Achim Stahl, RWTH Aachen

Bad Honnef, November 2012

How large is θ_{13} ?

Precision measurements (θ_{23} maximal ?)

Absolute mass scale ?

Normal or inverted hierarchie?

Majorana or dirac neutrinos?

CP-violation?

- \rightarrow experiments started
- → next gen. oscillations exp.
- → nucl. phys. experiments (KATRIN)
- → next gen, oscillations exp.
- → double beta decay
- → next gen. oscillations exp.

Is the MNS-model correct?

Spring 2011:

How large is θ_{13} ?

- Precision measurements (θ_{23} maximal ?)
- Absolute mass scale ?
- Normal or inverted hierarchie ?
- Majorana or dirac neutrinos ?

CP-violation?

- → experiments started
- Spring 2011: done

Autumn 2012

- \rightarrow next gen. oscillations exp. almost done
- → nucl. phys. experiments (KATRIN)
- → next gen, oscillations exp.
- → double beta decay
- → next gen. oscillations exp.

Is the MNS-model correct? doubts (sterile neutrinos)?

Long Baseline Beams

RWTH Aachen

Appearance $v_{\mu} \rightarrow v_{e}$

Baseline: 200...2000 km Depends on: θ_{13} , δ , hierarchy

Reactor Neutrinos

MPI Heidelberg RWTH Aachen TU München Uni Hamburg Uni Tübingen

Disappearance

 $\overline{\mathbf{V}}_{\mathrm{e}} \rightarrow \overline{\mathbf{V}}_{\mu} , \overline{\mathbf{V}}_{\tau}$

Baseline: 1 km Depends on: θ_{13}

Neutrino Oscillations

History / θ_{13}

June 2011	T2K	2.5 σ
August 2011	MINOS	1.5 σ
Dec. 2011	DoubleChooz	2.0 σ
April 2012	Daya Bay	5.2 σ
April 2012	Reno	4.9 σ
July 2012	T2K	3.2 σ
August 2012	DoubleChooz	2.9 σ
October 2012	Daya Bay	7.7 σ

	Free Fluxes $+$ RSBL		
a la constante de la constante	bfp $\pm 1\sigma$	3σ range	
$\sin^2 \theta_{12}$	0.30 ± 0.013	$0.27 \rightarrow 0.34$	
$\theta_{12}/^{\circ}$	33.3 ± 0.8	$31 \rightarrow 36$	
$\sin^2 \theta_{23}$	$0.41^{+0.037}_{-0.025} \oplus 0.59^{+0.021}_{-0.022}$	$0.34 \rightarrow 0.67$	
$ heta_{23}/^{\circ}$	$40.0^{+2.1}_{-1.5} \oplus 50.4^{+1.2}_{-1.3}$	$36 \rightarrow 55$	
$\sin^2 \theta_{13}$	0.023 ± 0.0023	0.016 ightarrow 0.030	
$\theta_{13}/^{\circ}$	$8.6\substack{+0.44 \\ -0.46}$	$7.2 \rightarrow 9.5$	
$\delta_{ m CP}/^{\circ}$	300^{+66}_{-138}	0 ightarrow 360	
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	7.50 ± 0.185	$7.00 \rightarrow 8.09$	
$\frac{\Delta m^2_{31}}{10^{-3}~{\rm eV}^2}~({\rm N})$	$2.47\substack{+0.069 \\ -0.067}$	$2.27 \rightarrow 2.69$	
$\frac{\Delta m_{32}^2}{10^{-3} \ {\rm eV}^2} \ {\rm (I)}$	$-2.43\substack{+0.042\\-0.065}$	$-2.65 \rightarrow -2.24$	

M. C. Gonzalez-Garcia et. al, arXiv 1209.3023

Neutino Oscillations

 $\theta_{23} \neq 45^{\circ}$

Statistcal fluctuation almost excluded ? Systematics ?

New SciBooNE results show less effect

MiniBooNE

Reactor Neutrino Anomaly ?

New calculation of neutrino flux from reactors

Neutrino Oscillations ? L < 10m $\rightarrow \Delta m^2 \approx 1 \text{ eV}^2$

- T. A. Mueller et al., arXiv:1101.2663 [hep-ex].
- G. Mention et al., arXiv:1101.2755 [hep-ex].

$$R \equiv \frac{\text{p(measured)}}{\text{p(predicted)}} = 0.88 \pm 0.05(1\sigma)$$

Cosmological Evidence ?

