LHC Performance and Results

Ulrich Uwer • Physikalisches Institut • Universität Heidelberg

LHC produced fireworks of data

Outline

 Image: Second Second

(1.00 - 5.8) fb⁻¹ (\$ = 7, 8 TeV ATLAS Preliminary

http://www.elsevier.com/locate/physletb

LHC priorities for 2012:

- enough lumi (~15/fb) to discover Higgs
- machine experiments to run after LS1
- Prepare for p-Pb running

Luminosity Production

S.Meyers, CERN Oct RRB

Key to high luminosity

- <u>Current:</u> PS at limit of beam stability, injecting ~1.9×10¹¹ ppb In LHC: beam instabilities, beam induced heating.
- Reduction of $\beta^* \leftrightarrow$ tighter collimator settings (Effective aperture reduced from 14 to 10.5 σ . Operation tricky...).

Parameter	2010	2011	2012	Nominal
N (10 ¹¹ p/bunch)	1.2	1.45	1.58	1.15
No. bunches	368	1380	1380	2808
Bunch spacing ns	150	75 / 50	50	25
ε (μ m rad)	2.4-4	1.9-2.4	2.2-2.5	3.75
β* (m)	3.5	1.5 → 1	0.6	0.55
L (cm ⁻² s ⁻¹)	2×10 ³²	3.5×10 ³³	7.7×10 ³³	10 ³⁴

Beam intensity = $1.6 \times$ design value at 4 TeV.

LHC Operation

Access - No beam : 14.02%
 Machine setup : 26.95%
 Beam in : 14.99%
 Ramp + squeeze : 8.12%
 Stable beams: 35.91%

Down-time:

- Cryogenics/compressors
- Beam instrumentation, BLMs, QPS
- PS problems

Operation problems:

- Beam induced heating (BSRT, MIK)
- UFOs
- Losses due to beam tails
- Beam instabilities (emittance blow-up)
 - Beam losses at squeeze & adjust

LHC Shutdown Work

Prepare machine for high-energy (>13 TeV).

Repair non-conform interconnects.

- 10-15 % of interconnections to be opened and to be re-welded.
- □ Consolidate <u>ALL</u> interconnects with new design.
 - o 10'170 interconnects.
- □ Finish pressure release valves DN200.
 - 4 sectors: 2-3, 4-5, 7-8, 8-1
- □ Repair He leaks.
- □ Radiation to electronics mitigation.

Detector Operation

Detector operation & maintenance, reconstruction, calibration, software, computing requires a huge effort of personal.

ATLAS: Shifts + 680 FTE OperTasks + 180 for TIERs = ~1000 FTEs Physics Analysis is no operation task!

German Participation

	PhD	PhD Students	at CERN
ATLAS	308	212	ca. 40
CMS	123	91	ca. 20
LHCb	17	27	7

In addition: Undergrad students, engineers, technicians

Most important German functions

ATLAS

Deputy CB-Chair: G. Herten (FR) Computing Coordinator: H. v. d. Schmitt (MPI)

Run Coordinator: S. Zimmermann (FR)

<u>Physics convenors</u> S. Glazov (DESY) - Standard Model T. Kuhl (DESY) - Monte Carlo M. Cristinziani (BN) - Top until S. Kortner (MPI) - Higgs 10/2012

CMS

Deputy CB-Chair: M. Kasemann (DESY) Tracker Coordinator: H. Hartmann (KIT) Deputy TechCoord.: W.Zeuner

CB-Chair: B.Spaan (DO)

LHCb

Tracking Coordinator: J. v. Tilburg (HD) Deputy Trigger Coordinator: J.Albrecht (DO)

Physics convenor S.Hansmann-Menzemer(HD)-BtoCharmonium

Data Taking

⁽generated 2012-11-11 08:22 including fill 3273)

Triggering, Parking & Deferring

12

Event reconstruction with large Pile-Up

Event with 78 reconstructed vertices and 2 muons...

7.6×10³³ Hz cm⁻² ⇔ < μ > ~ 38

Design ~ 20

Pile-Up Handling

Detector performance under high pile-up condition is surprising.

Huge efforts to keep reconstruction inside CPU/memory budget.

