Implications of the LHC results

Andreas Weiler (DESY)

LEXI meeting

ERN 22:08:14 2012 CEST 000

The best of times

- LHC is exceeding expectations
- SM Higgs like state at > 5 σ , |25.5±| GeV
- 7 & 8 TeV searches beginning to corner the most motivated models
- Early casualties*: 4th generation, fermiophobic Higgs, techni-color, ...

*terms and conditions apply

4th July 2012

We have discovered a new particle !

4th July 2012

We have discovered a new particle !

4th July 2012

We have discovered a new particle !

Is it the SM Higgs?

- o Quantum numbers: J^{PC} ? SU(2)xU(1) charges?
- o Elementary scalar or composite bound state?
- o Part of an extended sector?
- o Portal to SM-neutral new physics?

What screens the quantum corrections to its mass?

Just the SM Higgs

 $m_h = 124 \text{ GeV}$

 $m_h = 126 \, {\rm GeV}$

age of the Universe as long as λ remains above the region shaded in red, which takes into account finite corrections to the effective bounce action renormalised at the same scale as λ (see [11] for details). details). Just the SM Higgs

2 Stability and metastability bounds

 $m_h = 124 \text{ GeV}$

 $m_h = 126 \, {\rm GeV}$

age of the Universe as long as λ remains above the region shaded in red, which takes into account finite corrections to the effective bounce action renormalised at the same scale as λ (see [11] for details). Just the SM Higgs

2 Stability and metastability bounds

Just the SM Higgs

Bezrukov et al '12, Degrassi et al '12

o very likely meta-stable o not fully clear if m_H > m_{stable} o certainly below Landaupole

meta-stability: life-time of the SM vacuum is longer than the age of the universe

Example: SM + Dark matter SM + $\frac{1}{2}m_SS^2 + m_DDD^c + y_SHSD + y_S^cH^cSD^c$... think of SM + bino (DM) + higgsino

Example: SM + Dark matter SM + $\frac{1}{2}m_SS^2 + m_DDD^c + y_SHSD + y_S^cH^cSD^c$... think of SM + bino (DM) + higgsino

Photons are high, taus are low, WW&ZZ just about right.

Error bars still sizable. More data is coming in quickly.

Is it the SM Higgs?

Vary couplings to Vectors + Fermions:

$$\mathcal{L}_{\text{EWSB}} = -m_V^2 V_\mu V^\mu \left(1 + 2a\frac{h}{v}\right) - m_\psi \bar{\psi}\psi \left(1 + c\frac{h}{v}\right)$$

Cv

$$\mathcal{A} = \frac{1}{v^2} \left(s - \frac{a^2 s^2}{s - m_h^2} \right)$$

CF

LHC2TSP - WGI, editors: Heinemeyer, Kado, Mariotti, Weiglein, AW '12

Current sensitivity: 20% on CV and 30% on CF

LHC2TSP - WGI, editors: Heinemeyer, Kado, Mariotti, Weiglein, AW '12

Current sensitivity: 20% on CV and 30% on CF 300/fb @ 14TeV: 5% on CV and 10% on CF 3/ab @ 14TeV: 3% on CV and 5% on CF

A light Higgs is unnatural

 $V(h) = \epsilon \Lambda^2 h^2 + \lambda h^4$

For $\epsilon = \pm O(1)$ $\langle h \rangle = 0$ $\langle h \rangle = \Lambda$

Need: $\sqrt{\epsilon} \sim m_W / \Lambda$

SM UV sensitivity

$$V_{\text{tree}} = \frac{1}{2}m_h^2 h^2 + \frac{m_h^2}{2v}h^3 + \frac{m_h^2}{8v^2}h^4$$
$$\approx (100 \,\text{GeV})^2 h^2 + \dots$$

 $V_{\Lambda^2} \approx (15 - 100 + 9.5) \cdot (100 \,{
m GeV})^2 h^2$ SU(2) top higgs $\Lambda = 10 \,{
m TeV}$

SM UV sensitivity

Which principle can stabilize the electro-weak scale?

Strong dynamics/ compositeness?

Supersymmetry?

$$\langle \langle \psi \psi \rangle^c \rangle_{\mathbb{H}^{\oplus}} \xrightarrow{H} \mathcal{V}_{\mathbb{E}W} H \to \mathcal{V}_{\mathbb{E}W}$$

Higher Dimensions?

Lack of principles? Anthropic? Non-Wilsonian EFT?

Let's look at the data

Data pre-LHC

arXiv [hep-ph] mentions

http://arxiv.culturomics.org

arXiv [hep-ph] mentions

http://arxiv.culturomics.org

LHC summary:

Rules of thumb^{*} * no MET, mostly w/ SM like couplings EW > .6 TeV Scalar > 2.6 TeV color octet Higgs-like > 700 TeV > 1 TeVFermion double prod. (b') single prod. (vector like, v/m_Q coupl.) > 2.5 TeV > 1.9 TeV Vector RS KK gluon, $g_{(1)} \rightarrow t\underline{t}$ W' / Z' → ee,mumu

Status of SUSY

A hint?

Gauge Coupling running at two loops

Note, still works with $M_{SUSY} = 100 \text{ TeV}$.

Gauge Coupling running at two loops

Note, still works with $M_{SUSY} = 100 \text{ TeV}$.

A hint?

MSSM

Gauge Coupling running at two loops

Note, still works with $M_{SUSY} = 100 \text{ TeV}$.

MSSM and the 125 GeV Higgs

MSSM and the 125 GeV Higgs

MSSM/ahdGthe Al25 Gest Higgs

more: Haber, Hempfling, Hoang, Ellis, Ridolfi, Zwirner, Casas, Espinosa, Quiros, Riotto, Carena, Wagner, Degrassi, Heinemeyer, Hollik, Slavich, Weiglein

Consider the diagrams in Fig. 1. We've already observed that the one at left is problematic: it's a

Colored Susy > TeV ?

