- Motivation
- SuperKEKB / Belle II Upgrade
- DESY contributions

Current Constraints on Unitarity Triangle

• Good consistency of all measurements and their agreement with CP violation in $\mathbf{K}^0 - \overline{\mathbf{K}}^0$ mixing, ϵ_{κ} , and with SM predictions

Spectacular confirmation of CKM model as dominant source of flavour and CP violation

Consistency of Different Determinations

- "New Physics flavour problem" i.e. tension between
 - relatively low (TeV) scale required to stabilize EW scale
 - high scale needed to suppress FCNC
 - Any extension of SM must be able to preserve these features

Annual LEXI Meeting: Belle II 11.10.2012

Origin and Dynamics of Flavour ?

- While the SM describes flavour physics very accurately, it does not explain its mysteries
 - why are there three generations?
 - why does the fermion spectrum cover so many orders of magnitude?
 - why is mixing for quarks so different from that of neutrinos?
 - why is there this strong hierarchy?
 - why is the CP-violating phase of the CKM-matrix unsuppressed?

Two Frontiers to Search for New Physics

- Two complementary approaches to study shortcomings of the Standard Model and to search for so far unobserved processes and particles (i.e. New Physics). Energy frontier and intensity frontier
- Energy frontier:
 - direct search for production of unknown particles at the highest achievable energies
 - detection of "real" new particles
- Intensity frontier:
 - search for rare processes, deviations between theory predictions and experiments with ultimate precision
 - see effects of "virtual" new particles in loops

Energy versus Intensity Frontier

Fine-Tuning / Naturalness

Recent LHC results push energy scale of New Physics higher

- increased fine-tuning required for explanation of EW scale
- This, however, reduces the New Physics Flavour Problem
 - chances to see New Physics in flavour physics have in fact increased!

Hints of Deviations from SM at Intensity Frontier

B mesons sector

C mesons sector

KEKB -> SuperKEKB Goals and Prospects

 (\mathbf{fb}^{-1})

KEKB / PEP-II

- check if KM scheme of SM correct
- provide quantitative test of KM mechanism of CP violation
- CKM parameters were known well enough to make a safe prediction of required luminosity

- understand origin of masses and mixing parameters and search for New Physics
- understand origin of matter-antimatter asymmetry in the universe
- no minimum luminosity for guaranteed success

Luminosity Goals of Super Flavour Factories

Annual LEXI Meeting: Belle II 11.10.2012

Experimental Flavour Landscape 2011 - 2030

Experimental Flavour Landscape 2011 - 2030

$B^{-} \rightarrow D^{\circ} (\rightarrow K^{-} \pi^{-} \pi^{-} \pi^{-}) \pi^{-}$ Clean Environment at B-Factories

"Golden Modes" of Super B Factories

Areas where Super B Factories can provide important insight into New Physics complementary to other experiments (LHCb):

$$E_{miss}:$$

$$\mathcal{B}(B \to \tau \nu), \ \mathcal{B}(B \to X_c \tau \nu), \ \mathcal{B}(B \to h \nu \nu), \dots$$

Inclusive:

$$\mathcal{B}(B \to s\gamma), A_{CP}(B \to s\gamma), \mathcal{B}(B \to sll), \dots$$

Neutrals:

 $S(B \to K_S \pi^0 \gamma), \ S(B \to \eta' K_S), \ S(B \to K_S K_S K_S), \ \mathcal{B}(\tau \to \mu \gamma), \ \mathcal{B}(B_s \to \gamma \gamma), \ldots$

A.G. Akeroyd et al., arXiv: 1002.5012

Physics at Super B Factory

B. O'Leary et al., arXiv: 1008.1541

SuperB Progress Reports

Physics

Annual LEXI Meeting: Belle II 11.10.2012

carsten.niebuhr@desy.de

Example: Constraints on Charged Higgs from B $\rightarrow \tau \nu$

The rare decay $B^- \rightarrow \tau^- \nu_{\tau}$ is in SM mediated by the W boson

$$\frac{BR_{2HDM}}{BR_{SM}}(B \to l\nu) = \left[1 - \tan^2\beta \frac{m_b^2}{m_{H^{\pm}}^2}\right]^2$$

In some supersymmetric extensions it can also $BR_{exp}(B^+ \rightarrow \tau^+ \nu) = (1.67 \pm 0.30) \times 10^{-4}$ proceed via a charged Higgs

