How low can SUSY go?

Jamie Tattersall

In collaboration with H Dreiner and M Krämer. epl 99 (2012) 61001, arXiv:1207.1613

Bethe Center for Theoretical Physics

How low can SUSY go?

Current Limits

LHC now sets very strict limits on the SUSY parameter space.

- Simplified Model ($m_{\tilde{\chi}_1^0} = 0$).
 - $m_{\tilde{q}}=m_{\tilde{g}}\gtrsim 1.5$ TeV.
 - $m_{ ilde{g}}\gtrsim$ 940 GeV, ($m_{ ilde{q}}=$ 2 TeV).
 - $m_{ ilde q}\gtrsim$ 1380 GeV, ($m_{ ilde g}=$ 2 TeV).
- mSugra (tan $\beta = 10, A_0 = 0, \mu > 0$).

• $m_{\tilde{q}} = m_{\tilde{g}} \gtrsim 1.4$ TeV.

- CMS gives very similar bounds (all a little weaker).
- Everything else has much weaker bounds.
 - \tilde{t} 's, \tilde{b} 's, $\tilde{\ell}$'s, $\tilde{\chi}$'s.

If we are interested in light \tilde{q} 's and \tilde{g} 's, is there an escape clause?

Two obvious possibilities:

- Events containing no Missing Energy.
 - Signal can be hidden under QCD.
- Events containing only Missing Energy.
 - Signal can be invisible to the detector.

Events containing only MET

If the spectrum is compressed all momentum is carried by the LSP.

- Hard event is invisible.
- Possibility to use ISR to recoil against LSP.
- Hard ISR jets are common.

Process, $m_{\tilde{q}_i}$ = 500 GeV	Xsec (fb)
$p_T(j) > 100 \text{ GeV}$	
$pp ightarrow ilde{q} ilde{q}$	24
ho p o ilde q ilde q j	6.6
$pp ightarrow ilde{q} ilde{q} j j$	1.1

Simplified Models

We take simplified models to capture the extremes.

- Squarks degenerate with LSP ($\Delta m = 2 \text{ GeV}$). Gluino heavy.
- Gluino degenerate with LSP ($\Delta m = 2 \text{ GeV}$). Squarks heavy.
- Gluino and squark degenerate with LSP $(\Delta m = 2 \text{ GeV}).$
- We ignore third generation.
- Mass difference is varied.

Matrix Element vs Parton Shower

Matrix Element

- Pros:
 - Exact to fixed order.
 - Include interference effects.
- Cons:
 - Perturbation breaks down due to large logs.
 - Computationally expensive.

Valid when partons are hard and well separated.

Parton Shower

- Pros:
 - Resum logs.
 - Produce high multiplicity event.
- Cons:
 - Only an approximation to ME.
 - No interference effects.

Valid when partons are soft and/or collinear.

How low can SUSY go?

Parton shower has to be tuned to match phenomenological data.

- Starting scale is the most important parameter (for high p²_T behaviour).
- For ISR, should be factorisation scale.
 - Often chosen as the transverse mass, $\mu_F = \sqrt{p_T^2 + \hat{m}^2}$.
 - 'Wimpy' shower.
 - Softer than matrix element.
- Phenomenologically better choice is far higher.
 - Allow parton shower to fill full phase space, $p_{T,j} = \sqrt{s}/2$.
 - 'Power' shower.
 - In conflict with factorisation assumption.
 - Can be harder than matrix element.
- Large differences depending upon choice.
 - Older tunes more 'wimpy'.
 - Newer tunes getting tougher!

Parton shower variation

Collaborations have until very recently only used parton showers when setting limits.

- Uncertainty in the ISR prediction is huge.
- Reason they don't show limits in compressed spectra.
- Depending on settings, parton shower can be harder than matrix element.

How low can SUSY go?

Matching the matrix element to the parton shower

We must match the Matrix Element prediction to the parton shower.

- Reweight inclusive samples (no double counting).
- Smooth distributions between areas of validity.
- Small dependence on matching scale.
- Small dependence on parton shower.
- Should converge as we include higher multiplicities.

How low can SUSY go?

Our choice

We wanted to understand QCD uncertainty in ISR.

- Integrated MLM matching in MadGraph.
 - Interfaced with Pythia 6 shower.
 - First PS matching for SUSY.
- Newly developed CKKW matching in Pythia 8.
 - We have adapted code to work with SUSY.
 - Provides a cross-check with different matching scheme and shower.
 - Pythia 8 shower is far more advanced.
- We also test standalone Parton Showers without additional jets generated by the matrix element.
 - Herwig++, Pythia 6 (P_T^2), Pythia 6 (Q^2), Pythia 8 (P_T^2).
- We use NLL-Fast for cross-sections.
 - NLO with leading log soft gluon resummation.