		ATLAS SUSY S	arches* - 95% CL L	ver Limits (Status: SUSY 2012)
	MSUGRA/CMSSM : 0 lep + j's + $E_{T miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.50	v q = g mass
Ies	MSUGRA/CMSSM : 1 lep + j's + $E_{T miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104]	1.24 Te\	$\tilde{q} = \tilde{g}$ mass $\int I dt = (1.00 - 5.8) \text{ fb}^{-1}$
rch	Pheno model : 0 lep + j's + $E_{T miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.18 TeV	$\int \max(m(\tilde{q}) < 2 \text{ TeV}, \text{ light } \tilde{\chi}_1^0)$
вөз	Pheno model : 0 lep + j's + $E_{T miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.38 T	$\widetilde{q} \text{ mass } (m(\widetilde{g}) < 2 \text{ TeV}, \text{ light } \widetilde{\chi}_1^0)$ Is = 7, 8 TeV
<i>\theta</i>	Gluino med $\tilde{\gamma}^{\pm}$ ($\tilde{\alpha} \rightarrow \alpha \overline{\alpha} \tilde{\gamma}^{\pm}$) : 1 lep + i's + E_{\pm}	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-041]	900 GeV 🦉 I	ASS $(m(\tilde{\chi}_{,1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = \frac{1}{2}(m(\tilde{\chi}^{0}) + m(\tilde{g}))$
ISİV	$GMSB: 2 \text{ lep } (OS) + i's + E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [Preliminary]	1.24 Te\	\widetilde{g} mass (tan β < 15) AILAS
ICL	GMSB : $1-2\tau + 0-1$ lep + j's + E	L=4.7 fb ⁻¹ . 7 TeV [ATLAS-CONF-2012-112]	1.20 TeV	\tilde{g} mass (tan β > 20) Preliminary
2	$GGM: \gamma\gamma + E_{-}^{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072]	1.07 TeV	MASS $(m(\tilde{\chi}_{\star}^{0}) > 50 \text{ GeV})$
	$\widetilde{\alpha}_{\rightarrow}$ h $\widetilde{\beta}_{\alpha}^{\circ}$ (virtual $\widetilde{\beta}$) : 0 len + 1/2 h-i's + F	$L=2.1 \text{ fb}^{-1}$, 7 TeV [1203.6193]	900 GeV 🦉 I	LSS $(m(\tilde{\chi}^0) < 300 \text{ GeV})$
	$\widetilde{\alpha} \rightarrow \widetilde{\beta} \widetilde{\alpha}^{0}$ (virtual b): 0 lop + 3 b-i's + E	$l = 4.7 \text{ fb}^{-1}$, 7 TeV [1207.4686]	1.02 TeV	nass $(m(\tilde{\chi}^0) < 400 \text{ GeV})$
rks ed	$\widetilde{a} > b\widetilde{b}\widetilde{a}^{0}$ (real b): 0 lep + 3 b-j 3 + $E_{T,miss}$	$I = 4.7 \text{ fb}^{-1}$ 7 TeV [1207.4686]	1.00 TeV	TASS $(m(\tilde{\chi}^0) = 60 \text{ GeV})$
uar iate	$g \rightarrow bb\chi_1$ (rearb): 0 rep + 0 b j 3 + $L_{T,miss}$	$l = 2.1 \text{ fb}^{-1}$, 7 TeV [1203.6193]	710 Gev g mas	$(m(\tilde{\chi}^0) < 150 \text{ GeV})$
sq	$g \rightarrow i(\chi)$ (virtual i). The $p + i/2$ b $j + L_{T,miss}$	1 -5.8 fb ⁻¹ 8 TeV [ATLAS-CONE-2012-105]	850 GeV Q N	SS $(m(\tilde{\chi}^0) < 300 \text{ GeV})$
эп. Л п	$g \rightarrow (t\chi)$ (Virtual t) . 2 lep (SS) + JS + $E_{T,miss}$	$L = 4.7 \text{ fb}^{-1}$ 7 ToV [ATLAS-CONE-2012-108]	760 GeV g ma	$(any m(\tilde{\gamma}^0) < m(\tilde{q}))$
l ge uine	$g \rightarrow tt \chi_1$ (Virtual I): 3 lep + JS + $E_{T,miss}$	L = 4.7 Hz, 7 HeV [ATLAS CONF 2012 100]	1.00 TeV ($ ass(m(\tilde{\chi}) < 300 \text{ GeV})$
3rc glu	$g \rightarrow tt \chi$ (Virtual i): 0 lep + multi-j S + $\mathcal{L}_{T,miss}$	L=5.8 ID , 0 IEV [AILAS-CONF-2012-103]	940 GeV	$ass_{(m(x_{0}^{0}))} < 50 \text{ GeV}$
	$g \rightarrow tt \chi$ (Virtual t): 0 lep + 3 b-JS + $E_{T,miss}$	L=4.7 ID , 7 IEV [1207.4000]	820 Gov a m	$(m(\chi_1^0) = 60 \text{ GeV})$
	$g \rightarrow tt \chi_1 (real t) : 0 lep + 3 b-J'S + E_{T,miss}$			$(10^{\circ})^{(1)}$ ($(10^{\circ})^{(1)}$)
0 0	bb, $b_1 \rightarrow b \chi_1 : 0$ lep + 2-b-jets + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 lev [AILAS-CONF-2012-106]		
arks	bb, b, \rightarrow t χ : 3 lep + J'S + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [AILAS-CONF-2012-108]	380 GeV $G \text{ III as } (m(\chi_1) =$	
