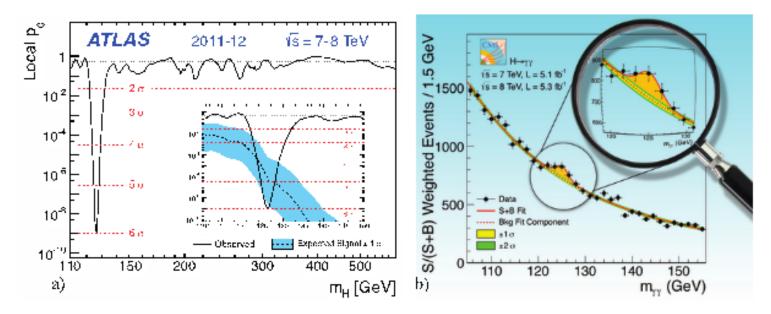
Connecting Particles with the Cosmos

The Energy Frontier

Ties Behnke, DESY 11.10.2012

What I will discuss


The energy frontier

How to we get there: Facilities we might want to use

What can we realistically expect: Folding in the realities of life

DESY

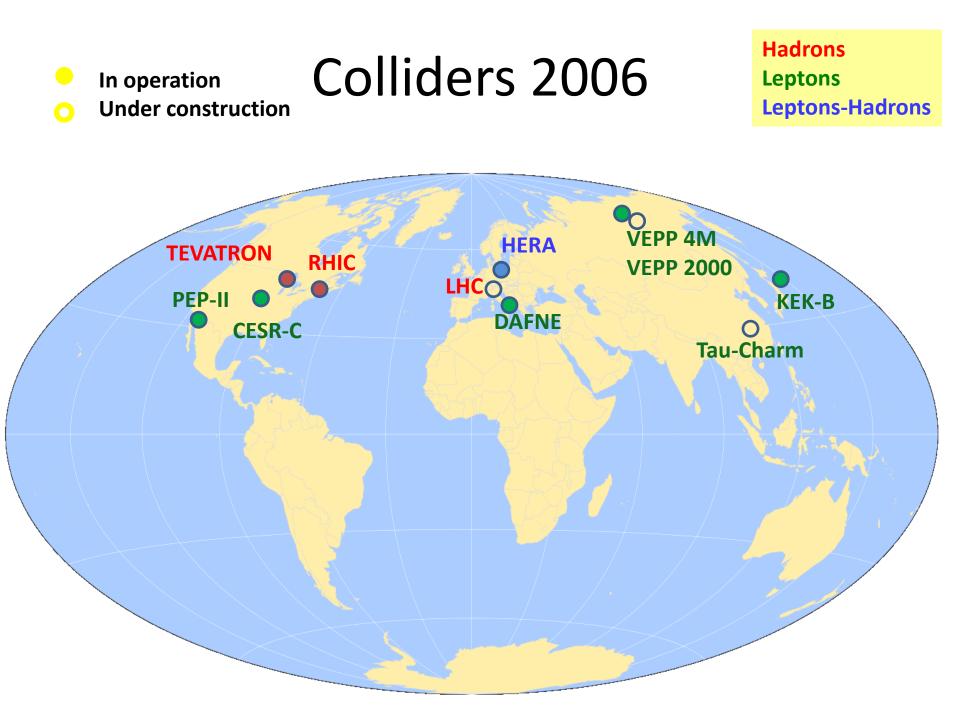
The Energy Frontier

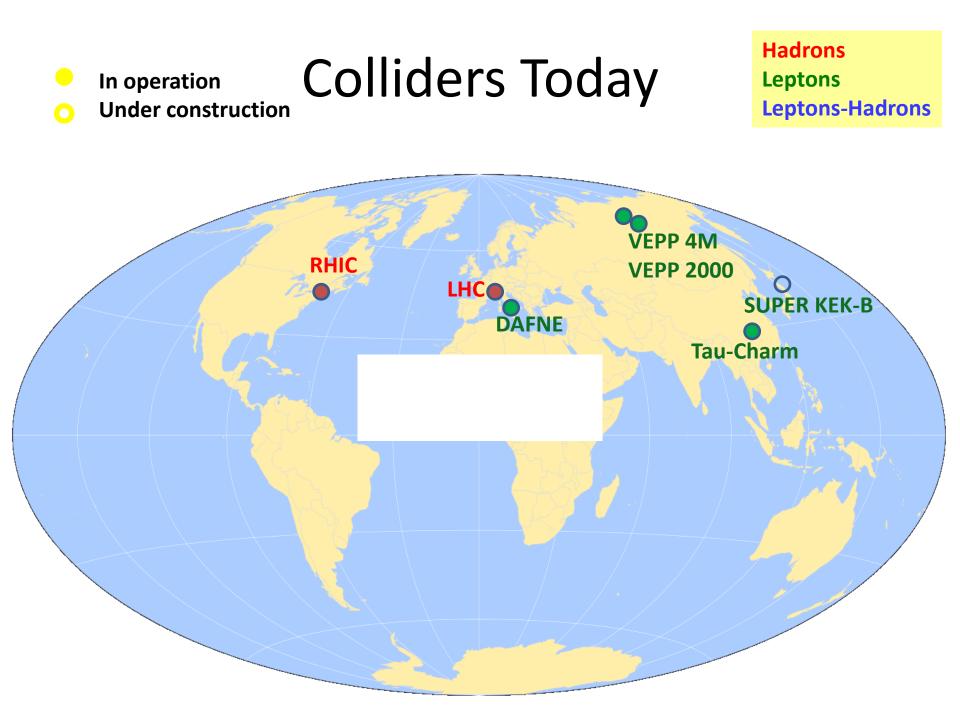
- LHC is the only machine at the energy frontier for the moment
- Incredible success already now
 - O(300) papers already
 - "Higgs" discovery