(http://web.physik.rwth-aachen.de/service/wiki/bin/view/Kraemer/SquarksandGluinos)

PS vs Matched

Comparison of Parton Shower and Matched Uncertainties.

- Decoupled production of 500 GeV squarks, degenerate LSP.
- Parton shower varied between 'wimpy' and 'power' settings.
- Matching scale varied between 50 and 200 GeV.
- Factorisation and renormalisation scales varied.
- Large reduction in uncertainty.
- Parton shower 3rd jet (unmatched) uncertainty also improved.

Jets and MET.

- Take ATLAS search as example (very similar CMS search).
- Current mSugra world champion!
- $m_{eff}(incl) > 1200 \text{ GeV}$ $(\sum E_T^{jet} \gtrsim 750 \text{ GeV}).$
- $E_T^{miss}/m_{eff}(Nj) > 0.15 0.4.$
- $p_T(j_1) > 130$ GeV.
- $p_T(j_2) > 60$ GeV.
- $\Delta \phi(j, E_T^{miss}) > 0.4.$

Shape based.

- Take CMS RAZOR search as example (CMS also has α_T and M_{T2}).
- Use topology to better discriminate signal and background.
 - Allows kinematical cuts to be set lower.
 - Removes need for explicit jet, MET collinearity cut.

$$M_{R} = \sqrt{(E_{j1} + E_{j2})^{2} - (p_{z}^{j1} + p_{z}^{j2})^{2}}$$
$$M_{T}^{R} = \sqrt{\frac{E_{T}^{miss}(p_{T}^{j1} + p_{T}^{j2}) - \vec{E}_{T}^{miss}(\vec{p}_{T}^{j1} + \vec{p}_{T}^{j2})}{2}}$$
$$R = \frac{M_{T}^{R}}{2}$$

MR

Figure 12: Observed (solid blue curve) and median expected (dot-dashed curve) 95% CL limits in the $(m_0, m_{1/2})$ CMSSM plane with tan $\beta = 10, A_0 = 0, sogn(\mu) - +1$ from the razor analysis. The \pm one standard deviation equivalent variations in the uncertainties are shown as a band around the median expected limit. Shown separately the observed HAD-only (solid crimson) and heptonic-only (solid green 95% CL limits.

Monojet.

- Both CMS and ATLAS have a monojet search.
 - Designed to search for ADD extra dimensions.
 - Now also used for model independent dark matter
- $E_T^{miss} \gtrsim 350$ GeV.
- Both have a third jet veto.
- ATLAS also had 2nd jet veto, $p_T < 60$ GeV. (now removed for 4.7 fb⁻¹).
- For CMS $\Delta \phi(j_1, j_2) < 2.5 \ (\sim 140^{\circ}).$

Comparison of squark limits.

- Limit in decoupled gluino scenario, $m_{\tilde{a}} \gtrsim 380$ GeV.
 - ATLAS Monojet search provides the best limit (just)!
 - General SUSY searches almost match the limit.
 - CMS RAZOR is the most constraining of the SUSY searches.

Contraction of the second s

450 500 550

600

400

 $M_{\hat{\sigma}}$ (GeV)

200

300

Moving away from full compression.

- Extra hadronic activity quickly hurts the monojet searches.
 - Maybe remove the jet vetoes or set these higher.
- SUSY searches rapidly improve as splitting is increased.
 - Limits 'only' reach 670 GeV.
 - t-channel gluino is dominant production mode for 'normal' SUSY.
 - Discontinuities caused by different search regions.

Comparison of gluino limits.

- Limit in decoupled squark scenario, m_{g̃} ≥ 500 GeV.
 - CMS RAZOR gives the best limit.
 - Monojet competitive near to degeneracy.
- Decoupled scenario is somewhat academic.
 - With $m_{\tilde{q}} = \infty$, gluino becomes stable.
 - With extreme compression gluino lifetime is large even for moderate squark masses.
 - Need stops and sbottoms around.

600 700

 M_{\star} (GeV)

900 1000

300

200 100

300

Equal mass $(M_{\tilde{q}} = M_{\tilde{g}})$ limits.

- Limit is, $M_{ ilde{q}} = M_{ ilde{g}} \gtrsim 670$ GeV.
 - CMS monojet search is competitive for spectrum degeneracy.
 - CMS-Razor provides the best limit from SUSY searches.
 - SUSY searches once again improve as degeneracy is broken.

