Searches for Supersymmetry at CMS LEXI Workshop, DESY

UHH SUSY Group:

Arne Rasmus Draeger, Ulla Gebbert, Johannes Haller, Kristin Heine, Malte Hoffmann, Teresa Lenz, Daniele Marconi, Friederike Nowak, Christian Sander, Peter Schleper, <u>Matthias Schröder</u>, Valentina Sola, Lukas Vanelderen, Annika Vannhoefer

Universität Hamburg

October 11, 2012

Introduction

Supersymmetry

- Symmetry between fermions and bosons
- Requires the introduction of new particles

Are there any new particles at the TeV scale?

Searches for Supersymmetry at CMS

- Generic
 - Signature-based rather than model-based
- Broad
 - Many different signatures covered
- Robust
 - Data-based methods
 - Complementary methods

– broad \rightarrow

Ś	Fully Hadronic	Leptons 1, 2, > 2	Photons 1, 2	
	μ_{T} $lpha_{T}$ razor	 + <i>b</i> -m	nultiplicity	
	$M_{T,2}$			

More details at

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Matthias Schröder (matthias.schroeder@desy.de)

Outline

1 SUSY Searches by the UHH Group

- Jets $+ H_T$
- τ + Jets + H_T

$\mathsf{Jets} + \not\!\!\!/_\mathsf{T} \mathsf{Analysis}$

- Signature motivated by R-parity conserving SUSY
 - Several high-p_T jets and large missing transverse momentum
 - No light leptons
- High sensitivity to squark and gluino production

- $t\bar{t}$ and W/Z+ jets: H_T from ν
- QCD: *H*_T from mismeasurements

• Sensitive variables

- Bins in $H_{\rm T}$, $H_{\rm T}$
 - Sensitivity to different parameter points

Results: Observed and Predicted Number of Events

Observed number of events in 4.98 fb⁻¹ of $\sqrt{s} = 7$ TeV data consistent with SM expectation

QCD-Background Prediction: Rebalance-and-Smear

- H_T from jet- p_T mismeasurements
- Challenging to predict
 - Understanding of QCD effects
 - Understanding of jet- p_T resolution

Total relative precision of $\approx 70\%$

CMSSM Limits from 4.98 fb⁻¹ of $\sqrt{s} = 7$ TeV Data

- Among the most sensitive analyses
- Lower limit of ≈ 1.3 TeV for $m_{\tilde{g}} = m_{\tilde{g}}$

τ + Jets + H_T Analysis

- LSP DM: relic-density constraints on cross sections
 - Annihilation $\tilde{\chi}^0 \tilde{\chi}^0 \rightarrow f \bar{f}$
 - \blacktriangleright Co-annihilation $\tilde{\chi}^0\tilde{f}\to f\gamma$
- CMSSM: $m_{\tilde{\tau}} \approx m_{\tilde{\chi}^0}$ at small m_0 • Large co-annihilation cross section
- Looking for final states with τ leptons + jets + H_T
- Di- τ : typically $\geq 2\tau$ produced
- Single τ : low p_T , low ID efficiency

• Real au: W+jets, $t\overline{t}$

CMSSM Limits from 4.98 fb⁻¹ of $\sqrt{s} = 7$ TeV Data $N_{\tau} = 1$ $N_{\tau} \ge 2$

 Best sensitivity in co-annihilation region

- Sensitivity also at larger m₀
- Lower limit of $m_{\tilde{g}} = 1.15$ TeV for $m_0 < 400$ GeV

- General Gauge Mediation (GGM) Models
 - SUSY breaking through gauge interactions
- LSP: gravitino

• NLSP:
$$\tilde{\chi}^0 = \tilde{B}^0 + \tilde{W}^3 + \tilde{H}^0$$

• $\tilde{\chi}^0 \rightarrow \gamma + \tilde{G}$
• $\tilde{z}^0 \rightarrow Z + \tilde{C}$

•
$$\tilde{\chi}^0 \rightarrow h + \tilde{G}$$

- $\bullet \ \gamma$ can be well reconstructed

Dominant SM Backgrounds

• QCD: $\gamma {+} {\rm jet},$ fake γ

•
$$W/Z + \gamma$$
: ISR / FSR

SUSY Searches by the UHH Group $\gamma + \text{Jets} + \not{\!\!\!P_T}$ (CMS-PAS-SUS-12-018)

GGM Limits from 4.04 fb⁻¹ of $\sqrt{s} = 8$ TeV Data Bino-Like NLSP Wino-Like NLSP

Lower limits on squark and gluino masses

- Bino-like: pprox 1.1 TeV
- Wino-like: pprox 800 GeV

Outline

1 SUSY Searches by the UHH Group

- Jets $+ H_T$
- τ + Jets + H_T

2 Conclusions from the CMS Searches

Model-Independent Representation of Search Results

- "Simplified Model Spectra"
- Allows reinterpretation in more specific models

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SUSYSMSSummaryPlots

Matthias Schröder (matthias.schroeder@desy.de)

Conclusions from the CMS Searches

- Squarks and gluinos excluded up to $\approx 1~\text{TeV}$
- Simple SUSY models lose naturalness
- But searches less sensitive to 3rd generation squarks

Light? Natural SUSY?