 - Enormous physics output

See many talks at this meeting

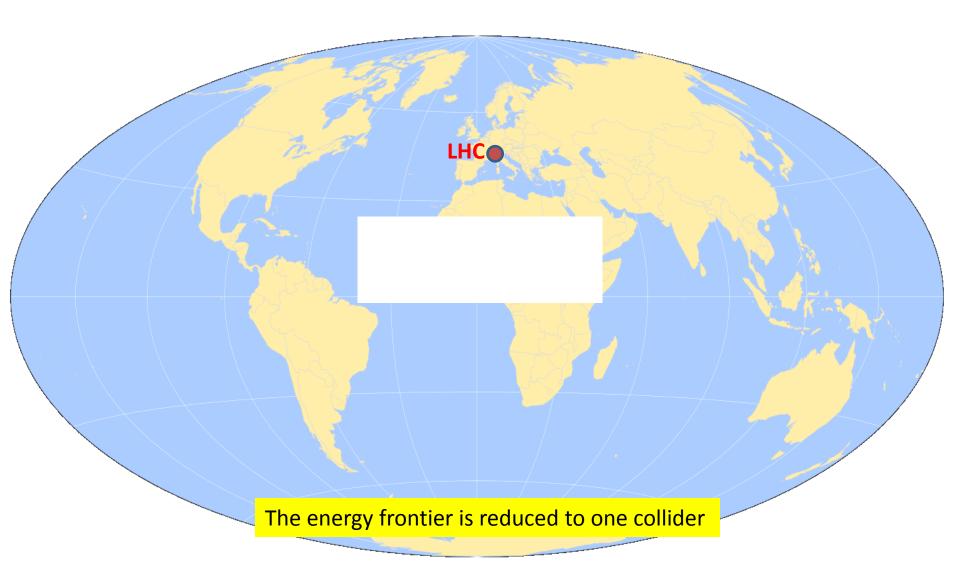
Physics at the LHC

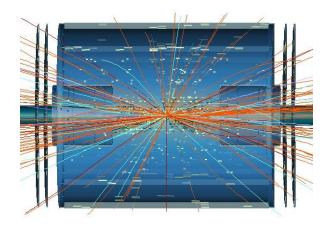
... is incredibly broad.


- Hadron colliders do precision physics
- Any collider does more than originally planned and anticipated

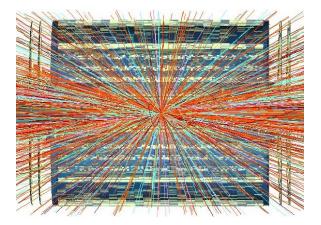

But hadron colliders have certain limitations:

- Many decay channels are for realistically invisible
- Often only the ratio of couplings can be measured


But: is there a future beyond the LHC?