Prospects for Lepton Flavour Violation

Important when Msusy >> EW $\overline{\underline{\mu}}(\overline{\underline{s}})$ $Br(\tau \rightarrow 3\mu) =$

$$4 \times 10^{-7} \times \left(\frac{\left(m_{\tilde{L}}^2\right)_{32}}{\bar{m}_{\tilde{L}}^2}\right) \left(\frac{\tan\beta}{60}\right)^6 \left(\frac{100GeV}{m_A}\right)^4$$

mode	Br(τ → μγ)	$Br(\tau \rightarrow 3I)$
mSUGRA +	10 ⁻⁷	10 ⁻⁹
seesaw		
SUSY + SO(10)	10 ⁻⁸	10 ⁻¹⁰
SM + seesaw	10 ⁻⁹	10 ⁻¹⁰
Non-universal Z'	10 ⁻⁹	10 ⁻⁸
SUSY + Higgs	10 ⁻¹⁰	10 ⁻⁷

Lum.(ab⁻¹)

Nano-Beam Scheme for SuperKEKB

"Nano-Beam" scheme (P. Raimondi, DAΦNE):

Squeeze vertical beta function at the IP (β^*_y) by minimizing longitudinal size of overlap region of the two beams at the IP, which generally limits effective minimum value of β_{y*} through f_{y*} beams at the IP, which generally limits effective minimum value of β_{y*} through f_{y*} beams at the IP, which generally limits effect for a second sec €

	KEKB		SuperKEKB	
Parameter	LER	€IER	LER	HER
Beam energy [GeV]	3.5	8	4	7
Half crossing angle [mrad]	11		41.7	
Horizontal emittance [nm]	18	24	3.2	5.0
Emittance ratio [%]	0.88	0.66	0.27	0.25
Horizontal beta function at IP [mm]	1200		32	25
Vertical beta function at IP [mm]	5.9		0.27	0.31
Beam currents [A]	1.64	1.19	3.60	2.60
Beam-beam parameter	0.129	0.090	0.0886	0.0830
Luminosity $[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	2.1		80	

Reduced energy asymmetry

better beam lifetime $\tau_{\text{Touschek}} \propto \gamma^3$

- smaller Lorentz boost:
need better vertex resolution
$$\Delta z = \beta \gamma \Delta t$$

From KEKB to SuperKEKB

carsten.niebuhr@desy.de

Annual LEXI Meeting: Belle II 11.10.2012

Belle II Detector

Belle II Collaboration

20 countries, 67 institutions, ~450 collaborators

Germany second largest after Japan German contribution: Pixel Detector PXD

DESY joined Belle II in November 2011

MEMORANDUM OF UNDERSTANDING

between

the Belle II International Collaboration at the High Energy Accelerator Research Organization, KEK

High Energy Accelerator Research Organization, KEK 1-1 Oho, Tsukuba-shi Ibaraki 305-0801, Japan

the Federal Ministry of Education and Research Heinemannstr. 2, 53175 Bonn

the Deutsches Elektronen-Synchrotron Notkestraße 85, 22607 Hamburg

the Max-Planck-Gesellschaft Hofgartenstr. 8, 80539 München

p+

dep n-S

DEPFET Principle

p-channel FET on a completely depleted bulk invented at MPI, produced at HLL

A deep n-implant creates a potential minimum ^P for electrons under the gate ("internal gate")

Signal electrons accumulate in the internal gate and modulate the transistor current $(g_q \sim 400 \text{ pA/e}^-)$

Accumulated charge can be removed by a clear contact ("reset")

Depleted p-channel FET

Fully depleted:

Iarge signal, fast signal collection

Low capacitance, internal amplification low noise

Transistor on only during readout: low power

DESY Activities around Belle II PXD

SynRad Background MC

DESY Testbeam

Thermal Mock-up for VXD

Annual LEXI Meeting: Belle II 11.10.2012

CO₂ System

Slow Control & DAQ

Remote Vacuum Connection

Grid/NAF/Data Preservation

Summary

- SuperKEKB / Belle II offer very rich physics potential
 - start of physics run in 2016
 - collect 50 ab^{-1} by ≈ 2022
 - physics program complementary both to ATLAS/CMS and to LHCb
- Interesting and very challenging upgrade projects
- DESY joined Belle II in November 2011 and Belle in July 2012
 - DESY activities center around PXD project as support for German university groups
 - despite having joined relatively late DESY has already gained quite some visibility by taking over responsibilities in several important areas
 - physics analyses of Belle data just starting at DESY as preparation for Belle II analyses
 - explore feasibility of Weinberg angle measurement
 - studies of CPV/mixing in charm sector

▶ ...