- Compressing the mass spectrum makes SUSY much harder to look for.
- ISR becomes vital to see any signal.
- Matching the matrix element to the parton shower to required to accurately model the ISR.
- Squark masses \gtrsim 380 GeV.
- Gluino mass \gtrsim 500 GeV.
- Equal squark and gluino masses \gtrsim 670 GeV

Backup Slides

How low can SUSY go?

Single eigenstate 'Stop' limits.

- Limit is, $M_{\tilde{t}} \gtrsim 200$ GeV.
 - Limit only valid for the decay $\tilde{t} \rightarrow c \tilde{\chi}_1^0$.
 - Decay is loop induced.
 - 100% branching ratio assumed.
 - For more complicated decays, limits are still valid in the limit of degeneracy.
- Also valid for a single light squark (or sbottom) eigenstate.

Default parton showers

Comparison of Parton Shower and Matched Uncertainties.

- Different parton shower defaults give very different behaviour.
- No 'out of the box' setting is correct.
- Varying showers between 'wimpy' and 'power' settings is representative.
- Default Pythia 8 is now a power shower.
 - Significantly overestimates jet production

Double counting

Double counting is a real problem!

- Often considered to be a theoretical issue.
- Parton shower tunes are softer but still hard enough.
- Looking at the hardest jet can fool you.
- Comparison done with the relatively soft Pythia 6 showers.
 - With the default Pythia 8 shower, the situation would be even worse.

Searches

Verifying my implementation.

- Good agreement with all analyses.
 - Jets are easy when the hard work is done!
- Only use best expected box.
 - If exclusion is better than expected, use expected.
 - More conservative than ATLAS.
 - Allows a fairer comparison between searches and regions.
 - Relevant regions for compressed spectra unaffected.

Searches

Verifying my implementation.

- Good agreement with all analyses.
 - Jets are easy when the hard work is done!
- Only use best expected box.
 - CMS RAZOR use complicated unbinned likelihood.
 - Impossible to replicate but provide fine binning (60 bins) on wiki.
 - I reduce to 20 bins and use best exclusion.
 - Worse reach than official analysis.

Figure 12 Observed (solid blue curve) and median expected (dot-dashed curve) 95%. CL limits in the $(m_0, m_{1/2})$ CMSSM plane with $\tan \beta = 10, A_0 = 0, \operatorname{sgn}(\mu) = +1$ from the razor analysis. The \pm one standard deviation equivalent variations in the uncertainties are shown as a band around the median expected limit. Shown separately the observed HAD-only (solid crimison) and leptonic-only (solid green 95% CL limits.

Limits on squarks in decoupled gluino model.

- Big variation on limit, 180 400 GeV.
- Default Herwig and Pythia 6 very close.
- Pythia 8 default is the power shower.

Agreement with LeCompte, Martin.

(LeCompte, Martin; 1105.4304, 111.6897)

- Equal mass scenario, $M_{\tilde{q}} = M_{\tilde{g}} \gtrsim 600$ GeV.
- Our ATLAS limit, $M_{\tilde{q}} = M_{\tilde{g}} \gtrsim 600$ GeV.
 - New search region for ATLAS with high MET.
 - \sim 5x luminosity.
 - We set limits slightly more conservatively.
- Monojet/Razor search, $M_{\widetilde{q}} = M_{\widetilde{g}} \gtrsim 650$ GeV.

Differences with LeCompte, Martin.

(LeCompte, Martin; 1105.4304, 111.6897)

- Decoupled squark scenario, $M_{\tilde{g}} \gtrsim 450$ GeV.
- Our ATLAS limit, M_{g̃} ≥ 440 GeV.
 - New search region for ATLAS with high MET.
 - $\circ \sim$ 5x luminosity.
 - We set limits slightly more conservatively.
- RAZOR search, $M_{\tilde{g}} \gtrsim 500$ GeV.

Comparison with 'Supersoft Supersymmetry is Super-Safe'.

(Kribs, Martin; 1203.4821)

- Motivation for a decoupled gluino.
 - Add Dirac gaugino masses.
 - No issues with naturalness.
- Limits for pure squark production with decoupled gluino.
 - Apply all current SUSY searches.
 - For $0 < M_{LSP} < 100$ GeV, $M_{\tilde{q}} \gtrsim 750$ GeV.
 - For $M_{LSP}=$ 200 GeV, $M_{ ilde{q}}\gtrsim$ 650 GeV.
 - For $M_{LSP} = 300$ GeV, no limit on $M_{\tilde{q}}$.
- Different to our result.
 - Have only included default parton shower.

