A deep cooled CCD as an alternative detecor for SHIPS

Magnus Schneide Matthias Schwarz

hamburger sternwarte

VACUUN

The detector system

The CCD3 controller

- Developed and manufactured by the Niels Bohr Institute of the University of Copenhagen
- 3rd generation CCD controller

The CCD3 controller

- Max. readout rate 100 Mhz
- Digitization 15 to 20 bit
- Read out noise < 1 e⁻
- "Programmable" FPGA (digital filtering / windowing)
- Can be customized for any CCD and optimized for each application!

SHIPS requirements

- Very low Dark current
 - \rightarrow longtime exposures
 - \rightarrow Read out noise < 1 e⁻
- High Quantum efficiency
 - $\rightarrow\,$ up to 90/95 % and more
- Very low Read out noise
 - \rightarrow Goal < 1 e⁻

The CCD

- E2V 42-40
- 2048x2048 pixel
- 13.5 µm / pixel
- Up to over 90% QE
- Back illuminated
- Very low noise output amplifiers
- DC @ -120 °C < 1 e⁻

Andor iKon-M

i.s.: http://www.andor.com/ProductDetail.aspx?ProductID=75&SeriesId=75&Page=camera

- e2V 47-10 AIMO back illuminated CCD
- Low Noise Output Amplifiers
- Read out noise about 3 e⁻ (5 kHz)
- 1024 x 1024 pixels
- 13 μ m each pixel
- Up to over 95% QE
- Digitization 16 bit
- Air cooling up to -80°C
- Water cooling up to -100°C

Matthias Schwarz

Operating requirements

- P < 10⁻⁵ mbar
 - To avoid liquid N2 boiling
 - To avoid molecules to grow on the CCD
- T < -100°C
 - Cold surface pumping
 - Getting rid of the vacuum pump

The vacuum chamber

- DN 100 tube
- Cold end flange (top)
- DN 100 CF flange for window (bottom)
- Special flange for CCD3 controller (front bottom)
- 2 DN 40 CF flanges

(i.e. for vacuum pump)

The Polycold Compact Cooler

www.ferrotec-europe.de

Inside the vacuum chamber

- Cold reservoir on the PCC cold end
- Charcoal container
- Coldfinger (heat transport from CCD to PCC)

Inside the vacuum chamber

 Temperature sensor and heater at the bottom of the CCD cold reservoir CCD cold reservoir with mounted CCD dummy

LEXI Cluster "Connecting Particles with the Cosmos"

Inside the vacuum chamber

The first (bias) test image

- T = -120°C
- Non optimized default setup

• No visible defects on the CCD

Conclusions

- The detector system works!
- Optimization of the heat transport to reach lower temperatures is in progress.
- Next step: Optimizing the CCD3 controller for different applications with the CCD 42-40.
- First astronomical (astroparticle) imaging tests will follow soon during optimization period!

... for any further questions, please contact:

magnus.schneide@hs.uni-hamburg.de

LEXI Cluster "Connecting Particles with the Cosmos"