Top-Quark Physics at CMS

Holger Enderle

Annual LEXI Meeting 2012, 11.-12. October

Results Presented in this Talk

Inclusive top-pair cross section

- Search for new physics in invariant top-pair mass
- Charge asymmetry

• Other top-quark properties ($\Delta m(t, \bar{t})$, spin, charge)

Motivation - Why is the Top Quark Special?

Top quark is heaviest particle in SM

- decays before hadronisation
 - direct access to "bare quark"
- allows for precision measurements of SM parameters
 - cross sections, mass, spin, charge
- very sensitive to Higgs
 - test of SM
- vital for BSM searches
 - many theories predict preferred coupling to top quarks
 - often top quarks constitute most important background

slight tension between SM fit and mass measurments but still compatible

Motivation - Why is the Top Quark Special?

Top quark is heaviest particle in SM

- decays before hadronisation
 - direct access to "bare quark"
- allows for precision measurements of SM parameters
 - cross sections, mass, spin, charge
- very sensitive to Higgs
 - test of SM
- vital for BSM searches
 - many theories predict preferred coupling to top quarks
 - often top quarks constitute most important background

current mass measurements favour meta stable SM vacuum

Top Pair Production and Decay

Main production at LHC

• gluon-gluon fusion 80 - 90%

> 4 000 000 $t\bar{t}$ pairs produced

Decay channels specified by W-boson decay

- fullhadronic (BR: $\sim 46\%)$
- semileptonic (BR: \sim 15% \times 3)
- dileptonic (BR: \sim 1% \times 9)

Analysis techniques depend on channel

Holger Enderle (Universität Hamburg)

Inclusive $t\bar{t}$ Cross Section $\sigma_{t\bar{t}}$

CMS measured $\sigma_{t\bar{t}}$ at 2 different centre-of-mass energies (7 TeV and 8 TeV)

- uncertainties partially smaller than for approx. NNLO calculations (O(5%))
- all channels in good agreement with SM prediction

Holger Enderle (Universität Hamburg)

Top-Quark Physics at CMS

Test of QCD at Different Energy Scales

Remarkable agreement with SM QCD predictions over wide energy range

Holger Enderle (Universität Hamburg)

Differential tt Cross Sections (CMS-TOP-11-013)

Measure kinematics of final-state particles

- easy to reconstruct
- no full event reconstruction needed
 - no association of particles to t or \overline{t}
 - no recontruction of unmeasured neutrinos
- correct for detector effects only
 - model independent
- variables:
 - *p*_T and η of leptons and b jets
 - * test of the event generators
 - invariant dilepton mass
 - important background for searches
 - *p*^T of dilepton system
 - sensitive to spin correlation

Top-Quark Physics at CMS

12th October 2012 6 / 15

Differential tt Cross Sections (CMS-TOP-11-013)

Measure kinematics of top quarks and $t\bar{t}$ system

- full kinematic event reconstruction
 - assign each particle to its mother
 - reconstruct neutrinos
- unfolding to parton level
 - correct for detector & hadronization effects
- variables:
 - p_T and y of top quarks
 - *p_T* measured softer than predicted by MC
 - ★ sensitive to difference (NLO \leftrightarrow NNLO)
 - p_T and y of $t\bar{t}$ system
 - * $p_T^{t\bar{t}}$ is sensitive to radiation (ISR/FSR)
 - * $y^{t\bar{t}}$ is possible input to PDF fits
 - invariant tt mass
 - ★ search for resonances

Invariant Top-Pair Mass $m_{t\bar{t}}$ (arXiv:1209.4397)

Most obvious distribution for searches

- heavy particles decay into $t\bar{t}$ pair
 - resonances in m_{tt} spectrum
 - * peak at the mass of the particle
- model independent
- measurement in agreement with SM
 - limits for different models (95% CL)
 - ★ Z'(1.2% width): 1.49 TeV
 - KK gluon: 1.82 TeV

Charge Asymmetry - Principles

- $t\bar{t}$ production by gluon-gluon fusion is symmetric
- Asymmetry only arises from quark-antiquark annihilation Tevatron:
 - proton-antiproton collider

$$\underbrace{\overleftarrow{t}}_{t}$$

favoured direction for t/\overline{t}

forward-backward asymmetry in angular distribution of top quarks

Charge Asymmetry - Principles

- $t\bar{t}$ production by gluon-gluon fusion is symmetric
- Asymmetry only arises from quark-antiquark annihilation Tevatron: LHC:
 - proton-antiproton collider

proton-proton collider

favoured direction for t/\overline{t}

forward-backward asymmetry in angular distribution of top quarks

central-decentral asymmetry in angular distribution of top quarks

Holger Enderle (Universität Hamburg)

Charge Asymmetry - Measurement

Define sensitive variable: $\Delta |\mathbf{y}| = |\mathbf{y}_t| - |\mathbf{y}_{\overline{t}}|$

- SM predicts asymmetry in this variable
 - $A_C^{SM} = 0.0115 \pm 0.0006$
- CMS measured (arXiv:1207.0065)
 - $A_C = 0.004 \pm 0.010(\text{stat}) \pm 0.011(\text{syst})$