Additional Material

Projected Sensitivities at SFF versus LHCb+

Observable/mode	Current	LHCb	SuperB	Belle2	LHCb upgrade	theory
	now	(2017)	(2021)	(2021)	(10 years of	now
		5 fb ⁻¹	75 ab ⁻¹	50 ab ⁻¹	running) 50 fb ⁻¹	
			au Decays			
$ au ightarrow \mu\gamma \ (imes 10^{-9})$	< 44		< 2.4	< 5.0		
$ au ightarrow e\gamma \ (imes 10^{-9})$	< 33		< 3.0	< 3.7 (est.)		
$ au ightarrow \ell \ell \ell \ (imes 10^{-10})$	< 150 – 270	< 244	< 2.3 – 8.2	< 10	< 24	
			3 _{u,d} Decays			
$BR(B \rightarrow \tau \nu) (\times 10^{-4})$	1.64 ± 0.34		0.05	0.04		1.1 ± 0.2
$BR(B \rightarrow \mu \nu) \ (\times 10^{-6})$	< 1.0		0.02	0.03		0.47 ± 0.08
$BR(B \rightarrow K^{*+} \nu \overline{\nu}) (\times 10^{-6})$	< 80		1.1	2.0		6.8 ± 1.1
$BR(B \rightarrow K^+ \nu \overline{\nu}) \ (\times 10^{-6})$	< 160		0.7	1.6		3.6 ± 0.5
$BR(B \rightarrow X_s \gamma) \ (\times 10^{-4})$	3.55 ± 0.26		0.11	0.13	0.23	3.15 ± 0.23
$A_{CP}(B \rightarrow X_{(s+d)}\gamma)$	0.060 ± 0.060		0.02	0.02		~ 10 ⁻⁹
$B \rightarrow K^* \mu^+ \mu^-$ (events)	250	5000	10-15k	7-10k	65,000	-
$BR(B \to K^* \mu^+ \mu^-) (\times 10^{-6})$	1.15 ± 0.16		0.06	0.07		1.19 ± 0.39
$B \rightarrow K^* e^+ e^-$ (events)	165	400	10-15k	7-10k	5,000	-
$BR(B\to K^*e^+e^-)\ (\times 10^{-6})$	1.09 ± 0.17		0.05	0.07		1.19 ± 0.39
$A_{FB}(B \to K^* \ell^+ \ell^-)$	0.27 ± 0.14		0.040	0.03		-0.089 ± 0.020
$B \to X_{\mathcal{S}} \ell^+ \ell^-$ (events)	280		8,600	7,000		-
$BR(B\to X_{\mathcal{S}}\ell^+\ell^-)\ (\times 10^{-6})$	3.66 ± 0.77		0.08	0.10		1.59 ± 0.11
S in $B o K^0_S \pi^0 \gamma$	-0.15 ± 0.20		0.03	0.03		-0.1 to 0.1
S in $B \to \eta' K^0$	0.59 ± 0.07		0.01	0.02		±0.015
S in $B o \phi K^0$	0.56 ± 0.17	0.15	0.02	0.03	0.03	±0.02
·			B ⁰ Decays			
$BR(B_s^0 \rightarrow \gamma \gamma) \ (\times 10^{-6})$	< 8.7		0.3	0.2 – 0.3		0.4 - 1.0
A_{SI}^{s} (×10 ⁻³)	-7.87 ± 1.96		4.			0.02 ± 0.01
			D Decays			
X Charm mixing	(0.63 ± 0.20%	0.06%	0.02%	0.04%	0.02%	~ 10 ⁻²
V	(0.75 ± 0.12)%	0.03%	0.01%	0.03%	0.01%	$\sim 10^{-2}$ (see above).
- VCP	(1.11 ± 0.22)%	0.05%	0.03%	0.05%	0.01%	$\sim 10^{-2}$ (see above).
q/p	(0.91 ± 0.17)%	10%	2.7%	3.0%	3%	$\sim 10^{-3}$ (see above).
$\arg\{q/p\}$ (°)	-10.2 ± 9.2	5.6	1.4	1.4	2.0	$\sim 10^{-3}$ (see above).
Other processes Decays						
$\sin^2 \theta_W$ at $\sqrt{s} = 10.58 \text{GeV}/c^2$			0.0002			clean

Annual LEXI Meeting: Belle II 11.10.2012

Status Lepton Flavour / Number Violation for τ's

- 48 LFV/LNV modes searched
- All limits are below 10⁻⁷, some are almost reaching 10⁻⁸