In operation HE Colliders Today


Hadrons Leptons Leptons-Hadrons

The Future of the LHC Program

Increase luminosity by a factor of 10

- Program to consolidate and upgrade the accelerator chain at CERN
- Ambitious program to upgrade the detectors in several stages to cope with the increased luminosity and radiation levels

The LHC at CERN: a scenario

The super-exploitation of the CERN complex: Injectors, LEP/LHC tunnel, infrastructures

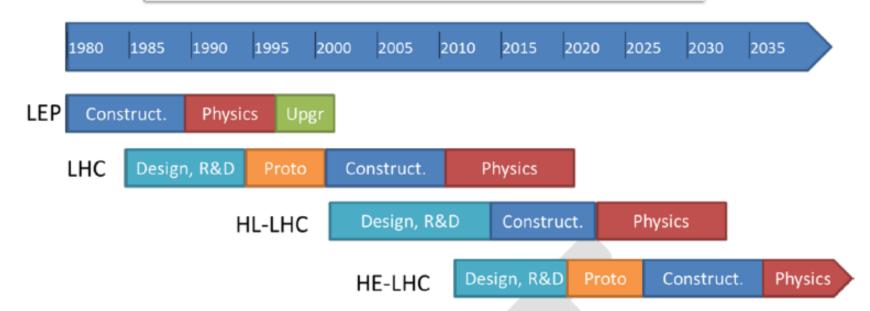
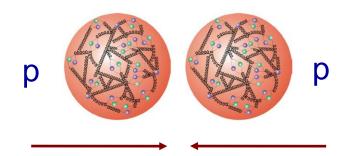


Figure 10. The possible timeline of LHC and its upgrades.


Beyond HE-LHC : new tunnels in Geneve area

42 TeV c.o.m. with 8.3 T (present LHC dipoles)
 80 TeV c.o.m. with 16 T (high field based on Nb3Sn)
 100 TeV c.o.m with 20 T (very high field based on HTS)

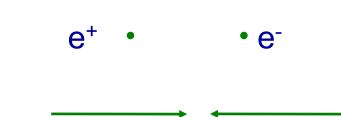
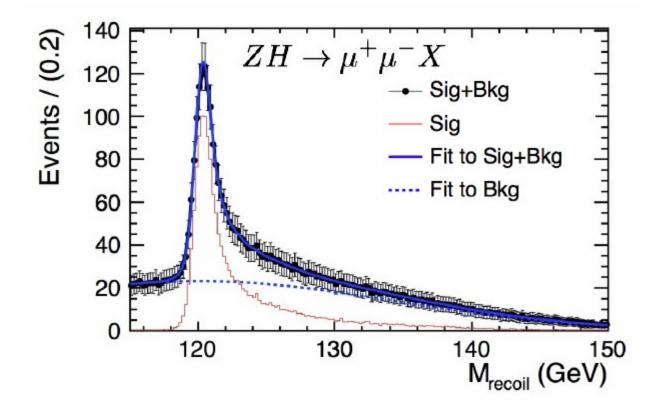


Figure 9. Two possible location, upon geological study, of the 80 km ring for a Super HE-LHC (option at left is strongly preferred)