 \bullet Searches for SUSY with light 3rd-generation squarks

- Dedicated 3rd-generation searches
- Reinterpretation of existing limits

Summary & Outlook

- CMS performs a broad variety of searches for SUSY-motivated new physics
 - Strong participation by University of Hamburg group
- So far, no sign of any new physics
- But developed sophisticated analysis techniques, gained detailed understanding of SM backgrounds
- Well equipped for searches for more specific SUSY models e.g. with light 3rd-generation squarks
- Targeting question of natural SUSY

Analysis of 8 TeV data in full swing — more results expected soon

Backup

Rebalance-And-Smear Validation

- Increased statistical precision by bootstrap method
- Closure within 30 50%
- Dominant systematic uncert.
 - Intrinsic bias
 - Jet-p_T resolution
 - Pile-up

10-50% in regions with sizable QCD bkg.

Total uncertainty 65 - 75%

N_r = 1: Event Selection

- Trigger: missing transverse energy
- Baseline / Full selection:
 - HT⁵⁰ > 400 / 600 GeV

$$H_{\rm T}^{50} = \sum_{p_{\rm T}>50 \text{ GeV}, |\eta|<2.5} p_{\rm T}$$

• MHT > 250 (trigger fully efficient) / 400 GeV

$$MHT = H_{\rm T} = \left| -\sum_{p_{\rm T} > 30 \, {\rm GeV}, \ |\eta| < 5} \vec{p}_{\rm T} \right|$$

- Exactly one isolated $\tau_{\rm had}$: $p_{\rm T}$ > 15 GeV, $|\eta|$ < 2.1
- No isolated light leptons: p_T > 10 GeV
- Main backgrounds from Standard Model processes:
 - $W (\rightarrow \tau \nu)$ + jets / $t\bar{t}$ / QCD + small contributions from Z ($\rightarrow \nu \nu$) + jets and VV

14th August '12

christian.sander@cern.ch - Search for SUSY with Taus at CMS

R

UН

Background From Real au ($N_{ au} = 1$)

- Constitutes \gtrsim 80%, mostly W
 ightarrow au
 u+jets
- Prediction from μ +jets control sample using lepton universality

N_{τ} = 1: Background from MisID τ s

Background with misID taus (sub dominant)

- Quark/gluon jet can be mis-identified as τ
- Dominant contribution: QCD multi-jet; smaller contribution: $Z (\rightarrow vv)$ + jets and $W (\rightarrow lv)$ + jets

Background estimation:

- Make Baseline/Full selection + τ veto
- (2) Weight events with probability to misID a τ: U

$$v_{\text{event}} = 1 - \prod_{i=\text{jets}} (1 - p_i^{\text{misID}})$$

Remarks:

- Measure τ misID rate per jet p^{misID}(p_τ, η) in QCD dominated region:
 - HT⁵⁰>350 GeV. 40 GeV < MHT < 60 GeV
 - → 99% purity (estimated from MC)
 - Jet = jet with matched τ candidate: $\Delta R < 0.1$, $p_{\tau} > 15$ GeV and $|\eta| < 2.1$
- Method validated in MC as well as in QCD dominated side band regions → no systematic bias observed

14th August '12

christian.sander@cern.ch - Search for SUSY with Taus at CMS

$N_{\tau} \ge 2$: Background Estimation

- Define control regions (CR) which are selected similar to the signal region (SR), but enriched with events from the background process
 - TTbar CR: SR + 2 b-tags
 - W + jets CR: SR + 0 b-tags
 - Z + jets CR: SR + opposite sign muon pair
 - QCD CR: SR but "inverted" Δφ(MHT, jet₂) cut (Δφ<0.1)
- Measure selection efficiencies, jet multiplicities and/or jet \rightarrow τ misID rates in those control regions
- Extrapolate from the control region to the signal region

UH

GGM Phenomenology @ the LHC

Neutralino NLSP mixture of Bino, Wino and Higgsino

- Bino-like NLSP: $\tilde{\chi}_1^0 \rightarrow \gamma + G \text{ or } \tilde{\chi}_1^0 \rightarrow Z^0 + G$
- Wino-like (co-)NLSP: $\tilde{\chi}_1^0 \rightarrow \gamma + G \text{ or } \tilde{\chi}_1^0 \rightarrow Z^0 + G$ and/or $\tilde{\chi}_1^{\pm} \rightarrow W^{\pm} + G$
- R-parity is conserved
 - -> 2 LSPs per event
 - ★ MET is defining signature

Event Selection

- $\geq 1\gamma$ with $p_{\mathsf{T}}>$ 80 GeV
- \geq 2 jets with $p_{\rm T}$ > 30 GeV
- $H_{\rm T}$ > 450 GeV ($H_{\rm T}$ from all jets with $p_{\rm T}$ > 40 GeV)

Standard Model Backgrounds

Fake photons -	Fake photons -	Irreducible
QCD (jets)	EWK (electrons)	(photons)
$egin{array}{ccc} \gamma & + & { m Jet} \ { m j} & o & \gamma \end{array}$	W, top e $ ightarrow \gamma$	ISR/FSR Z/W/top + γ
Dominant	Sub-dominant	Sub-dominant
Background	Background	Background
Dała - Driven	Dała - Driven	Simulation

QCD Background

- $\not\!\!E_T$ from jet- p_T mismeasurements
 - Direct γ +jet production
 - QCD-multijets, one jet misidentified as γ
- Prediction from control sample (' $\gamma_{\rm jet}$ ')
 - Inverted γ -isolation criterion
- Weights for different *p*_T(γ) spectra in control and signal sample
- Total relative precision of 13 - 50%

