx \sigma_{P_1} BR_1 \cdot (1+R_1) + \sigma_{P_2} BR_2 \cdot (1+R_2)$$

$$R_i = R_i(M, \Gamma, \sigma_P, BR, couplings, I)$$

$$I = \int \frac{dq^2}{2\pi} \Delta_1^{BW}(q^2) \cdot \Delta_2^{*BW}(q^2)$$

> Motivation

> Generalised Narrow-Width Approximation (NWA)

- Standard NWA
- Generalised NWA including interference term

> Tree-level results for example process $\Gamma(\chi_4^0 \to \chi_1^0 \tau^+ \tau^-)$

- > Towards a generalised NWA at 1-loop
- > Conclusion

Intermezzo: MSSM Higgs sector

Higgs mixing

- > MSSM: 2 complex Higgs doublets $\mathcal{H}_1, \mathcal{H}_2 \rightarrow \underbrace{h^0, H^0}_{C\mathcal{P}+}, \underbrace{\mathcal{A}^0}_{C\mathcal{P}-}, H^{\pm}$
- > complex parameters: at loop level also CPP mixing
- > correct on-shell properties of external Higgs bosons: \hat{Z}_{ij} $\stackrel{h}{\longrightarrow} \stackrel{H}{\longrightarrow} \Gamma_{h_i}^{(Z)} = \hat{Z}_{h_ih}\Gamma_h + \hat{Z}_{h_iH}\Gamma_H + \dots$

Intermezzo: MSSM Higgs sector

Higgs mixing

- > MSSM: 2 complex Higgs doublets $\mathcal{H}_1, \mathcal{H}_2 \rightarrow \underbrace{h^0, H^0}_{C\mathcal{P}+}, \underbrace{\mathcal{A}^0}_{C\mathcal{P}-}, H^{\pm}$
- > complex parameters: at loop level also CPP mixing
- > correct on-shell properties of external Higgs bosons: \hat{Z}_{ij} $\stackrel{h}{\longrightarrow} \stackrel{H}{\longrightarrow} \Gamma_{h_i}^{(Z)} = \hat{Z}_{h_ih}\Gamma_h + \hat{Z}_{h_iH}\Gamma_H + \dots$

higher orders in the Higgs sector very relevant program: FeynHiggs

Example process: $\Gamma(\tilde{\chi}_4^0 \to \tilde{\chi}_1^0 \tau^+ \tau^-)$

- > $\mathbb{R}MSSM (CP):$ $h^0 - H^0$
- > high $\tan\beta=50$

Example process: $\Gamma(\tilde{\chi}_4^0 \rightarrow \tilde{\chi}_1^0 \tau^+ \tau^-)$

- > $\mathbb{R}MSSM (CP):$ $h^0 - H^0$
- > high $\tan\beta = 50$

Example process: $\Gamma(\tilde{\chi}_4^0 \to \tilde{\chi}_1^0 \tau^+ \tau^-)$

Calculation

- > 2-/3-body decays with FeynArts/ FormCalc
- > interference term implemented in different approximations
- > tree-level amplitudes with Breit-Wigner propagators
- > 2-loop Higgs masses and widths from FeynHiggs

Elina Fuchs — DESY — PhD Days 2012 — Page 8/14

 $\Gamma(M_{H+})$

Elina Fuchs — DESY — PhD Days 2012 — Page 8/14

 $\Gamma(M_{H+})$

full 3-body decay $|h^0 + H^0|^2$ including interference term

Elina Fuchs — DESY — PhD Days 2012 — Page 8/14

 $\Gamma(M_{H+})$

generalised NWA including interference term

 $\Gamma(M_{H+})$

large interference effect neglected in sNWA, but well approximated by $\ensuremath{\mathsf{g}\mathsf{NWA}}$

Evaluation of the interference term

Improvement of accuracy

- > standard NWA: overestimation of full width by up to factor 5
- > generalised NWA: approximation of interference term to 2-3%

Dependence on $\tan\beta$ and M_1

Parameter dependence of the interference term

> more sensitive to parameters from Higgs sector than from neutralino sector

- > interference effect large only at high $\tan \beta$ (smaller mass difference)
- > for fixed M_{H^+} , $\tan\beta$: large effect throughout M_1 interval
- > good performance of the generalised NWA in the analysed parameter space

Elina Fuchs — DESY — PhD Days 2012 — Page 10/14

> Motivation

> Generalised Narrow-Width Approximation (NWA)

- Standard NWA
- Generalised NWA including interference term
- > Tree-level results for example process $\Gamma(\chi_4^0 \to \chi_1^0 \tau^+ \tau^-)$
- > Towards a generalised NWA at 1-loop
- > Conclusion

Motivation

radiative corrections to sub-processes possibly relevant

vertex corrections to $\Gamma(\tilde{\chi}^0_4 \to \tilde{\chi}^0_1 h^0/H^0)$:

1-loop integrals with LoopTools

Elina Fuchs — DESY — PhD Days 2012 — Page 11/14

Higgs sector: \overline{DR} [Frank, Hahn, Heinemeyer, Hollik, Rzehak, Weiglein '07]

- > problem: dimensional regularisation violates USY
- > dimensional reduction: SUSY-preserving modification with: spacetime, momenta in D; fields, γ 's in 4 dimensions