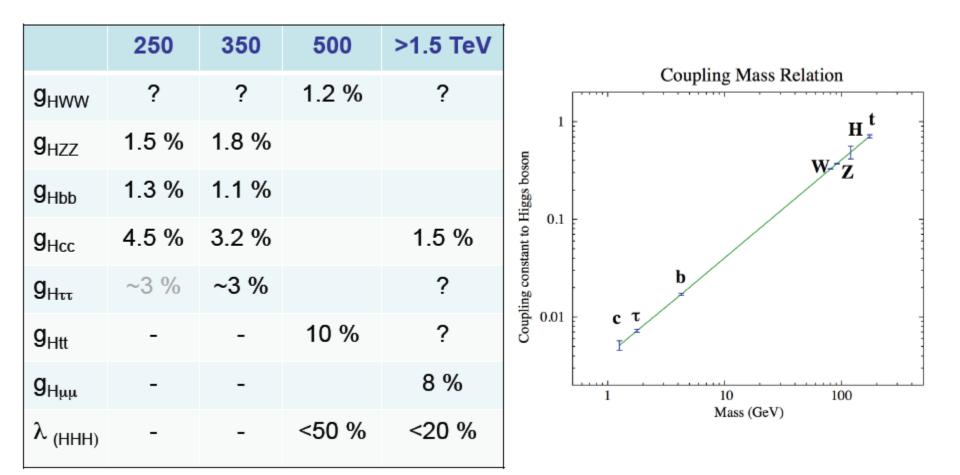
Hadron and Lepton Colliders

- Proton (anti-) proton colliders:
 - Energy range high (limited by bending magnets power)
 - Composite particles, different initial state constituents and energies in each collision
 - Difficult hadronic final states
- Discovery machines
- Precision measurement potential

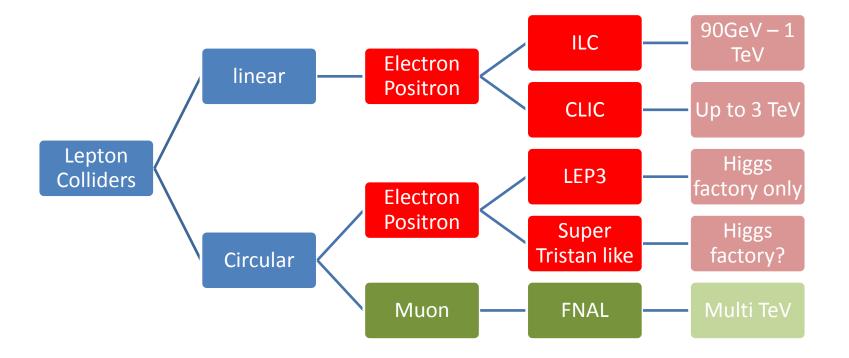


- Electron positron colliders:
 - Energy range limited (by RF power)
 - Pointlike particles, well defined initial state quantum numbers and eneries
 - Easier final states
- Precision machines
- Discovery potential

Physics at a Lepton Collider


Higgs physics: 126 GeV is "perfect" for LC

Very clean, model independent signal using the recoil method


Physics at a Lepton Collider

Higgs physics: 126 GeV is "perfect" for LC

Lepton Colliders

Large number of options how to realise a HE lepton facility

Multi-TeV Circular Colliders

	LEP-II	Super- LEP	HYPER- LEP	
E_{cm}	180 GeV	500 GeV	2 TeV	
L	27 km	200 km	3200 km	
ΔE	1.5 GeV	12 GeV	240 GeV	
€ _{tot}	2 billion	15 billion	240 billion!	

Table by James Jones

- Very high energy circular lepton colliders are not realistic
- €_{LC} ~ E + const.

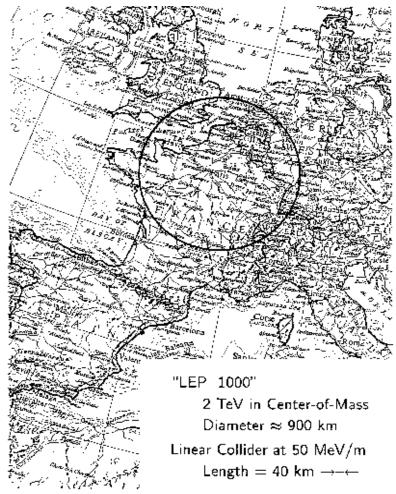
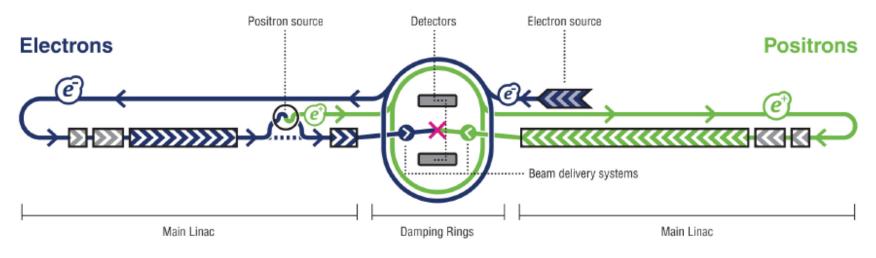
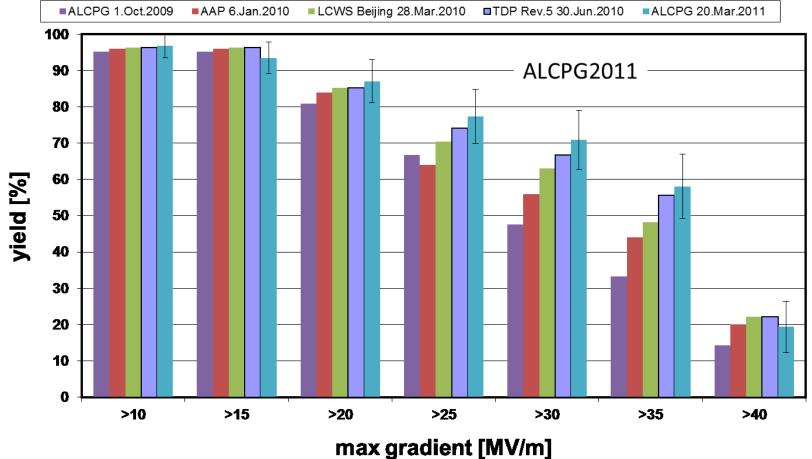