luc	tt (very light), t \rightarrow b χ_1^- : 2 lep + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 lev [CONF-2012-059] 135 GeV	$f(\chi_1) = 45 \text{ GeV}$	
. S(tt (light), t \rightarrow b χ^{-} : 1/2 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻ , 7 TeV [CONF-2012-0/0] 120-1/3 G	$t \text{ mass } (m(\chi_1) = 45 \text{ GeV})$	
ien it p	\underline{tt} (heavy), $\underline{t} \rightarrow t \chi_0^{\circ}$: 0 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻⁺ , 7 TeV [1208.1447]	380-465 Gev [111ass (m()	
d g rec	tt (heavy), t \rightarrow t χ_{0} : 1 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-073]	230-440 GeV I IIIass $(m(\chi_1 + \chi_2))$	0)
3r di	tt (heavy), t \rightarrow t $\tilde{\chi}_1^\circ$: 2 lep + b-jet + $E_{T,miss}$	L=4.7 fb ^{*1} , 7 TeV [CONF-2012-071]	8-305 GeV [$t \text{ mass}(m(\chi_1) = 0)$	200 0.10
	tt (GMSB) : Z(\rightarrow II) + b-jet + E	L=2.1 fb ⁻¹ , 7 TeV [1204.6736]	310 GeV I ITIASS $(115 < m(\chi_1))$	230 GeV)
ct /	$I_L I_L, I \rightarrow I \widetilde{\chi}_{n}^{\circ} : 2 \text{ lep } + E_{T, \text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-076] 93-180 (I mass $(m(\chi_1) = 0)$	~~ 1. ~t. ~0
E V lire	$\widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{+}, \widetilde{\chi}_{1}^{+} \rightarrow iv(i\widetilde{v}) \rightarrow iv\widetilde{\chi}_{1}^{*}: 2 \text{ lep } + E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-076]	20-330 GeV χ_1 mass $(m(\chi_1) = \chi_1)$	$m(\mathbf{I},\mathbf{v}) = \frac{1}{2} (m(\chi_1) + m(\chi_1)))$
. 0	$\widetilde{\chi}_{\pm}^{\pm}\widetilde{\chi}_{2}^{\circ} \rightarrow 3I(hvv) + v + 2\widetilde{\chi}_{\pm}^{\circ})$: 3 lep + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-201 <mark>2-077]</mark>	60-500 GeV χ mass	$(\chi_1^-) = m(\chi_2^-), m(\chi_1) = 0, m(l,v)$ as above)
σ	AMSB (direct $\tilde{\chi}_{1}^{\pm}$ pair prod.) : long-lived $\tilde{\chi}_{1}^{\pm}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-111] 21	$\lambda eV \chi_1^- \text{ mass } (1 < \tau(\chi_1^-) < 10 \text{ ns})$	
ive les	Stable g R-hadrons : Full detector	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	985 GeV	nass
g-ll rtic	Stable t R-hadrons : Full detector	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	683 Gev t mas	~
on.	Metastable g R-hadrons : Pixel det. only	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	910 GeV g	ass $(\tau(\hat{g}) > 10 \text{ ns})$
	GMSB : stable τ	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	310 GeV $\tilde{\tau}$ MASS (5 < tan β <	~
	RPV : high-mass eμ	L=1.1 fb ⁻¹ , 7 TeV [1109.3089]	1.32 Te	v_{τ} mass ($\lambda_{311}^{2}=0.10, \lambda_{312}=0.05$)
\geq	Bilinear RPV : 1 lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ , 7 TeV [1109.6606]	760 GeV $\tilde{q} = \tilde{q}$	TASS $(c\tau_{LSP} < 15 \text{ mm})$
ЦЦ	BC1 RPV : 4 lep + $E_{T \text{ miss}}$	L=2.1 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-035]	1	TeV g mass
-	RPV $\tilde{\chi}^0 \rightarrow qq\mu$: μ + heavy displaced vertex	L=4.4 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-113]	700 GeV q mas	$(3.0 \times 10^{-6} < \lambda_{211} < 1.5 \times 10^{-5}, 1 \text{ mm} < c\tau < 1 \text{ m}, \tilde{g} \text{ decoupled})$
~	Hypercolour scalar gluons : 4 jets, $m_{\mu} \approx m_{\mu}$	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-110]	-287 GeV Sgluon mass (incl. li	from 1110.2693)
the.	Spin dep. WIMP interaction : monoiet + E_{τ}	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-084]	709 GeV M* SC	e (m_{χ} < 100 GeV, vector D5, Dirac χ)
õ	Spin indep. WIMP interaction : monoiet $+E_{\tau}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-084]	548 Gev M* scale	m_{χ} < 100 GeV, tensor D9, Dirac χ)
		10 ⁻¹	1	10

