

LEXI meeting 11-12 October 2012

Active-sterile neutrino oscillations in the Early Universe with dynamical neutrino asymmetries

Ninetta Saviano

II Institut für Theoretische Physik, Universität Hamburg, Dipartimento di Scienze Fisiche, Università di Napoli Federico II

Based on : A. Mirizzi, N.S., G. Miele, P.D. Serpico; PRD 86, 053009 (2012)

Experimental anomalies & sterile v interpretation

Experimental data in tension with the standard 3v scenario:

- 1. \overline{v}_{e} appearance signals
 - excess of $\overline{\nu}_{e}$ originated by initial $\overline{\nu}_{\mu}$: LSND/ MiniBooNE (but no ν_{e} excess signal from $\nu_{\mu} \rightarrow \nu_{e}$) *A. Aguilar et al., 2001 A. Aguilar et al., 2010*
- 2. $\overline{\nu}_{e}$ and ν_{e} disappearance signals
 - deficit in the $\overline{v_e}$ fluxes from nuclear reactors (at short distance)

Mention et al.2011

• reduced solar v_e event rate in Gallium experiments

Acero, Giunti and Lavder, 2008

All these anomalies, if interpreted as oscillation signals, point towards the possible existence of *1* (or more) *sterile neutrino* with $\Delta m^2 \sim O(eV^2)$ and $\theta_s \sim O(0.1)$

Kopp, Maltoni & Schwetz 2011 Giunti and Laveder, 2012 Abazajian et al., 2012 (white paper)

Many analysis have been performed \rightarrow 3+1, 3+2 schemes

LEXI meeting, 12 October

Extra radiation

Sterile neutrinos can be produced via oscillations with active neutrinos in Early Universe

 \rightarrow possible contribution to extra degrees of freedom ΔN

$$\varepsilon_{v} + \varepsilon_{x} = \frac{7}{8} \frac{\pi^{2}}{15} T_{v}^{4} N_{v}^{eff} = \frac{7}{8} \frac{\pi^{2}}{15} T_{v}^{4} \left(N_{SM}^{eff} + \Delta N \right) = \frac{7}{8} \frac{\pi^{2}}{15} T_{v}^{4} \left(3.046 + \Delta N \right)$$

$$Mangano \ et \ al. \ 2005$$

non-e.m. energy density

Extra d.o.f. rebound on the cosmological observables :

- BBN (through the expansion rate H and the direct effect of v_e and \overline{v}_e on the n-p reactions)
- CMB & LSS (sound horizon, anisotropic stress, equality redshift, damping tail)

Cosmological hints for extra radiation

Current precision cosmological data show a preference for extra relativistic d.o.f:

✓ **BBN** (standard) →
$$N_{eff} \le 4$$
 (at 95% C.L)

Mangano and Serpico, 2011 Hamman et al., 2011 Pettini and Cooke, 2012

with only a small significance preference for N^{eff} > stand.value

✓ CMB & LSS →
$$N_{eff}$$
 > 3.046 (at 98% C.L for ACDM + Neff)
Many models → central value N_{eff} ~ 4 WMAP7+ACT+ACBAR+H0+BAO
How Keisler Knor. et al. 201

Hou, Keisler, Knox, et al. 2011

Exact numbers depend on the cosmological model and on the combination of data used

Extra radiation VS lab V_s

The mass and mixing parameters preferred by experimental anomalies lead to the production and **thermalization** of v_s (i.e., $\Delta N = 1, 2$) in the Early Universe via v_a - v_s oscillations + v_a scatterings

Barbieri & Dolgov 1990, 1991 Di Bari, 2002 Melchiorri et al 2009

Problem:

not easy to link the extra radiation with the lab-sterile v in the simplest scenarios

Indeed:

- 3+2: Too many for BBN (3+1 minimally accepted) Hamman et al., 2010 Hamman et al., 2011 - 3+1, 3+2: Too heavy for CMB/LSS \rightarrow m_s < 0.48 eV (at 95% C.L)

versus lab best-fit $m_s \sim 1 \ eV$

It is possible to find an escape route to reconcile sterile v's with cosmology?