★ compatible with SM prediction

Charge Asymmetry - Measurement

Define sensitive variable: $\Delta |y| = |y_t| - |y_{\overline{t}}|$

- SM predicts asymmetry in this variable
 - $A_C^{SM} = 0.0115 \pm 0.0006$
- CMS measured (arXiv:1207.0065)
 - $A_C = 0.004 \pm 0.010(\text{stat}) \pm 0.011(\text{syst})$
 - ★ compatible with SM prediction

Measure separately for events with different invariant mass $m_{t\bar{t}}$:

CDF (at Tevatron) measures deviation from SM (CDF Note 10807)

no significant deviation at CMS (arXiv:1207.0065)

Top-Quark Physics at CMS

Charge Asymmetry Combination (arXiv:1203.4211v2)

LHC charge asymmetry A_C and Tevatron forward-backward asymmetry A_{FB}

 several BSM models disfavoured/constrained by the CMS measurement (figure shows old inclusive CMS result (1.1 fb⁻¹))

Top Mass Measurement

Most precise measurement to date:

- 2D-ideogram method
 - full event reconstruction
 - 2D fit of mass and jet-energy scale (JES)
 - reduces uncertainty

CMS combination:

- 173.4±1.0 (stat.+syst.) GeV
 - already reached Tevatron precision
- But which mass are we measuring?
 - some kind of MC mass
 - but it is close to the pole mass

Pole Mass from Cross Section Measurement

Measurement compatible with direct measurement

nearly 10 times larger uncertainty

Is it the SM Top Quark? (Mass Difference, Spin Correlation, Charge)

Mass Difference

- measure m_t separately for $\mu^{\pm} + jets$
- $\Delta m_t = -1.20 \pm 1.21(\text{stat}) \pm 0.47(\text{syst}) \text{ GeV}$
- $m_t = 0$ indicates "no CPT violation"

Spin Correlation

- $\Delta \phi$ of leptons in helicity basis
- ► A^{hel}_{meas} = 0.24 ± 0.02(stat.) ± 0.08(sys.)
- compatible with SM ($A_{SM}^{hel} = 0.31$)

Charge

- association of muon to b or \bar{b}
- Ameas = 0.97±0.12(stat.)±0.31(sys.)
- $A_{meas} = 1 => q_t = 2/3e$ (SM)

•
$$A_{meas} = -1 = q_t = -4/3e$$

Conclusion

- Top Quark Physics is a valuable tool for
 - validating simulations
 - probing the SM
 - performing beyond SM searches
- With $\mathcal{O}(10^6)$ $t\bar{t}$ pairs clearly entered era of precision measurements
 - ▶ tt̄ cross section uncertainty: < 5%</p>
 - top-quark mass uncertainty: \approx 1 GeV
 - all CMS measurements in top sector compatible with SM so far
 - no sign for BSM physics in searches
 - from top perspective, SM looks like perfect model

Conclusion

- Top Quark Physics is a valuable tool for
 - validating simulations
 - probing the SM
 - performing beyond SM searches
- With $\mathcal{O}(10^6)$ $t\bar{t}$ pairs clearly entered era of precision measurements
 - $t\bar{t}$ cross section uncertainty: < 5%
 - top-quark mass uncertainty: \approx 1 GeV
 - all CMS measurements in top sector compatible with SM so far
 no sign for BSM physics in searches
 - from top perspective, SM looks like perfect model
- Still at the beginning of 8 TeV analyses
 - precision will be improved further
 - reach of the searches will increase
- Let's see what the future brings!
 - hopefully we live in a stable universe

Backup

Charge Asymmetry A_C (arXiv:1207.0065)

Origin of asymmetry:

- gg fusion symmetric
- asymmetry from $q\bar{q}$ annihilation
 - interference at NLO (born-box, ISR-FSR)
 - available NLO calculations effectively are LO asymmetry calculations

Appearance of asymmetry:

- Tevatron: proton-antiproton collider
 - large qq̄ contribution
 - forward-backward asymmetry
- LHC: proton-proton collider
 - small qq̄ contribution
 - top quarks have broader distribution
 - asymmetry $A_C = \frac{N(\Delta|y|>0) N(\Delta|y|<0)}{N(\Delta|y|>0) + N(\Delta|y|<0)}$

Measurement of asymmetry at CMS:

- $A_C = 0.004 \pm 0.010(\text{stat}) \pm 0.011(\text{syst})$
 - compatible with SM prediction

* $A_C^{SM} = 0.0115 \pm 0.0006$

Measurements of $t\bar{t} + jets$ (CMS-TOP-12-023)

Measure additional number of jets in $t\bar{t}$ events

- test of parton shower model
 - MadGraph+Pythia and POWHEG+Pythia
 - * both do quit well in describing data
 - MC@NLO+Herwig
 - * underpredicts jet multiplicity
- jets created by Herwig are presumably too soft

Vary Q^2 and matching scale in MadGraph

- test of event generator tuning
 - increasing the scales
 - slightly improves agreement with data
- scales could be too small (not significant)