Data storage

Grid Computing

LHC Computing Deutschland

Experiment	D-share	(target)
ATLAS	12.5%	Tier-1
CMS	10 %	Tier-2
LHCb	16.6 %	Tier-1

- 2013: GridKa faces increasing demands from experiments. First shortages (disks!).
- 2014: Trend will continue
- 2015: Large data increase

University Tier-2's need hardware replacement. Resources for 2013 provided by BMBF, afterwards ???

"Production" of Physics Results

Ехр	Papers
ATLAS	208
CMS	188
LHCb	72

Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep

German Analysis Participation

LHCb: Mixing & t-dep. CPV Gamma D-mixing & CPV QCD

Discovery of a "Higgs-like" Boson

Discovery of a "Higgs-like" Boson

Status July 2012

ATLAS Update at HCP

CMS Update at HCP

23

CMS Update at HCP

Slide from C. Paus

 m_{χ} = 125.8 ± 0.4(stat) ± 0.4 (syst) GeV

Standard Model Tests

tt-Production ...

... top mass

ATLAS 5.8/fb (Lept+jets)

 $\sigma_{t\bar{t}} = 241 \pm 2 \text{ (stat.)} \pm 31 \text{ (syst.)} \pm 9 \text{ (lumi.) pb}$

 $\sigma_{t\bar{t}} = 227 \pm 3 \text{ (stat.)} \pm 11 \text{ (syst.)} \pm 10 \text{ (lumi) pb}$

... more on tt production

27

B Physics – New States

28

B physics – CP Violation

Comparable w/ individual results from BABAR/BELLE w/ only 1 /fb

LHCb: $\phi_s = -0.001 \pm 0.101 \pm 0.027$ rad ATLAS: $\phi_s = 0.22 \pm 0.41 \pm 0.10$ rad CMS: $\Delta\Gamma_s = 0.048 \pm 0.024 \pm 0.003$ (ps^{-1})

CP Violation in Mixing

Also very nice:

LHCb: BR($K_s \rightarrow \mu\mu$) < 9 (11) × 10⁻⁹ @ 90 (95)% CL (35 times improved limit)

New Physics Searches

SUSY Searches

"Classical" inclusive searches:

- Jets + Missing transverse energy (MET)
- Leptons + Jets + MET

No excess seen \rightarrow Model dependent limits

Model dependent limits

- Constraints apply only to first generation:
 → sbottom and stop unconstrained.
- "Natural" SUSY: light stop/sbottom
 → requires exclusive searches

Exclusive SUSY Searches

Search for W', Z', t'

Exotica – Dark matter searches

Complementary to direct detection experiments

LHC Time-line

2009	Start of LHC	R. Heuer ICHEP 2012
	Run 1: 7 and 8 TeV centre of mass energy, luminosity ramping up to few 10 ³³ cm ⁻² s ⁻¹ , few fb ⁻¹ delivered	
2013/14	LHC shut-down to prepare machine for design energy and nominal luminosity	
Ļ	Run 2: Ramp up luminosity to nominal $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$, ~50 to 100 fb ⁻¹	Phase I Upgrades: Prepare detectors for
20 18	Injector and LHC Phase-I upgrades to go to ultimate luminosity	increased luminosity
	Run 3: Ramp up luminosity to 2.2 x nominal, reaching ~100 fb ⁻¹ year accumulate few hundred fb ⁻¹	
~20 22	Phase-II: High-luminosity LHC. New focussing magnets and CRAB cavities for very high luminosity with levelling	Phase II Upgrades R&D starts now
	Run 4: Collect data until > 3000 fb ⁻¹	
2030		

In-Situ Activities in Shutdown LS1

Completion, Maintenance & Consolidation

- Complete muon coverage (ME4)
- Improve muon operation (ME1), Relocation of DT electronics (AC)
- Replace HCAL photo-detectors (DESY)
- Installation of new pixel layer ILB (BN, SI,W, DO, GÖ, MPI, HD-ZITI)
- New Be+Alu beam-pipe
- Pxel services, cooling plant
- L1 Calo, FastTracKer,Topo Trigger (MZ,HD)
- Complete endcap extension muon chamb.
- Consolidation of calorimeter power supplies
- Upgrade magnet cryogenics
- Maintenance
- Prepare infrastructure for Upgrade