Figure by Gregory Loew

ILC

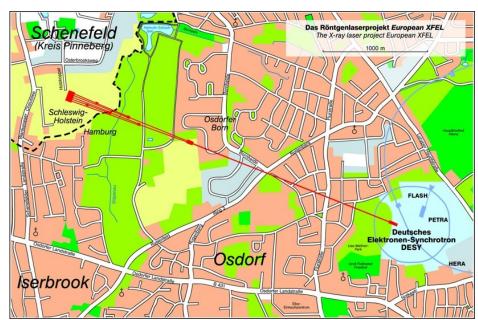
Two single-beam linacs with superconducting RF accelerating cavities ~40 MV/m



Schematic layout of the ILC complex

- For √s = 500 GeV total length of facility ~30 km
- Established technology
 - Industrial production of high field superconducting cavities now well established

ILC: Gradient


Electropolished 9-cell cavities JLab/DESY/KEK (combined) up-to-second successful test of cavities from established vendors

The European XFEL

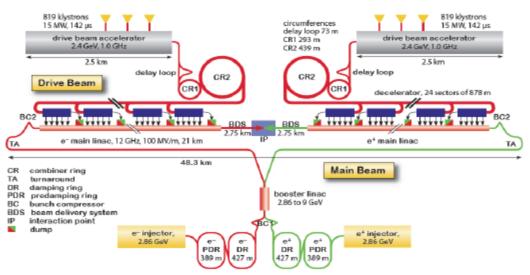
European XFEL

- X-Ray Free Electron Laser
- •ILC technology
- •Length: 3,4 km
- •Beam energy: 17,5 GeV
- •Laser wavelength: 0,085 6 nm
- •Laser pulse length: < 100 fs
- •Construction start: 2009
- •First beam: 2014
- •Very broad physics program fro quantum-level studies to applie research
- •Linac: 10% prototype for ILC..

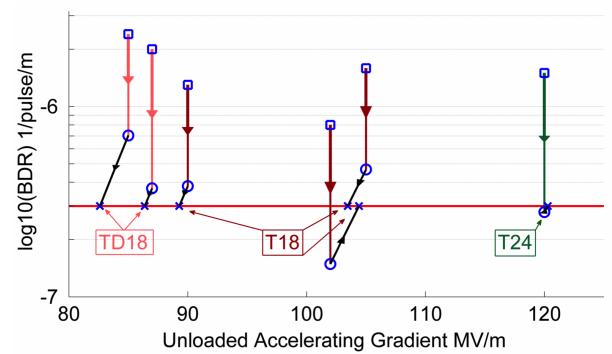
ILC Siting: current developments Japanese candidate sites

- Two candidate sites
 under investigation
 - Kitakami -
 - Sefuri
- Both sites have very good geology of granite