Big Bang Nucleosynthesis N_{eff} 3.8 ... 3.9 error 0.2 ... 0.5

Large Scale Structure N_{eff} 3.8 ... 4.8 error 0.4 ... 0.8

r-Process in Super Novae

sterile v might explain n-rich environment in which heavy nuclei form.

Sage-2	$v_e \rightarrow v_e$	Source (⁵¹ Cr), int.	Radiochemical	RUS, Baksan	likely; ~ 2015
Lens	$v_e \rightarrow v_e$	Source (⁵¹ Cr), int.	In-loaded scint.	US, Virg.Tech.	paper, proposal ?
SNO+	$v_e \rightarrow v_e$	Source (⁵¹ Cr), ext.	liquid scintillator	CA, SNOLab	under discussion
SOX	$\frac{\nu_{\rm e} \rightarrow \nu_{\rm e}}{\overline{\nu_{\rm e}} \rightarrow \overline{\nu_{\rm e}}}$	Source (⁵¹ Cr), ext. Source (¹⁴⁴ Ce), int.	liquid scint. (Gd) (BOREXINO)	I, Gran Sasso	likely; 2015 likely; 2017
Ricochet	$v_e \rightarrow v_e$	Source (³⁷ Ar), ext.	bolometers	US	prototyping
CeLAND	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	Source (144Ce), int	liquid scint.	J, KAMLAND	likely; 2015
DayaBay	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	Source (144Ce), ext	liquid. scint (Gd)	China	paper;
KATRIN	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	Source (³ H)	spectrometer	G, Karlsruhe	comissioning; start 2014
NUCIFER	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	Reactor, 7m	liquid. sint. (Gd)	F, Paris	comissioning; ~ 2015
STEREO	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	Reactor, 10m	liquid. scint. (Gd)	F, Grenoble	
SCRAAM	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	Reactor, 24/12m	liquid. scint. (Gd)	US, California	studies ongoing, proposal
SONGS	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	Reactor, 24 m	liquid. scint. (Gd)	US, California	running
POSEIDON	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	Reactor, 7 & 10m	liquid. scint. (Gd)	RUS, PIK react.	
DANSS	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	Reactor, 14m	TASD	RUS	prototyping
Mumm, NIST	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	Reactor, 4-11m	?	US	proposal
Nu4	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	Reactor, 6-12m	liquid. scint. (Gd)	RUS	
HANARO	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	Reactor,	liq. scint. (Gd/ ⁷ Li)	S-Korea	
IsoDAR	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	⁸ Li decay-at-rest	liq. scint. (Gd?)	unknown	paper, R&D
OscSNS	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}, \nu_{e} \rightarrow \nu_{e}$	π -decay-at-rest	liq. scint. (Gd?)	US, OakRidge	paper
CLEAR	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}, \nu_{e} \rightarrow \nu_{e}$	π -decay-at-rest	liq. scint.	?	?
DAR-SK	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	π -decay-at-rest	Gd-loaded water	J, SuperK	
DEAδALUS	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}, \nu_{e} \rightarrow \nu_{e}$	π -decay-at-rest	liq. scint.	SF, LENA	paper, >2020
MicroBOoNE	$\overline{\mathcal{V}}_{\mu} \rightarrow \overline{\mathcal{V}}_{e, \mathcal{V}_{\mu}} \rightarrow \mathcal{V}_{e}$	π -decay-in-flight	liq. scint., 200m	US FermiLab	under construction
KDAR	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}, \nu_{e} \rightarrow \nu_{e}$	K-decay-at-rest	LAr, 2kt		paper
LAr1	$\overline{\mathcal{V}}_{\mu} \rightarrow \overline{\mathcal{V}}_{e}, \ \mathcal{V}_{\mu} \rightarrow \mathcal{V}_{e}$	π -decay-in-flight	LAr 1kt, 700m	US FermiLab	idea, studies ongoing
vSTORM	many	µ-decay-in-flight	MID, 1.3 kt, 2km	US FermiLab	idea (low E vfactory)
NESSIE	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}, \nu_{\mu} \rightarrow \nu_{e}$	π -decay-in-flight	LAr, 150+600 kg	CH, CERN	proposal

Several Proposals to test short range oscillations

CERN proposal Carlo Rubbia

higher E

SPS wide band beam to ICARUS @ CERN

NUCIFER small detector for non-proliferation

smaller L

sketch NUCIFER@OSIRIS

BOREXINO KAMLAND SNO+ (or others) Radioactive source inside large v-detector

smaller L

In the second se

KATRIN	absolute mass	Start-up now
BOREXINO	solar neutrinos	excellent new results
Double-Beta	majorana masses	several experiments in preparation
IceCube	astro-neutrinos	now fully in operation