Fermi scale

10 Mass scale

TeV

Mass scale [TeV]

Colored Susy > TeV ?

		ATLAS SUSY S	arches* - 95% CL L	ver Limits (Status: SUSY 2012)
	MSUGRA/CMSSM : 0 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.50	q = g mass
hea	MSUGRA/CMSSM : 1 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104]	1.24 Te\	$q = g \text{ mass}$ $Ldt = (1.00 - 5.8) \text{ fb}^{-1}$
arc	Pheno model : 0 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.18 TeV	mass $(m(\dot{q}) < 2 \text{ TeV}, \text{ light } \chi_1)$
Sei	Pheno model : 0 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.38 T	q mass $(m(\tilde{g}) < 2 \text{ TeV}, \text{ light } \tilde{\chi}_1)$ S = 7, 8 TeV
Ve	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q \bar{q} \tilde{\chi}^{\pm}$) : 1 lep + j's + $E_{T \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-041]	900 GeV g I	ASS $(m(\chi_1) < 200 \text{ GeV}, m(\chi^2) = \frac{1}{2}(m(\chi) + m(g))$
usi	GMSB : 2 lep (OS) + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [Preliminary]	1.24 Te\	\hat{g} mass $(\tan\beta < 15)$ AILAS
ncl	GMSB : $1-2\tau + 0-1$ lep + j's + $E_{\tau_{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-112]	1.20 TeV	\tilde{g} mass $(\tan\beta > 20)$
	$GGM : \gamma\gamma + E_{\tau miss}^{\prime, miss}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072]	1.07 TeV	mass $(m(\tilde{\chi}_1^0) > 50 \text{ GeV})$
	$\tilde{q} \rightarrow b \tilde{b} \tilde{\gamma}^{0}$ (virtual \tilde{b}) : 0 lep + 1/2 b-i's + $E_{T miss}$	L=2.1 fb ⁻¹ , 7 TeV [1203.6193]	GeV ĝi	ASS $(m(\tilde{\chi}_1^0) < 300 \text{ GeV})$
(0) —	$\tilde{q} \rightarrow b \tilde{b} \tilde{\gamma}^0$ (virtual \tilde{b}) : 0 lep + 3 b-i's + $E_{T miss}$	L=4.7 fb ⁻¹ , 7 TeV [1207.4686]	2 TeV	nass $(m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV})$
arks tea	$\widetilde{q} \rightarrow b \widetilde{b} \widetilde{\chi}^0$ (real \widetilde{b}) : 0 lep + 3 b-j's + $E_{\tau miss}$	L=4.7 fb ⁻¹ , 7 TeV [1207.4686]	TeV	$1ASS_{(m(\tilde{\chi}_1^0) = 60 \text{ GeV})}$
qué dia	$\widetilde{q} \rightarrow t \widetilde{t} \widetilde{\chi}^0$ (virtual \widetilde{t}) : 1 lep + 1/2 b-j's + $E_{T \text{ miss}}$	L=2.1 fb ⁻¹ , 7 TeV [1203.6193]	71 ĝ mas	$(m(\widetilde{\chi}_1^0) < 150 \text{ GeV})$
n. s ne	$\tilde{q} \rightarrow tt_{\chi}^{s_{10}}$ (virtual \tilde{t}) : 2 lep (SS) + i's + $E_{\tau miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-105]	N ĝn	SS $(m(\tilde{\chi}_1^0) < 300 \text{ GeV})$
jen 1 or	$\widetilde{q} \rightarrow t\widetilde{t}\gamma^0$ (virtual \widetilde{t}) : 3 lep + i's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-108]	🖉 🖉 🖉 🎽	(any $m(\tilde{\chi}_1^0) < m(\tilde{g})$)
rd g	$\widetilde{q} \rightarrow t\widetilde{t} \widetilde{\gamma}^{0}$ (virtual \widetilde{t}) : 0 lep + multi-i's + $E_{T miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-103]	.00 TeV	1ASS $(m(\tilde{\chi}_1^0) < 300 \text{ GeV})$
9	$\tilde{q} \rightarrow t\bar{t} \tilde{v}^0$ (virtual \tilde{t}) : 0 lep + 3 b-i's + $E_{T miss}$	L=4.7 fb ⁻¹ , 7 TeV [1207.4686]	940 GeV g	ASS $(m(\tilde{\chi}_1) < 50 \text{ GeV})$
	$\widetilde{a} \rightarrow t \widetilde{t} \widetilde{\gamma}^{0}$ (real \widetilde{t}) : 0 lep + 3 b-i's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1207.4686]	820 GeV ĝm	S $(m(\tilde{\chi}_1^0) = 60 \text{ GeV})$
	$\widetilde{\text{bb}} \widetilde{\text{b}} \rightarrow \widetilde{\text{b}} \widetilde{\gamma}^{0}$: 0 lep + 2-b-iets + E_{τ}	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-106]	b mass (m6	< 150 GeV)
ks DN	$\widetilde{bb}, \widetilde{b}, \rightarrow t\widetilde{\gamma}^{\pm}: 3 \text{ lep } + \text{ i's } + E_{T \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-108]	380 c \widetilde{g} mass $(m(\widetilde{\chi}_1^*) =$	$n(\tilde{\chi}_{,}^{0}))$
uar	\widetilde{t} (very light), $\widetilde{t} \rightarrow b \widetilde{\chi}^{\pm}$: 2 lep + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-059] 135 GeV	mass (m(χ, = 45 GeV)	
npa	\widetilde{t} (light), $\widetilde{t} \rightarrow b \widetilde{\chi}^{\pm}$: 1/2 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-070] 120-173 G	\widetilde{t} mass $(m(\widetilde{\chi}_1^0) = 45 \text{ GeV})$	
en.	\widetilde{t} (heavy), $\widetilde{t} \rightarrow t \widetilde{\gamma}^0$: 0 lep + b-iet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.1447]	380-465 c t t mass (m(x	= 0)
g∈ ∋ct	\widetilde{t} (heavy), $\widetilde{t} \rightarrow t \widetilde{\chi}^{\circ}$: 1 lep + b-jet + $E_{T \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-073]	230-440 mass (m(x)	0)
3ra dire	\widetilde{t} (heavy), $\widetilde{t} \rightarrow t\widetilde{\chi}^0$: 2 lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-071]	8-305 GeV $(m(\tilde{\chi}_1^0) = 0)$	
	\widetilde{t} (GMSB) $Z(\rightarrow II) + b - jet + E_{-}$	L=2.1 fb ⁻¹ , 7 TeV [1204.6736]	310 GeV t mass $(115 < m(\tilde{\chi}_1^0))$	230 GeV)
t	$ \widetilde{I},\widetilde{I},\widetilde{I} \rightarrow \widetilde{\chi}^0$: 2 lep + $E_{T \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-076] 93-180 (I mass $(m(\tilde{\chi}_1^0) = 0)$	
Teo V	$\widetilde{\chi}^+ \widetilde{\chi}^-, \widetilde{\chi}^+ \rightarrow \widetilde{l}_V (\widetilde{l}\widetilde{v}) \rightarrow l_V \widetilde{\chi}^0$: 2 lep + $E_{T \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-076]	20-330 GeV $\widetilde{\chi}_{1}^{\pm}$ mass $(m(\widetilde{\chi}_{1}^{0}) =$	$m(\widetilde{\mathbf{i}},\widetilde{\mathbf{v}}) = \frac{1}{2} (m(\widetilde{\mathbf{x}}_1^{\pm}) + m(\widetilde{\mathbf{x}}_1^{0})))$
di m	$\widetilde{\gamma}_{\tau}^{\pm}\widetilde{\chi}^{01} \rightarrow 3 (vv)+v+2\widetilde{\chi}^{01} : 3 \text{ lep } + E_{\tau \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-077]	60-500 Gev 🟹 mass	$(\tilde{\chi}_1^{\pm}) = m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0) = 0, m(\tilde{l}, \tilde{v})$ as above)
	AMSB (direct $\tilde{\chi}^{\pm}$ pair prod.) : long-lived $\tilde{\chi}^{\pm}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-111] 21	aeV 2014 /ass (1 < 10 ns	
vec es	Stable of R-hadrons : Full detector	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]		nass
g-li ticl	Stable T B-hadrons - Full detector	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	683 Gr t Mas	
oni	Metastable g R-hadrons : Pixel det. only	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	910 GeV 🦉	ass $(\tau(\tilde{g}) > 10 \text{ ns})$
	GMSB : stable t	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	310 GeV $\tilde{\tau}$ MASS (5 < tan β <	
	RPV : high-mass eμ	L=1.1 fb ⁻¹ , 7 TeV [1109.3089]	1.32 Te	$\tilde{\nu}_{\tau}$ mass (λ'_{311} =0.10, λ'_{312} =0.05)
>	Bilinear RPV : 1 lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ , 7 TeV [1109.6606]	760 GeV $\tilde{q} = \tilde{q}$	TASS ($c\tau_{LSP} < 15 \text{ mm}$)
ЦЦ	BC1 RPV : 4 lep + $E_{T \text{ miss}}$	L=2.1 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-035]	1	Tev g mass
-	RPV $\tilde{\chi}^0 \rightarrow qq\mu$: μ + heavy displaced vertex	L=4.4 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-113]	700 GeV q mas	$(3.0 \times 10^{-6} < \lambda_{211} < 1.5 \times 10^{-5}, 1 \text{ mm} < c\tau < 1 \text{ m}, \widetilde{g} \text{ decoupled})$
·····	Hypercolour scalar gluons : 4 jets, $m_{ii} \approx m_{kl}$	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-110]	-287 Gev Sgluon mass (incl. lit	from 1110.2693)
the	Spin dep. WIMP interaction : monojet + $E_{\tau \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-084]	709 GeV M* SC	e (m_{χ} < 100 GeV, vector D5, Dirac χ)
Õg	Spin indep. WIMP interaction : monojet $+E_{\tau \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-084]	548 Gev M* scale	m_{χ} < 100 GeV, tensor D9, Dirac χ)
	1,000			
		10 ⁻¹	1	10