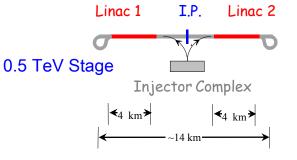
Sefuri Mountain

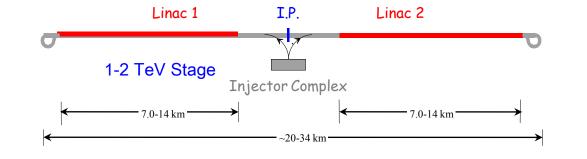


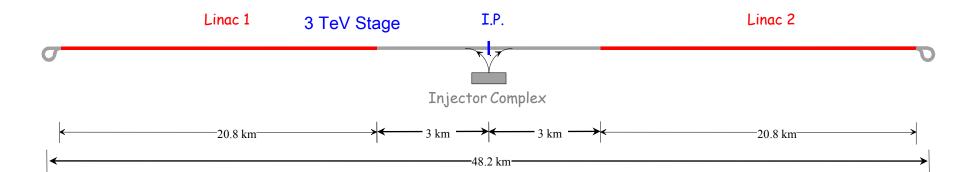
<u>CLIC</u>


Overview of the CLIC layout at Vs = 3 TeV

 Low energy, high current drive beam powers ~100 MV/m RF cavities in main linac




- CLIC R&D ongoing at CERN
 - Gradient
 - Stability
 - Beam handling
 - ...



CLIC staging

A linear collider can be realised in stages to increase its energy reach.

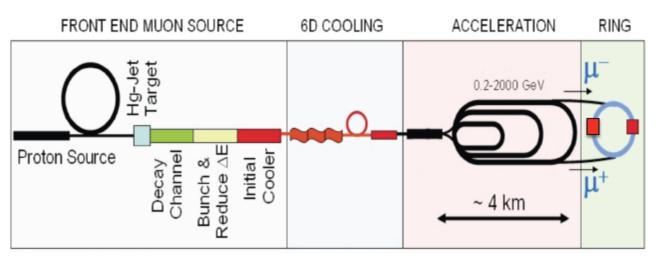
A linear collider at CERN

Google

Lake Geneva

CERN existing LHC
 CLIC 500 Gev
 CLIC 3 TeV
 ILC 500 GeV
 LHeC

Legend:


Jura Mountains

Geneva

P

12/09/12 Krakow – ESG C.Biscari - "High Energy

Muon Collider

- Potential advantages wrt. e⁺e⁻
- Smaller facility size
 - Synchrotron radiation losses ~ E⁴/m⁴r
- Smaller energy spread
 - Beamsstrahlung ~ E⁴/m⁴
- s-channel Higgs production ~m²

- Target L = 10^{34} cm⁻²s⁻¹ per IP
- Many technical challenges to be faced
 - Intense proton source
 - Muon cooling
 - Can detectors survive muon decay rate and still do the physics?
- Could be a follow-on from (or precursor to) a v-factory

Muon Collider Conceptual Layout

Project X

Accelerate Hydrogen ions to 8 GeV using SRF technology.

Compressor Ring

Reduce size of beam (2±1 ns).

Target

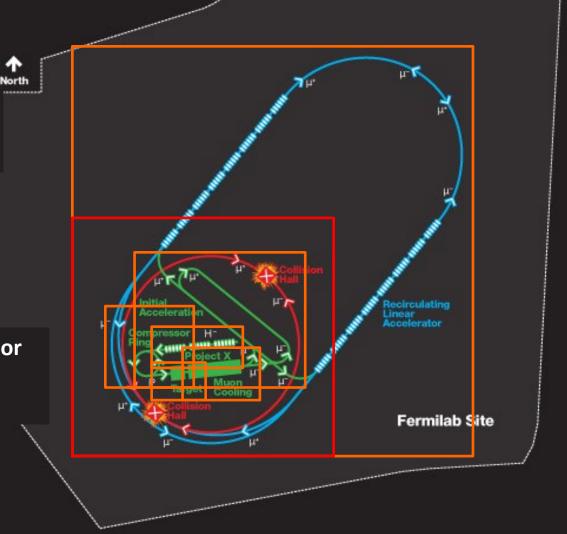
Collisions lead to muons with energy of about 200 MeV.

Muon Capture and Cooling

Capture, bunch and cool muons to create a tight beam.