Higgs sector: \overline{DR} [Frank, Hahn, Heinemeyer, Hollik, Rzehak, Weiglein '07]

- > problem: dimensional regularisation violates USY
- > dimensional reduction: SUSY-preserving modification with: spacetime, momenta in D; fields, γ 's in 4 dimensions

neutralino sector: on-shell [Fowler, Weiglein '09] [Bharucha, Heinemeyer, Pahlen, Schappacher '12]

- > 3 parameters $|M_1|, |M_2|, |\mu|$
 - \rightarrow fix 3 out of 6 neutralino and chargino masses
- > loop-corrected masses: $M_{\tilde{\chi}_i} = m_{\tilde{\chi}_i} + \Delta m_{\tilde{\chi}_i}$

added counterterms to FeynArts

Higher-order corrections in the generalised NWA

applicable also for processes for which the complete calculation of higher-order corrections is difficult or impossible

> Motivation

> Generalised Narrow-Width Approximation (NWA)

- Standard NWA
- Generalised NWA including interference term
- > Tree-level results for example process $\Gamma(\chi_4^0 \to \chi_1^0 \tau^+ \tau^-)$
- > Towards a generalised NWA at 1-loop
- > Conclusion

Summary: significant improvement of accuracy by generalised NWA

- > example: decay $\tilde{\chi}_4^0 \stackrel{h^0, H^0}{\rightarrow} \tilde{\chi}_1^0 \tau^+ \tau^-$
 - > standard NWA overestimates Γ at $\Delta M_{hH} \leq \Gamma_{h,H}$ by up to a factor of 5
 - $\,>\,$ generalised NWA approximates full width to a few percent accuracy
- > approximation extended to include loop-corrections

Summary: significant improvement of accuracy by generalised NWA

- > example: decay $\tilde{\chi}^0_4 \stackrel{h^0, H^0}{\rightarrow} \tilde{\chi}^0_1 \tau^+ \tau^-$
 - > standard NWA overestimates Γ at $\Delta M_{hH} \leq \Gamma_{h,H}$ by up to a factor of 5
 - > generalised NWA approximates full width to a few percent accuracy
- > approximation extended to include loop-corrections

Outlook: $\mathcal{CP}\text{-violating mixing, more complicated processes}$

- $> \mathbb{C}MSSM$, \mathcal{CP} -violation $\Rightarrow H^0 A^0$ interference
- > relevant for $\sigma_{H^0} + \sigma_{A^0} \xrightarrow{\mathcal{CP}} \sigma_{H^0 + A^0} \approx (2\sigma_{H^0})_{\mathcal{CP}} + \sigma_{int,\mathcal{CP}}$
- > combination of most advanced results for production and branching ratios with appropiate prediction for the interference term

Generalised NWA with interference term

$$\begin{split} \sigma(ab \to cef) &= \frac{1}{F} \int d\Phi \left(\frac{|\mathcal{M}(ab \to ch)|^2 |\mathcal{M}(h \to ef)|^2}{(q^2 - M_h^2)^2 + M_h^2 \Gamma_h^2} + \frac{|\mathcal{M}(ab \to cH)|^2 |\mathcal{M}(H \to ef)|^2}{(q^2 - M_H^2)^2 + M_H^2 \Gamma_H^2} \right. \\ &+ 2Re \left\{ \frac{\mathcal{M}(ab \to ch)\mathcal{M}^*(ab \to cH)\mathcal{M}(h \to ef)\mathcal{M}^*(H \to ef)}{(q^2 - M_h^2 + iM_h \Gamma_h)(q^2 - M_H^2 - iM_H \Gamma_H)} \right\} \right) \\ & \mathcal{M} \stackrel{on-shell}{\approx} \sigma_{ab \to ch} BR_{h \to ef} + \sigma_{ab \to cH} BR_{H \to ef} \\ &+ \frac{2}{F} \operatorname{Re} \left\{ \int \frac{dq^2}{2\pi} \left(\Delta_1^{BW}(q^2) \Delta_2^{*BW}(q^2) \left[\int d\Phi_P(q^2)\mathcal{M}_{P_1}(M_1^2)\mathcal{M}_{P_2}^*(M_2^2) \right] \right. \\ & \left. \left[\int d\Phi_D(q^2)\mathcal{M}_{D_1}(M_1^2)\mathcal{M}_{D_2}^*(M_2^2) \right] \right) \right\} \\ & \frac{M_h \overset{\sim}{\approx} M_H}{\approx} \sigma_{P_1} BR_1 \cdot (1 + R_1) + \sigma_{P_2} BR_2 \cdot (1 + R_2) \\ R_i &:= 2M_i \Gamma_i w_i \cdot 2\operatorname{Re} \left\{ x_i I \right\} \\ & w_i &:= \frac{\sigma_{P_i} BR_i}{\sigma_{P_1} BR_1 + \sigma_{P_2} BR_2} \\ & x_i &:= \frac{g_{P_i} g_{P_j}^* g_{D_i} g_{D_j}^*}{|g_{P_i}|^2|g_{D_i}|^2} \quad (g_{P/D}: \operatorname{couplings in production/decay) \end{split}$$

Elina Fuchs — DESY — PhD Days 2012 — Page 1/2

Higgs masses and widths depending on $\tan\beta$ and M_1

Elina Fuchs — DESY — PhD Days 2012 — Page 2/2