Fermi scale

Mass scale [TeV]

TeV

Where's susy hiding?

- Compressed spectra (→ Tattersall)
- R-parity violation (\rightarrow Hajer)
- Natural Susy

• ...

Where's susy hiding?

Compressed spectra (\rightarrow Tattersall)

space

R-parity violation (\rightarrow Hajer)

Natural Ascetic Su:

y problem?

Figure 1 For the LHC lines, we have also sociation is SUSY spectment which comes from the D0 sbotto completely floop is spectrum with the decay $\tilde{\mathbf{5}}$ fb $\tilde{\mathbf{V}}_{1}$ is for the laft banded spectrum with the decay $\tilde{\mathbf{5}}$ fb $\tilde{\mathbf{V}}_{1}$ is for the laft banded spectrum he rectly to the spottom, which decays \tilde{b}_{L} is \tilde{b}_{L} for the mass range of $\tilde{\mathbf{W}}$ is squeezed out). For the right-handed stop, the $\tilde{\mathbf{b}} \to \tilde{b}\tilde{H}^{\pm}$, which means that the stop acts like a sbottom, from the point to top and charge is that the top acts like a sbottom, from the point $\tilde{\mathbf{b}} \to \tilde{b}\tilde{H}^{\pm}$. We introduce that the top acts like a sbottom for the point top to the spottom is that the stop acts like a sbottom for the point $\tilde{\mathbf{b}} \to \tilde{b}\tilde{H}^{\pm}$. We introduce the top acts like a sbottom for the point for biggines.

Natural EWSB & SUSY * valid for MSSM,NMSSM, ...

Do not want tuning in (Higgs mass)²

$$\frac{m_{Higgs}^2}{2} = -|\mu|^2 + \ldots + \delta m_H^2$$

Dimopoulos, Giudice/

Natural EWSB & SUSY * valid for MSSM,NMSSM, ...

Do not want tuning in (Higgs mass)²

$$\frac{m_{Higgs}^2}{2} = -|\mu|^2 + \ldots + \delta m_H^2$$
Higgsinos

Dimopoulos, Giudice/

Natural EWSB & SUSY * valid for MSSM,NMSSM, ...

Do not want tuning in (Higgs mass)²

$$\begin{aligned} \mathsf{Iloop} \quad \delta m_{H}^{2}|_{stop} &= -\frac{3}{8\pi^{2}}y_{t}^{2}\left(m_{U_{3}}^{2} + m_{Q_{3}}^{2} + |A_{t}|^{2}\right)\log\left(\frac{\Lambda}{\mathrm{TeV}}\right) \\ & \mathsf{stops, sbottomL} \\ \mathsf{Dimopoulos,} \\ \mathsf{2loop} \quad \delta m_{H}^{2}|_{gluino} &= -\frac{2}{\pi^{2}}y_{t}^{2}\left(\frac{\alpha_{s}}{\pi}\right)|M_{3}|^{2}\log^{2}\left(\frac{\Lambda}{\mathrm{TeV}}\right) & \mathsf{Giudice/} \\ & \mathsf{gluino} \end{aligned}$$

Ο

Stops (sbottom) + Higgsinos

M. Papucci, J. Ruderman, AW

Stops can act as "sbottom" (bjet+ χ) !

Chargino-neutralino splitting irrelevant for present searches

M. Papucci, J. Ruderman, AW

Stops (sbottom) + Higgsinos

LHC surpasses Tevatron: Strongest bounds from jets + MET

First Results for Direct Stop Production

First Results for Direct Stop Production

kinematic variables with endpoints for background

arXiv:1203.4813 Bai, Cheng, Gallicchio, Gu

The near Future (according to theorists)

Spin correlations and rapidity gaps *arXiv:1205.5808* Han, Katz, Krohn, Reece

Top-tagging boosted tops from stop decays

arXiv:1205.5816 Kaplan, Rehermann, Stolarski arXiv:1205.2696 Plehn, Spannowsky, Takeuchi