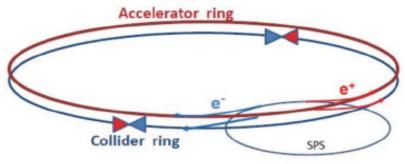
Initial Acceleration

In a dozen turns, accelerate muons to 20 GeV


Recirculating Linear Accelerator

In a number of turns, accelerate muons up to Multi-TeV using SRF techlnology.

Collider Ring


Bring positive and negative muons into collision at two locations 100 meters underground.

www.fnal.gov/pub/muon_collider

Katsuya Yonehara @ IPAC12

Circular "Higgs factory"

E.g., LEP3:

- √s = 240 GeV in the LHC tunnel to produce e⁺e⁻→ZH events
- Short beam lifetime (~16 mins) requires two ring scheme
 - Top up injection from 240 GeV "accelerator ring"
 - "Collider ring" supplying 2-4 interaction points L = 10³⁴ cm⁻²s⁻¹ per IP
 - Re-use ATLAS and CMS and/or install two dedicated LC-type detectors
- Current design uses arc optics from LHeC ring
 - Dipole fill factor 0.75 (smaller than for LEP)
 - increased synchrotron energy loss (7 GeV per turn)
 - redesign possible?
- e[±] polarization probably not possible at Vs = 240 GeV
- In principle space is available to install compact e⁺e⁻ facility on top of LHC ring
 - Is this really feasible?
 - Alternatively wait until completion of LHC physics programme and removal of LHC ring?
- SuperTRISTAN is a proposal for a similar machine in Japan

E.g., TLEP:

• √s = 350 GeV in 80 km LHC tunnel to reach thresholds for top pair and e⁺e⁻→VVWW→VVH

Where do we go from here?

My personal point of view:

Physics calls for a lepton collider to supplement the LHC

- Clear case for a Higgs factory
- Top, W physics equally convincing
- Higher energies depend on LHC findings

With ILC we have at our disposal a mature technology to built a LC

With CLIC we have an exciting possibility to extend the reach into the muti-TeV range in the future

Circular machines are less attractive cost-benefit analysis Extensibility

The current political climate in Japan might be a unique chance to realise such machine. Lets profit from this!

DESY

DESY is a strong player in the LHC and in the LHC upgrade

- Participation in both Atlas and CMS
- We intend to play an important role in both the ATLAS and the CMS upgrade

DESY is a strong player in the ILC world

- Large body of know-how on SCRF
- XFEL is world-unique SCRD LA facility under construction

Strategically detector development know-how and detector integration know-how will be a strong and common foundation for DESY's continued HEP involvement.

Close cooperation with the University of Hamburg is an important asset.

Backup

University HH - DESY

DESY and UHH have been strong partners since the founding of DESY

We profit mutually from each other

- Close integration into the university is a key advantage for DESY to maintain and strengthen a vibrant scientific life
- Uni HH profits from the DESY infrastructure and capabilities

Parameters Example											
i aran	TRISTAN	KEKB	8 4 6 6 6 6 6 6 6 6 6 7 6 7 6 7 6 7 6 6 6 6 6 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7		DLEP	SuperTRISTAN					
		TALKE			DELI	40	60				
Beam Energy	32	8/3.5	105	120	120	120	120	GeV			
Circumference	3	3	27	27	53	40	60	km			
Beam Current / beam	7	1400 / 1700	4	7.2	14.4	8.6	8.6	mA			
Bunches / beam	2	1600	4	3	60	12	18				
β* x / y	2000 / 40	1200 / 6	1500 / 65	150 / 1.2	200 / 2	80 / 2.5	80 / 2.5	mm			
Emittances x / y		18/0.1	48 / 0.25	20/0.15	5 / 0.05	23.3 / 0.09	24.6 / 0.09	nm			
Bunch length	10	6	3	3	1.5	3	3	mm			
Beam-beam parameters	0.02 0.025	0.05 0.09	0.025 0.065	0.126 0.13	0.1 0.1	0.05 0.156	0.045 0.155				
Radiation loss / turn	300	4/2	2750	6900	3470	3420	2150	MV			
RF Voltage	400	10/5	3640	9000	4600	5000	3300	MV			
RF frequency	508	509	352	1300	1300	1300	1300	MHz			
Total SR Power	4.2	5.6/3.4	22	100	100	59	37	MW			
Luminosity / IP	0.04	21	0.13	13	16	10	10	/nb/s			