A possible answer: primordial neutrino asymmetry

Foot and Volkas, 1995

Introducing
$$L = \frac{n_v - n_{\overline{v}}}{n_{\gamma}}$$

Suppress the thermalization of sterile neutrinos (Effective $v_a - v_s$ mixing reduced by a large matter term $\propto L$)

Caveat : L can also generate MSW-like resonant flavor conversions among active and sterile neutrinos enhancing their production

A lot of work has been done in this direction.....

Enqvist et al., 1990, 1991,1992; Foot, Thomson & Volkas, 1995; Bell, Volkas & Wong, 1998; Dolgov, Hansen, Pastor & Semikoz, 1999; Di Bari & Foot, 2000; Di Bari, Lipari and lusignoli, 2000; Kirilova & Chizhov, 2000; Di Bari, Foot, Volkas & Wong, 2001; Dolvgov & Villante, 2003; Abazajian, Bell, Fuller, Wong, 2005; Kishimoto, Fuller, Smith, 2006; Chu & Cirelli, 2006; Abazajian & Agrawal, 2008;

In Chu and Cirelli 2006, in a 3 + 1 scenario, was found that $L \sim 10^{-4}$ is enough

In Chu and Cirelli 2006, in a 3 + 1 scenario, was found that $L \sim 10^{-4}$ is enough

WARNING:

- L taken constant during the flavor evolution
- equations of motion solved only for $\boldsymbol{\nu}$

- only a single a-s mixing angle considered

In Chu and Cirelli 2006, in a 3 + 1 scenario, was found that $L \sim 10^{-4}$ is enough WARNING:

- L taken constant during the flavor evolution \longrightarrow L dynamically evolves

- equations of motion solved only for $\boldsymbol{\nu}$

- only a single a-s mixing angle considered

In Chu and Cirelli 2006, in a 3 + 1 scenario, was found that $L \sim 10^{-4}$ is enough WARNING:

- L taken constant during the flavor evolution \longrightarrow L dynamically evolves
- equations of motion solved only for $v \longrightarrow$ resonant conversions with active v would occur in the \overline{v} sector for negative L used by the authors
- only a single a-s mixing angle considered

In Chu and Cirelli 2006, in a 3 + 1 scenario, was found that $L \sim 10^{-4}$ is enough WARNING:

- L taken constant during the flavor evolution \longrightarrow L dynamically evolves
- equations of motion solved only for $v \longrightarrow$ resonant conversions with active v would occur in the \overline{v} sector for negative L used by the authors
- only a single a-s mixing angle considered \longrightarrow also the other flavors take part into oscillations

2 recent complementary papers on thermalization of V_s

- Describe the v ensemble in terms of 4x4 density matrix $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} & \varrho_{e\mu} & \varrho_{e\tau} & \varrho_{es} \\ \varrho_{\mu e} & \varrho_{\mu\mu} & \varrho_{\mu\tau} & \varrho_{\mu s} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} & \varrho_{\tau s} \\ \varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \end{pmatrix}$
- introduce the dimensionless variables $x \equiv ma$, $y \equiv pa$, $z \equiv T_{\gamma}a$, with m = 1 eV,

a= scale factor, $a(t) \rightarrow 1/T$

- denote the time derivative $d_t = \partial_t Hp\partial_p = Hx\partial_x$, with *H* the Hubble parameter
- restrict to an "average momentum" approx. $\langle y \rangle$, based on $\varrho(x, y) \to f_{FD}(y) \rho(x)$

➢ The EoM become

$$i\frac{d\rho}{dx} = \frac{1}{2Hx}\left\langle\frac{1}{y}\right\rangle \left[M^2,\rho\right] - \frac{\sqrt{2}G_F}{Hx}\left[\frac{8\langle y\rangle}{3m_w^2}E_l,\rho\right] + \frac{\sqrt{2}G_F}{Hx}\left[\left(-\frac{8\langle y\rangle}{3m_z^2}E_v + N_v\right),\rho\right] + \frac{C[\rho]}{Hx}$$