Sorry! No time to discuss

Neutrino Strategy

DayaBay II	reactor 60km	20 kt LS	3 σ in 6 years	R&D on E-reso. my guess 2020	Karsten Heegner	
ICAL@INO	atmos.	50 kt MID (RPCs)	2.7 σ in 10 years	2027	Sandhya Choubey	
HyperK	atmos.	1 Mt Water Cerenkov	3σ in 5 years 4 σ in 10 years	2027/28 2033/34	Sandhya Choubey	LoI submitted
T2HK	LBL accel. 295 km	1 Mt Water Cerenkov	03 σ in 10 years	2028	Masashi Yokoyama	
PINGU	atmos.	Ice (South pole)	311 σ in 5 years	feasibility study ongoing.	Sandhya Choubey Poster	Systematics ?
MINOS+	LBL accel. 735 km	MID 5.4 kt	no claim on mass hierarchy		speaker on question	
GLADE	LBL accel. 810 km	LAr 5 kt	In combination with NO ν A and T2K $\leq 2 \sigma$	Letter-of-Intent	André Rubbia, Poster	
ΝΟνΑ	LBL AshRiver 810 km	TASD 14 kt	03 σ in 6 years depending on δ	2020	Ryan Patterson	under construction starts 2014
LBNE	LBL Homestake LBL Soudan LBL AshRiver	LAr 10 kt LAr 15 kt LAr 30 kt	1.57 σ in 10 y 03 σ in 10 y 0.55σ in 10 y	2030	Bob Swoboda	range gives dependence on δ
GLACIER	LBL accel. 2300 km	LAr 20 kt	> 5 σ in a few y.	2025 + number of years to the decision	André Rubbia	
LENA	LBL accel. 2300 km	Liq. Scint. 50 kt	5 σ in 10 years	2028 + number of years to the decision	Lothar Oberauer	
v-factory	LBL accel. ? km	LAr ? kt	$\gg 5 \sigma$?		

The information is collected from talks given at the NEUTRINO2012 conference in Kyoto in June 2012. The following transparencies are extracted from the corresponding talks (speakers listed in the 6th column). Achim Stahl – RWTH Aachen University

1. Long Baseline Neutrino Observatory LBNO Beam CERN to Pyhäsalmi, Lab, 2 far det., near det.

2. Short Baseline Beam @ CERN Sterile Neutrino Search (ICARUS + NESSIE)

3. R&D for Neutrino Factory

Neutrinos: Globalisation

Medium Term (goal → mass hierarchy
→ first shot at CP; 3σ in 50...70%):Japan:T2K, T2HKUS:LBNELBNE(no astro-program)Europe:LBNO(full complementarity)

Longterm (goal → CP-violation): Neutrino Factory

What is the optimal baseline (at fixed detector mass and beam power)?mass hierarchy:broad maximum between 500km and several 1000 km.CP-violation:essentially flat from 200 km on.

LBNE ~ 800km, T2K 295 km, C2PY 2300 km Interest on a second beam to Pyäsalmi from Russia

DoubleChooz & Borexino Technology on Super-K Scale

Liquid Scintillator ca. 50kt LAB

Inner Nylon Vessel radius: 13m

Buffer Region \frown inactive, $\Delta r = 2m$ ca. 20kt LAB

Steel Tank r = 15m, h = 100m

50,000 8"-PMTs Winston cones optical coverage: 30% Electronics Hall
 dome of 15m height

Top Muon Veto
 scintillator panels/RPCs
 vertical muon tracking

Water Cherenkov Veto 3000 PMTs, $\Delta r > 2m$ fast neutron shield inclined muons

Egg-Shaped Cavern about 105 m3

Rock Overburden at least 4000 mwe

Physics Summary

- Proton Decay
- -Galactic Supernova Burst
- -Diffuse Supernova Neutrino Background
- -Long baseline neutrino oscillations
- -Solar Neutrinos
- -Geo neutrinos
- Atmospheric neutrinos
- Dark Matter indirect search
- -Neutrino oscillometry (sterile neutrinos)

1. Long Baseline Neutrino Observatory LBNO Beam CERN to Pyhäsalmi, Lab, 2 far det., near det.

2. Short Baseline Beam @ CERN Sterile Neutrino Search (ICARUS + NESSIE)

3. R&D for Neutrino Factory