MET and M_T shapes

arXiv:1205.5805 Alves, Buckley, Fox, Lykken, Yu

estimated reach with 20/fb @ 8 TeV

stop contribution

$$\mathcal{L}_{HD} = -\frac{c_g g_3^2}{2\Lambda} h G^A_{\mu\nu} G^{A\mu\nu} - \frac{c_\gamma (2\pi\alpha)}{\Lambda} h F_{\mu\nu} F^{\mu\nu}$$

stop contribution

 $\frac{\tilde{c}_g}{\tilde{c}_\gamma} = \frac{1}{2N_c Q_{\tilde{t}}^2} \frac{C_g(\alpha_s)}{C_\gamma(\alpha_s)} = \frac{3}{8} \left(1 + \frac{3\alpha_s}{2\pi} \right)$

$$\mathcal{L}_{HD} = -\frac{c_g g_3^2}{2\Lambda} h G^A_{\mu\nu} G^{A\mu\nu} - \frac{c_\gamma (2\pi\alpha)}{\Lambda} h F_{\mu\nu} F^{\mu\nu}$$

 $v^2 ~ \tilde{c}_g/\Lambda^2$

$$\mathcal{L}_{HD} = -\frac{c_g g_3^2}{2\Lambda} h G^A_{\mu\nu} G^{A\mu\nu} - \frac{c_\gamma (2\pi\alpha)}{\Lambda} h F_{\mu\nu} F^{\mu\nu}$$

Do the 1st & 2nd gen' squarks have to be degenerate?

Μ

8 dofBecause of flavor constraints? $(\tilde{u}, \tilde{d})_L, \tilde{u}_R, \tilde{d}_R, \tilde{d}_R, \tilde{u}_R, \tilde{d}_R, \tilde{c}, \tilde{s}_L, \tilde{c}_R, \tilde{s}_R$ $(\tilde{c}, \tilde{s})_L, \tilde{c}_R, \tilde{s}_R$ $(3, 2)_{1/6} (3, 1)_{2/3} (3, 1)_{-1/3}$

Assumed spectrum in ATLAS/CMS plots

Fully degenerate

Flavor dynamics: alignment Dynamics (e.g. U(1)horiz.) generates hierarchies in masses & mixings. Consequence: partial alignment with SM

 $(\bar{Q}_L^i Q_L^j)$ $Y_U Y_U^\dagger$ VCKM $Y_D Y_D^{\dagger}$

 $(\overline{d}_R^i \overline{d}_R^j)$

 $Y_D^{\dagger}Y_D$

Flavor dynamics: alignment Dynamics (e.g. U(1)horiz.) generates hierarchies in masses & mixings. Consequence: partial alignment with SM

 $(\bar{Q}_L^i Q_L^j)$ $Y_U Y_U^\dagger$ $Y_D Y_D^{\dagger}$

 $(\bar{u}_R^i u_R^j) \qquad \begin{array}{c} Y_U^{\dagger} Y_U \\ & \mathsf{NP} \end{array}$

 $(\bar{d}_R^i d_R^j)$

Left-handed (Q_L): either aligned with up or downs Right-handed (u_R , d_R): can be fully aligned

 $(\bar{Q}_L^i Q_L^j)$ $Y_U Y_U^\dagger$ V CKM $Y_D Y_D^{\dagger}$

 $Y_U^{\dagger}Y_U$ NP $(ar{u}_R^i u_R^j)$ $(ar{d}_R^i d_R^j)$ $Y_D^{\dagger}Y_D$

Left-handed (Q_L): either aligned with up or downs \rightarrow limited splitting Right-handed (u_R , d_R): can be fully aligned \rightarrow any splitting

 $(\bar{Q}_L^i Q_L^j)$ $Y_U Y_U^\dagger$ $Y_D Y_D^{\dagger}$

 $(ar{u}_R^i u_R^j)$ $Y_U^{\dagger}Y_U$

 $(\overline{d}_{R}^{i}d_{R}^{j})$

 $Y_D^{\dagger}Y_D$

+ LR, RL
Back of the envelope estimate

Cross-sections roughly scale like ~1/m^6.

Example: 8 light squarks \rightarrow 2 light squarks Shift limit only by $\sim 4^{1/6}-1\approx 25\%$

→ too naive!

Dedicated study needed

- Production cross-section can be flavor dependent if gluino is not fully decoupled through p.d.f's (u vs. d, sea vs. valence)
- Experimental efficiencies for light squarks efficiencies have thresholds and current limits are on the thresholds

Squark searches

M. Papucci, J. Ruderman G. Perez, R. Mahbubani, AW

Effect of the efficiency threshold:

Effect of the PDFs

Effect of the PDFs

Effect of the PDFs

Motivation to go beyond SUSY?

I) Take anomalies (charm, top A_{FB} , $B \rightarrow K_{Pi}$...) at face value and run with it.

2) Strong EWSB vs. the hierarchy problem: composite Higgs, TC, Randall-Sundrum,...

 \mathbf{m}

Motivation to go beyond SUSY?

Take anomalies (charm, top A_{FB} , $B \rightarrow K_{Pi}$...) at face value and run with it.

2) Strong EWSB vs. the hierarchy problem: composite Higgs, TC, Randall-Sundrum,...

 \mathbf{m}

Why is the Higgs light?

Kaplan; Agashe et. al

Higgs as a pNGB

 $T^{\hat{a}} \in \operatorname{Alg}(G/G')$

strong

sector

$$= \int_{2}^{2} (D_{1} \phi)^{T} (D_{1}^{\mu} \phi) = \frac{SO(5)}{20!} = S^{4} O(4)$$
and $\leq \underline{O}^{0}(\underline{A})^{\prime} p = S = p \neq d$ in the $\underline{Q} = \underline{O}^{0}(\underline{A})^{\prime} p = S = p \neq d$ in the $\underline{Q} = \underline{O}^{0}(\underline{A})^{\prime} p = 1$

$$\phi^{T} \phi = 1$$
Tree level: gauge SO(4) aligned
$$f^{1}(\underline{A})^{\prime} = f^{1}(\underline{A})^{\prime} f^$$

Higgs fit ATLAS/CMS/Tevatron

Implications of $m_H = 125 \text{ GeV}$

Coleman-Weinberg potential

$$V_{gauge}(h) = \frac{9}{2} \int \frac{d^4p}{(2\pi)^4} \log \left(\Pi_0(p) + \frac{s_h^2}{4} \Pi_1(p) \right) \qquad \text{Das et al '67} \\ s_h \equiv \sin h/f \\ m_{\pi^+}^2 - m_{\pi^0}^2 \simeq \frac{3\alpha}{2\pi} m_{\rho}^2 \log 2 \simeq (3\pi)^2 \\ \Pi_0(p) = \frac{p^2}{g^2} + \Pi_a(p) , \qquad \Pi_1(p) = 2 \left[\Pi_{\hat{a}}(p) - \Pi_a(p) \right]$$