Sigl and Raffelt 1993; McKellar & Thomson, 1994 Dolgov et al., 2002

LEXI meeting, 12 October

- Describe the v ensemble in terms of 4x4 density matrix $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} & \varrho_{e\mu} & \varrho_{\mu\tau} & \varrho_{\mu\tau} \\ \varrho_{\mu e} & \varrho_{\mu\mu} & \varrho_{\mu\tau} & \varrho_{\mus} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} & \varrho_{\taus} \\ \varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \end{pmatrix}$
- introduce the dimensionless variables $x \equiv ma$, $y \equiv pa$, $z \equiv T_{\gamma}a$, with m = 1 eV,

a= scale factor, $a(t) \rightarrow 1/T$

- denote the time derivative $d_t = \partial_t Hp\partial_p = Hx\partial_x$, with *H* the Hubble parameter
- restrict to an "average momentum" approx. $\langle y \rangle$, based on $\varrho(x, y) \to f_{FD}(y) \rho(x)$

➢ The EoM become

$$i\frac{d\rho}{dx} = \frac{1}{2Hx}\left\langle\frac{1}{y}\right\rangle \left[M^2,\rho\right] - \frac{\sqrt{2}G_F}{Hx}\left[\frac{8\langle y\rangle}{3m_w^2}E_I,\rho\right] + \frac{\sqrt{2}G_F}{Hx}\left[\left(-\frac{8\langle y\rangle}{3m_z^2}E_v + N_v\right),\rho\right] + \frac{C[\rho]}{Hx}\left[\frac{1}{2Hx}\left(-\frac{8\langle y\rangle}{3m_z^2}E_v + N_v\right),\rho\right] + \frac{C[\rho]}{Hx}\left[\frac{$$

Vacuum term with M neutrino mass matrix $U^+ \mathcal{M}^2 U$ Sigl and Raffelt 1993; McKellar & Thomson, 1994 Dolgov et al., 2002

LEXI meeting, 12 October

- Describe the v ensemble in terms of 4x4 density matrix $\varrho(x,y) = \begin{pmatrix} \varrho_{\mu e} & \varrho_{\mu \mu} & \varrho_{\mu \tau} & \varrho_{\mu s} \\ \varrho_{\tau e} & \varrho_{\tau \mu} & \varrho_{\tau \tau} & \varrho_{\tau s} \\ \varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \end{pmatrix}$
- introduce the dimensionless variables $x \equiv ma$, $y \equiv pa$, $z \equiv T_{\gamma}a$, with m = 1 eV,

a= scale factor, $a(t) \rightarrow 1/T$

- denote the time derivative $d_t = \partial_t Hp\partial_p = Hx\partial_x$, with *H* the Hubble parameter
- restrict to an "average momentum" approx. $\langle y \rangle$, based on $\varrho(x, y) \to f_{FD}(y) \rho(x)$

➤ The EoM become

$$i\frac{d\rho}{dx} = \frac{1}{2Hx}\left\langle\frac{1}{y}\right\rangle \left[M^2,\rho\right] - \frac{\sqrt{2}G_F}{Hx}\left[\frac{8\langle y\rangle}{3m_w^2}E_l,\rho\right] + \frac{\sqrt{2}G_F}{Hx}\left[\left(-\frac{8\langle y\rangle}{3m_z^2}E_v + N_v\right),\rho\right] + \frac{C[\rho]}{Hx}$$

Sigl and Raffelt 1993; McKellar & Thomson, 1994 Dolgov et al., 2002 "symmetric" matter effect (2th order term) $E_l = diag(\varepsilon_e, 0, 0, 0)$