ATLAS Insertable Layer B

Göttingen:

- FE- und Modultestsysteme
- DAQ-Software
- Teststrahl

Siegen:

- optical links
- optochip

Wuppertal:

- Stave- Entwicklung, Mechanik-Entwicklung
- Modul-Placement
- Off-Detektor-Elektronik, DCS- System

Wupp.+Heidelberg:

Optolink, BOC

München (MPI):

Design und Produktion planarer Sensoren

Berlin / DESY:

- opt.Fasern
- Teststrahl

- FE-I4, FE- und Modultestsysteme
- Bump-Bonding, Modul-Entwicklung
- Teststrahl
- Serial-Powering-Konzept

Dortmund:

- planare Sensoren, slim edges,
- Strahlungsharte Sensoren, Teststrahl

ATLAS Phase I - Projects

CMS Phase I - Projects

LHCb - Upgrade

Preparation of High-Lumi Phase (II)

After 2022: L >5×10³⁴ (lumi leveling) Pile-up > ~100

- Extreme multiplicities, too high for current trackers
- Detectors will have collected >300 1/fb (design goal) and suffer radiation damages (inner detectors).
 - \rightarrow Replacement of inner tracking detectors
 - \rightarrow Replacement of forward detectors
 - \rightarrow Replacement of electronics
 - → New trigger concepts: precise timing!

R&D Program:

- New detector concepts
- New electronics
- New algorithms U Huge effort

German participation:

CMS: Tracker R&D within Central European Consortium ATLAS: R&D for Pixel & Si Strips, calorimeter electronics

LHCb: running with phase I detector

Conclusion

- LHC is a fantastic physics factory ...
- The discovery of the new boson is a triumph of our field, possible only because of long-term international effort.
- Higher LHC energy and more luminosity will open further windows for new measurements and discoveries: Need to prepare now!

German groups play a very important and visible role in the detector operation and in the analysis. But

- Operation of detectors (a must)
- Necessary upgrade work (a must for future) leave less and less resources for data analysis.

Additional Material

Limits on β*

In the high luminosity IRs, the triplet quadrupoles define the <u>machine</u> <u>aperture limit</u> for squeezed beams, β^* is constrained by:

• the beam envelope, $\sigma_{\scriptscriptstyle triplet} \propto$ o a margin TCT to triplet, o the crossing angle – separation Beam 1 - 3.5 TeV - emittance = 2.5 µm (mm) 1800 of the beams at the parasitic $\beta^* = 11 \text{ m}$ 1600 β* = 1.5 m ъ×́ encounters. 1400 = 1.0 m= 0.8 m 1200 $\beta^* = 0.6 \text{ m}$ тст Triplet Triplet TCT 1000 800 **≥10.5** σ 600 9 σ 400 200 -400 -300 -100 Ó -200 100 200 300 400 8 mm Distance to IR1/5 (m) TCT TCT=Tertiary Collimator

25 ns running

 25 ns beams suffer from severe electron cloud effects (→ vacuum rise & beam instabilities)

25 ns tests before end of running:

- Needs conditioning = "scrubbing runs"
- To study: e-cloud, heating, beam-beam related instabilities, UFOs
- Compare 25 ns and 50 ns w/ β^* leveling to 38 PU events

Production of electroweak Bosons

Higgs Constraints

Single Top Production

σ [pb]

tt Events as Calibration Signal

b-tagging efficiency:

Count # b-tags in tt events \rightarrow much reduced systematics

Detour: Charm Physics

CP violation in D⁰ decays

$$\Delta \mathsf{A}_{\mathsf{CP}} = \mathsf{A}_{\mathsf{CP}}(\mathsf{K}^{\mathsf{-}}\mathsf{K}^{\mathsf{+}}) - \mathsf{A}_{\mathsf{CP}}(\pi^{\mathsf{-}}\pi^{\mathsf{+}})$$

1st evidence (3.5σ) for CPV. larger than expected

 $\Delta A_{CP} = [-0.82 \pm 0.21_{stat} \pm 0.11_{syst}]$ %

Heavy Ion Physics