 $\int d^4 p \, \Pi_1(p) / \Pi_0(p)$ < 00

require Higgs dependent term to be UV finite

Y m

Pomarol et al; Marzocca

Implications of $m_H = 125 \text{ GeV}$

Coleman-Weinberg potential

$$V_{gauge}(h) = \frac{9}{2} \int \frac{d^4p}{(2\pi)^4} \log \left(\Pi_0(p) + \frac{s_h^2}{4} \Pi_1(p) \right) \qquad \text{Das et al '67} \\ s_h \equiv \sin h/f \\ m_{\pi^+}^2 - m_{\pi^0}^2 \simeq \frac{3\alpha}{2\pi} m_{\rho}^2 \log 2 \simeq (3\pi)^2 \\ \Pi_0(p) = \frac{p^2}{g^2} + \Pi_a(p) , \qquad \Pi_1(p) = 2 \left[\Pi_{\hat{a}}(p) - \Pi_a(p) \right]$$

 $\int d^4 p \, \Pi_1(p) / \Pi_0(p)$ < 00

require Higgs dependent term to be UV finite

Pomarol et al; Marzocca

Y m

'Weinberg sum rules'

$$\lim_{p^2 \to \infty} \Pi_1(p) = 0 \; ,$$

$$\lim_{p^2 \to \infty} p^2 \Pi_1(p) = 0$$

Minimal contribution (need at least two resonances)

$$\Pi_1(p) = \frac{f^2 m_\rho^2 m_{a_1}^2}{(p^2 + m_\rho^2)(p^2 + m_{a_1}^2)}$$

Minimal contribution (need at least two resonances)

$$\Pi_1(p) = \frac{f^2 m_{\rho}^2 m_{a_1}^2}{(p^2 + m_{\rho}^2)(p^2 + m_{a_1}^2)}$$

Analogously for SO(5) fermionic contribution $_{N}$ Pomarol et al; Marzocca $m_h^2 \simeq \frac{N_c}{\pi^2} \left[\frac{m_t^2}{f^2} \frac{m_{Q_4}^2 m_{Q_1}^2}{m_{Q_1}^2 - m_Q^2} \log\left(\frac{m_{Q_1}^2}{m_Q^2}\right) \right]^{-1}$ similar result in deconstruct Matsedonskyi et al; Redi et al 5 = 4 + | O₄ O₁ with EM charges 5/3, 2/3,-1/3 \rightarrow solve for $m_h = 125$ GeV

Light Higgs implies light fermionic top partners

Contino et al 07, Matsedonskyi, et al '12 ; Redi, Tesi 12; Marzocca et al ; Pomarol, Riva 12

Light Higgs implies light fermionic top partners

Contino et al 07, Matsedonskyi, et al '12 ; Redi, Tesi 12; Marzocca et al ; Pomarol, Riva 12

Bilinear: ETC, conformalTC

Dimopoulos, Susskind Holdom

> Luty, Okui

Linear: partial compositeness

D.B. Kaplan

....

Huber RS with bulk fermions Agashe, Perez, Soni, ...

Total compositeness

ex: minimal RS Rattazzi-Zaffaroni

from R.Rattazzi

from R.Rattazzi

Linear: partial compositeness

D.B. Kaplan

Huber RS with bulk fermions Agashe, Perez, Soni, ...

Total compositeness

ex: minimal RS Rattazzi-Zaffaroni

Linear: partial compositeness

D.B. Kaplan

Huber RS with bulk fermions Agashe, Perez, Soni, ...

from R.Rattazzi

Linear: partial compositeness

D.B. Kaplan

Huber RS with bulk fermions Agashe, Perez, Soni, ...

from R.Rattazzi

Partial compositeness

Linear couplings imply mass $\mathcal{L} = \bar{\psi} i \partial \psi + \bar{\chi} (i \partial - m_*) \chi + \lambda f \bar{\psi} \chi + h.c.$ mixings:

rotating to mass eigenbasis:
$$\begin{pmatrix} \psi \\ \chi \end{pmatrix} \rightarrow \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} \psi \\ \chi \end{pmatrix}$$
 $\tan \varphi = \frac{\lambda f}{m_*}$

It makes sense to invoke MFV

LHCI4 will tell

de Vries, Redi, Sanz, AW, in prep.

ATLAS dijet angular searches [ATLAS-CONF-2012-038]

Dijet resonance search bounds ATLAS 8 TeV 5.8 fb-1 [ATLAS-CONF-2012-088]

Vector resonance mass

similar plot from CMS

Light Fermionic Partners

deVries, Redi, Sanz, AW, in prep.

$$\mathcal{L} = rac{g_s \kappa}{m_Q} \bar{Q} \sigma^{\mu
u} T^a q G^a_{\mu
u}$$

three-body

chromo-magnetic (loop)

Both decay modes suppressed and result in a narrow width

Search strategies deVries, Redi, Sanz, AW, in prep.

Four jet analysis CMS 7 TeV 2.2 fb-1 [CMS PAS EXO-11-016]

optimized for pair production of two heavy resonances

Six jet analysis CMS 7 TeV 5.0 fb-1 [CMS-EXO-11-060]

Currently recasting analysis & designing dedicated search

Conclusions

- Three main options after Higgs discovery:
 I) SM 2) SUSY 3) Composite pGB Higgs
- In the next years, naturalness is on trial: stops or fermionic top partners?
- Flavor trivial composite Higgs is very visible, survives EWPT with large compositeness: expect discovery/exclusion by LHC14

Outlook

- Three body decay dominant almost everywhere
- $\Gamma_2 > \Gamma_3$ only in small region of low m_Q

Light Fermionic Partners affects dijet exclusions $\sigma(pp \rightarrow \rho \rightarrow qq)[pb](CMS, g_{\rho}=3, m_{Q}=1000 \text{ GeV})$

Flavor transparent strong sector

w/ Michele Redi arxiv:1106.6357[hep-ph]

> See also: Rattazzi-Zaffaroni '01 Cacciapaglia, Csaki, Galloway, Marandella, Terning, AW. '07 Barbieri, Isidori, Pappadopulo '08 Delaunay, Gedalia, Lee, Perez, Ponton '11

JHEP 0104 (2001) 021

 $SU(3)_L \otimes SU(3)_u \otimes SU(3)_d$

$$q_L = (3, 1, 1)$$
 $u_R = (1, 3, 1)$ $d_R = (1, 1, 3)$

MFV realized if flavor symmetry is broken by two bifundamentals:

$$Y_u = (3, \overline{3}, 1)$$
 $Y_d = (3, 1, \overline{3})$

All quarks are composite, severe constraint:

 $m_{\rho} > 5g_{\rho} \,\mathrm{TeV}$

Composite sector is trivial w.r.t flavor

All flavor violation comes from the external mixings.