LEXI meeting, 12 October

- Describe the v ensemble in terms of 4x4 density matrix $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} & \varrho_{e\mu} & \varrho_{e\tau} & \varrho_{es} \\ \varrho_{\mu e} & \varrho_{\mu\mu} & \varrho_{\mu\tau} & \varrho_{\mus} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} & \varrho_{\taus} \\ \varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \end{pmatrix}$
- introduce the dimensionless variables $x \equiv ma$, $y \equiv pa$, $z \equiv T_{\gamma}a$, with m = 1 eV,

a= scale factor, $a(t) \rightarrow 1/T$

- denote the time derivative $d_t = \partial_t Hp\partial_p = Hx\partial_x$, with *H* the Hubble parameter
- restrict to an "average momentum" approx. $\langle y \rangle$, based on $\varrho(x, y) \to f_{FD}(y) \rho(x)$

➢ The EoM become

$$i\frac{d\rho}{dx} = \frac{1}{2Hx}\left\langle\frac{1}{y}\right\rangle \left[M^2,\rho\right] - \frac{\sqrt{2}G_F}{Hx}\left[\frac{8\langle y\rangle}{3m_w^2}E_I,\rho\right] + \frac{\sqrt{2}G_F}{Hx}\left[\left(-\frac{8\langle y\rangle}{3m_z^2}E_v + N_v\right),\rho\right] + \frac{C[\rho]}{Hx}\left[\left(-\frac{8\langle y\rangle}{3m_z^2}E_v + N_v\right),\rho\right] + \frac{C$$

Sigl and Raffelt 1993; McKellar & Thomson, 1994 Dolgov et al., 2002 v−v term
 → non-linear term
 given by to the symmetric and asymmetric terms

LEXI meeting, 12 October

- Describe the v ensemble in terms of 4x4 density matrix $\varrho(x, y) = \begin{pmatrix} \varrho_{ee} & \varrho_{e\mu} & \varrho_{e\tau} & \varrho_{es} \\ \varrho_{\mu e} & \varrho_{\mu\mu} & \varrho_{\mu\tau} & \varrho_{\mu s} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} & \varrho_{\tau s} \\ \varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \end{pmatrix}$
- introduce the dimensionless variables $x \equiv ma$, $y \equiv pa$, $z \equiv T_{\gamma}a$, with m = 1 eV,

a= scale factor, $a(t) \rightarrow 1/T$

- denote the time derivative $d_t = \partial_t Hp\partial_p = Hx\partial_x$, with *H* the Hubble parameter
- restrict to an "average momentum" approx. $\langle y \rangle$, based on $\varrho(x, y) \to f_{FD}(y) \rho(x)$

The EoM become

$$i\frac{d\rho}{dx} = \frac{1}{2Hx}\left\langle\frac{1}{y}\right\rangle \left[M^{2},\rho\right] - \frac{\sqrt{2}G_{F}}{Hx}\left[\frac{8\left\langle y\right\rangle}{3m_{w}^{2}}E_{l},\rho\right] + \frac{\sqrt{2}G_{F}}{Hx}\left[\left(-\frac{8\left\langle y\right\rangle}{3m_{z}^{2}}E_{v} + N_{v}\right),\rho\right] + \frac{C[\rho]}{Hx}$$
Sigl and Raffelt 1993;
$$McKellar \& Themson \ 1994$$

$$g\left(\rho + \overline{\rho}\right)$$

 $(p \cdot p)$

McKellar & Thomson, 1994 Dolgov et al., 2002

LEXI meeting, 12 October

- Describe the v ensemble in terms of 4x4 density matrix $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} & \varrho_{e\mu} & \varrho_{e\tau} & \varrho_{es} \\ \varrho_{\mu e} & \varrho_{\mu\mu} & \varrho_{\mu\tau} & \varrho_{\mu s} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} & \varrho_{\tau s} \\ \varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \end{pmatrix}$
- introduce the dimensionless variables $x \equiv ma$, $y \equiv pa$, $z \equiv T_{\gamma}a$, with m = 1 eV,

a= scale factor, $a(t) \rightarrow 1/T$

- denote the time derivative $d_t = \partial_t Hp\partial_p = Hx\partial_x$, with *H* the Hubble parameter
- restrict to an "average momentum" approx. $\langle y \rangle$, based on $\varrho(x, y) \to f_{FD}(y) \rho(x)$

➢ The EoM become

$$i\frac{d\rho}{dx} = \frac{1}{2Hx}\left\langle\frac{1}{y}\right\rangle \left[M^2,\rho\right] - \frac{\sqrt{2}G_F}{Hx}\left[\frac{8\langle y\rangle}{3m_w^2}E_l,\rho\right] + \frac{\sqrt{2}G_F}{Hx}\left[\left(-\frac{8\langle y\rangle}{3m_z^2}E_v + N_v\right),\rho\right] + \frac{C[\rho]}{Hx}\left[\frac{1}{2Hx}\left(-\frac{8\langle y\rangle}{3m_z^2}E_v + N_v\right),\rho\right] + \frac{C[\rho]}{Hx}\left[\frac{$$

asymmetric term

$$\propto (\rho - \overline{\rho}) \rightarrow L$$

Sigl and Raffelt 1993; McKellar & Thomson, 1994 Dolgov et al., 2002

LEXI meeting, 12 October

- Describe the v ensemble in terms of 4x4 density matrix $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} & \varrho_{e\mu} & \varrho_{e\tau} & \varrho_{es} \\ \varrho_{\mu e} & \varrho_{\mu\mu} & \varrho_{\mu\tau} & \varrho_{\mu s} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} & \varrho_{\tau s} \\ \varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \end{pmatrix}$
- introduce the dimensionless variables $x \equiv ma$, $y \equiv pa$, $z \equiv T_{\gamma}a$, with m = 1 eV,

a= scale factor, $a(t) \rightarrow 1/T$

 $\propto G_{E}^{2}$

- denote the time derivative $d_t = \partial_t Hp\partial_p = Hx\partial_x$, with *H* the Hubble parameter
- restrict to an "average momentum" approx. $\langle y \rangle$, based on $\varrho(x, y) \to f_{FD}(y) \rho(x)$

The EoM become

$$i\frac{d\rho}{dx} = \frac{1}{2Hx}\left\langle\frac{1}{y}\right\rangle \left[M^{2},\rho\right] - \frac{\sqrt{2}G_{F}}{Hx}\left[\frac{8\langle y\rangle}{3m_{w}^{2}}E_{l},\rho\right] + \frac{\sqrt{2}G_{F}}{Hx}\left[\left(-\frac{8\langle y\rangle}{3m_{z}^{2}}E_{v} + N_{v}\right),\rho\right] + \frac{C[\rho]}{Hx}$$
Collisional term

Sigl and Raffelt 1993; McKellar & Thomson, 1994 Dolgov et al., 2002

LEXI meeting, 12 October

- Describe the v ensemble in terms of 4x4 density matrix $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} & \varrho_{e\mu} & \varrho_{e\tau} & \varrho_{es} \\ \varrho_{\mu e} & \varrho_{\mu\mu} & \varrho_{\mu\tau} & \varrho_{\mu s} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} & \varrho_{\tau s} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} & \varrho_{\tau s} \end{pmatrix}$
- introduce the dimensionless variables $x \equiv ma$, $y \equiv pa$, $z \equiv T_{y}a$, with m = 1 eV,

 $a = \text{scale factor}, a(t) \rightarrow 1/T$

- denote the time derivative $d_t = \partial_t Hp\partial_p = Hx\partial_x$, with *H* the Hubble parameter
- restrict to an "average momentum" approx. $\langle y \rangle$, based on $\varrho(x, y) \to f_{FD}(y) \rho(x)$