 $y_u \propto \lambda_{Lu} \lambda_{Ru}$

 $y_d \propto \lambda_{Ld} \lambda_{Rd}$

Composite sector is trivial w.r.t flavor

All flavor violation comes from the external mixings.

 $y_u \propto \lambda_{Lu} \lambda_{Ru}$

 $y_d \propto \lambda_{Ld} \lambda_{Rd}$

Simple realization of Minimal Flavor Violation:

mixings ~ SM Yukawas

• Left-handed compositeness:

$$\begin{array}{ll} \lambda_{Lu} \propto Id \,, & \lambda_{Ld} \propto Id \\ \lambda_{Ru} \propto y_u \,, & \lambda_{Rd} \propto y_d \end{array} + \begin{array}{l} SU(3)_F \\ + \\ L_U \,, L_D \,, U \,, D \in 3_F \end{array}$$

• Right-handed compositeness:

$$\begin{array}{ll} \lambda_{Lu} \propto y_u \,, & \lambda_{Ld} \propto y_d \\ \lambda_{Ru} \propto Id \,, & \lambda_{Rd} \propto Id \end{array} + \begin{array}{ll} SU(3)_U \otimes SU(3)_D \\ + & L_U \,, U \in (3,1) \quad L_D \,, D \in (1,3) \end{array}$$

• Left-handed compositeness:

$$\begin{array}{ll} \lambda_{Lu} \propto Id \,, & \lambda_{Ld} \propto Id \\ \lambda_{Ru} \propto y_u \,, & \lambda_{Rd} \propto y_d \end{array} + \begin{array}{ll} SU(3)_F \\ + \\ L_U \,, L_D \,, U \,, D \in 3_F \end{array}$$

• Right-handed compositeness:

$$\begin{array}{ll} \lambda_{Lu} \propto y_u \,, & \lambda_{Ld} \propto y_d \\ \lambda_{Ru} \propto Id \,, & \lambda_{Rd} \propto Id \end{array} + \begin{array}{ll} SU(3)_U \otimes SU(3)_D \\ + \\ L_U, U \in (3,1) \quad L_D, D \in (1,3) \end{array}$$

Mixing of one chirality of light quarks is large.
Flavor bounds are automatically satisfied. No EDMs are generated to leading order.

LEP bounds,

$$R_b = \frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to q\bar{q})} = .21629 \pm .00066$$

$$R_h = \frac{\Gamma(Z \to q\bar{q})}{\Gamma(Z \to \mu\bar{\mu})} = 20.767 \pm .025$$

Modified couplings strongly constrained

Flavor bounds are automatically satisfied. No EDMs are generated to leading order.

LEP bounds,

$$R_b = \frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to q\bar{q})} = .21629 \pm .00066$$

$$R_h = \frac{\Gamma(Z \to q\bar{q})}{\Gamma(Z \to \mu\bar{\mu})} = 20.767 \pm .025$$

Modified couplings strongly constrained

Similar bound is found from unitarity of CKM

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \approx 1 - .7 \, \frac{\delta g_{Lu}}{g_{Lu}}$$

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = .9999 \pm .0012$$

LH COMPOSITENESS:

$$\delta g \sim \frac{Y^2 v^2}{2 m_\rho^2} \sin \varphi_q^2$$

Strongly constrained and only possible if tR is composite.

RH COMPOSITENESS:

No bounds from LEP!

Main constraint from recent di-jet searches,

 $\mathcal{L}_{4-Fermi} = \frac{2\pi}{\Lambda^2} \, (\bar{q}_L \gamma^\mu q_L)^2 \qquad \qquad \text{LHC:} \quad \Lambda > 6 \, \text{TeV}$

$$\frac{g_{\rho}^2}{4\,m_{\rho}^2}\,\sin^4\varphi_{q_R}\,\left(\bar{q}_{R\alpha}^i\gamma^{\mu}q_{R\beta}^i\bar{q}_{R\beta}^j\gamma_{\mu}q_{R\alpha}^j\right)\quad \xrightarrow{\text{COMPOSITENESS}} \,\sin^2\varphi_{q_R} \leq \frac{2}{g_{\rho}}\left(\frac{m_{\rho}}{3\,\text{TeV}}\right)$$

Large or full compositeness is still allowed with $m_
ho=3~{
m TeV}$

If RH quarks are fully composite: MFV follows automatically from the flavor symmetry.

(Only two possible mixings with strong sector).

LHC phenomenology

Proton is 1/2 composite!
 Decay patter n change

Spin-I: gluon, electro-weak, flavor resonances

First term easily dominates for RH compositeness.

Gluon resonances:

Cross-sections > O(10) larger. Decay into light generation can be important.

LHC7 bounds already relevant:

LHC7 bounds already relevant:

Expected signals in di-jet.

LHC7 bounds already relevant:

Expected signals in di-jet.

Atre, Azuelos, Carena, Han, Ozcan, Santiago, Unel 'I I

LHC searches could probe fermions up to 1 TeV. LHC 14 will either discover or exclude the model.

Right quark partners produced by resonance exchange.

$$g_{\rho} = 3$$
, $\sin \varphi_{u_R} = .7$, $\sin \varphi_{d_R} = 1/6$

MR, Sanz, Weiler, in progress

3-4 jet final states.