The EoM become

$$i\frac{d\rho}{dx} = \frac{1}{2Hx}\left\langle\frac{1}{y}\right\rangle \left[M^2,\rho\right] - \frac{\sqrt{2}G_F}{Hx}\left[\frac{8\langle y\rangle}{3m_w^2}E_I,\rho\right] + \frac{\sqrt{2}G_F}{Hx}\left[\left(-\frac{8\langle y\rangle}{3m_z^2}E_v + N_v\right),\rho\right] + \frac{C[\rho]}{Hx}\left[\frac{1}{2Hx}\left(-\frac{8\langle y\rangle}{3m_z^2}E_v + N_v\right),\rho\right] + \frac{C[\rho]}{Hx}\left[\frac{$$

$$\frac{d\overline{\rho}}{dx} = -\frac{1}{2Hx} \left\langle \frac{1}{y} \right\rangle \left[M^2, \overline{\rho} \right] + \frac{\sqrt{2}G_F}{Hx} \left[\frac{8\langle y \rangle}{3m_w^2} E_l, \overline{\rho} \right] + \frac{\sqrt{2}G_F}{Hx} \left[\left(+\frac{8\langle y \rangle}{3m_z^2} E_v + N_v \right), \overline{\rho} \right] + \frac{C[\overline{\rho}]}{Hx}$$

Strength of the different interactions

Mirizzi, N.S., Miele, Serpico 2012

$$L = -10^{-4}$$

kept constant

Strength of the different interactions

Mirizzi, N.S., Miele, Serpico 2012

$$L = -10^{-4}$$

kept constant

- For $L < 0 \rightarrow$ resonance occurs in the anti-v channel
- For $L > 0 \rightarrow$ resonance occurs in the v channel

LEXI meeting, 12 October

Best-fit parameters in the active and sterile sectors

Global 3ν oscillation analysis, in terms of best-fit values

Parameter	Best fit
$\delta m^2/10^{-5} \text{ eV}^2$ (NH or II	H) 7.54
$\sin^2 \theta_{12} / 10^{-1}$ (NH or IH)) 3.07
$\Delta m^2 / 10^{-3} \text{ eV}^2 \text{ (NH)}$	2.43
$\Delta m^2 / 10^{-3} \text{ eV}^2 \text{ (IH)}$	2.42
$\sin^2 \theta_{13} / 10^{-2}$ (NH)	2.41
$\sin^2 \theta_{13} / 10^{-2}$ (IH)	2.44
$\sin^2 \theta_{23} / 10^{-1}$ (NH)	3.86
$\sin^2 \theta_{23} / 10^{-1}$ (IH)	3.92
δ/π (NH)	1.08
δ/π (IH)	1.09
	Fogli et al., 2012

Best-fit values of the mixing parameters in 3+1 fits of short-baseline oscillation data.

	3+1
$\chi^2_{ m min}$	100.2
NDF	104
GoF	59%
$\Delta m_{41}^2 [\mathrm{eV}^2]$	0.89
$ U_{e4} ^2$	0.025
$ U_{\mu 4} ^2$	0.023
$\Delta m_{51}^2 [\mathrm{eV}^2]$	
$ U_{e5} ^2$	
$ U_{\mu 5} ^2$	
η	
$\Delta \chi^2_{ m PG}$	24.1
NDF_{PG}	2
PGoF	6×10^{-6}
Giunti and Laveder 2011	

• L = 0 $\rightarrow v_s$ copiously produced at T \leq 30MeV (not resonantly)

• $L \neq 0 \Rightarrow v_s$ are produced "resonantly" when $V_{asy} \approx V_{vac}$

Increasing L, the position of the resonance shifts towards lower T \rightarrow less adiabatic resonance $\rightarrow v_s$ production less efficient (Adiabaticity parameter scales as T) *Di Bari and Foot 2002*

LEXI meeting, 12 October

Mirizzi, N.S., Miele, Serpico 2012

Consequences on N_{eff}

Mirizzi, N.S., Miele, Serpico 2012

- |L| ≤10⁻⁴, v_s fully populated and the v_a repopulated by collisions →N_{eff} ~ 4
 → tension with cosmological mass bounds (and with BBN data)
- $|L| = 10^{-3}$, v_s produced close to v-decoupling ($T_d \sim 2-3$ MeV) where v_a less repopulated \rightarrow effect on N_{eff} less prominent. If $\Delta N_{eff} > 0.2$ it will be detected by Planck (public data release expected early 2013).
 - L > 10⁻², no repopulation of v_a \rightarrow negligible effect on N_{eff} even if v_s slightly produced.

Possible future extra-radiation should be explained by some other physics (hidden photons, sub-eV thermal axions etc.?)

Consequences on N_{eff}

Mirizzi, N.S., Miele, Serpico 2012

Attention:

- |L| ≤10⁻⁴, v_s fully populated and the v_a repopulated by collisions →N_{eff} ~ 4
 → tension with cosmological mass bounds (and with BBN data)
- $|L| = 10^{-3}$, v_s produced close to v-decoupling ($T_d \sim 2-3$ MeV) where v_a less repopulated \rightarrow effect on N_{eff} less prominent. If $\Delta N_{eff} > 0.2$ it will be detected by Planck (public data release expected early 2013).
- L > 10⁻², no repopulation of v_a
 →negligible effect on N_{eff} even if v_s slightly produced.

Possible future extra-radiation should be explained by some other physics (hidden photons, sub-eV thermal axions etc.?)

The lack of repopulation of v_e would produce distorted distributions, which can anticipate the n/p freeze-out and hence increase the ⁴He yield \rightarrow Possible impact on the BBN (Multi-momentum treatment necessary!)

Qualitative estimate of the effects on BBN

Mirizzi, N.S., Miele, Serpico 2012

• L=0 : $\delta N_{eff} = 1$ and $\delta \rho_{ee} = 0 \rightarrow variation in {}^{4}He of \sim 4\%$ barely allowed

- L= $|10|^{-2}$: $\delta N_{eff} \sim 0$ and $\delta \rho_{ee} = -5\% \rightarrow$ variation in ⁴He of $\sim 1\%$
- L=|10|⁻³: $\delta N_{eff} \sim 1\%$ and $\delta \rho_{ee} \sim 1\% \rightarrow$ variation in ⁴He of $\sim 2\%$

LEXI meeting, 12 October

Large effects on BBN

2 + 1 Scenario

Mirizzi, N.S., Miele, Serpico 2012

 $L\sim 10^{-3}$ conservative limit \rightarrow Suppression crucially depends on the scenario considered

Neutrino asymmetry evolution

(2+1) with $L=L_e=L_\mu$ and $\phi_{cp}=0$ $\Delta\rho \propto L$

Conclusions

- Current precision cosmological data show a preference for extra relativistic degrees of freedom (beyond 3 active neutrinos).
- \checkmark v_s interpretation of lab neutrino anomalies does not quite fit into the simplest picture. Necessary to suppress the sterile neutrino production in the Early Universe.
- A possibility to reconcile cosmological and laboratory data would be the introduction of a neutrino asymmetry.
- ✓ Solving the non-linear EOM for v_a-v_s oscillations in a 3+1 scenario, we find that L >10⁻³ necessary to suppress the sterile neutrino production.
 (Suppression crucially depends on the scenario considered).
- ✓ However, L> 10⁻³ could leave a significant imprint on BBN trough the depletion of v_e and $\overline{v_e}$ (multi-momentum treatment of the EOM necessary)

Conclusions

- Current precision cosmological data show a preference for extra relativistic degrees of freedom (beyond 3 active neutrinos).
- \checkmark v_s interpretation of lab neutrino anomalies does not quite fit into the simplest picture. Necessary to suppress the sterile neutrino production in the Early Universe.
- A possibility to reconcile cosmological and laboratory data would be the introduction of a neutrino asymmetry.
- ✓ Solving the non-linear EOM for v_a-v_s oscillations in a 3+1 scenario, we find that L >10⁻³ necessary to suppress the sterile neutrino production.
 (Suppression crucially depends on the scenario considered).
- ✓ However, L> 10⁻³ could leave a significant imprint on BBN trough the depletion of v_e and $\overline{v_e}$ (multi-momentum treatment of the EOM necessary)

Not too easy to mask sterile neutrinos in cosmology!

LEXI meeting, 12 October

Thank you

(+1) case with
$$L = L_e = L_\mu$$

 $\varphi_{\rm CP} = \pi/2$

