Using Tags for Top Preselection

Marcello Barisonzi DESY

Overview

- What is the ATLAS FDR?
- The Analysis Model Forum
- Montecarlo vs. "Real Data"
- The data TAG
- TAG Analysis for Top Physics
- Conclusions

What is the ATLAS FDR?

- The ATLAS Full Dress Rehearsal is an exercise to simulate as close as possible the behaviour of data reconstruction and distribution to the GRID, with realistic commissioning physics samples
- Two phases: FDR-1 (Jan/Feb 08) and FDR-2 (Apr/May 08)
- Goal for FDR-1: production of two data samples of 0.8 pb⁻¹ each corresponding to a 10- and 1-hr run at 10³¹ & 10³² luminosity
- Goal for FDR-2: aim for 10³³ luminosity
- https://twiki.cern.ch/twiki/bin/view/Atlas/FullDressRehearsal

The Analysis Model Forum

- Last December, forum started to discuss analysis of data
- Nobody wants to use AOD files: too cumbersome, complicated, user data not supported
- Key is production of Derived Physics Data:
 - Thinning: dropping unused data (multiple jet, e, mu, tau)
 - Slimming: reduce object information (e.g. Pt but no Px,Py)
 - Skimming: skip uninteresting events
- Each Physics WG has to define its own objectives, can add proprietary data

The Analysis Model Forum (cont.)

- No official way of producing DPD, several option will be tried out at the FDR:
- AOD-- : Light version of AOD, dropping unused Containers
- AthenaROOT : POOL files readable by ROOT. Sounds promising, but it's not there yet
- Event/Top/SUSYView : used by almost everyone, hated by CERN diehards.

Montecarlo vs. "Real Data"

- MC sample analysis is like being a DJ: cut up & mix.
- Cut up the physics into individual samples, one or more for each process; simulate and reconstruct them separately
- Mix the reconstructed samples after the analysis, by applying weights proportional to the sample luminosity
- With the FDR, we get ONE sample, and weights are unknown
- We cannot even analyse the whole data sample (~2.4 Tbyte), how do we select?
- In the Real World will be even worse!

The Data TAG

- ATLAS Software has a tagging package (RecExCommon) that easies the task to select our events
- TAGs are small (~1kb/event) but quite detailed summaries of the contect of a data sample
- TAGs reside both in ROOT files and in DataBases at Tiers
- Crude analysis can be run on TAG file before full sample is analysed
- To produce DPD files, we must start selecting TAGs!

Inside the TAG

- The TAG contains many objects of interest:
 - First 6 jets in event, ordered by descending Pt
 - First 4 Electrons, 4 Muons, 2 Taus, 2 Photons, MissingEt
 - Trigger words
 - Detector Status & Data Quality
 - Luminosity block
 - Physics WG-specific TagWord (more on this later)
 - etcetera
- https://twiki.cern.ch/twiki/bin/view/Atlas/PhysicsAnalysisWorkBookTAG

TAG for Top Physics

- Basic idea: Identify a set of cuts on tags, then produce DPD only on events that pass the cuts
- Cuts should be as loose as possible to maximize acceptance
- Final user can refine cuts, for this purpose, TAG must be copied in DPD file too
- Advanced idea: use the WG-specific 32-bit TAG word (*TopWord*) to discriminate between basic event topologies

TAG for ttbar (5200) sample

- Ordered Jets seem OK
- BTagging information is present, though it's better not to use it (60% efficiency)

TAG for ttbar (5200) sample

- WARNING!
 Electron Pt is signed, to encode charge
- Something funny is happening to phi spectrum, have to investigate

TAG for ttbar (5200) sample

- Muons seem OK, though there are single high Pt muons (Reco fault?)
- Taus are sorely missed

- I identify 4 topologies:
 - fully-leptonic ttbar
 - fully-hadronic ttbar
 - semi-leptonic ttbar
 - common single top
- And I choose 4 sets of cuts

- Fully-leptonic ttbar:
 - >=2 Jets > 30 Gev
 - >=2 Leptons > 5 GeV
 - Missing Et > 20 GeV

- Fully-hadronic ttbar:
 - >=4 Jets > 40 GeV
 - >=1 Jet > 30 GeV

- Semi-leptonic ttbar:
 - >=2 Jets > 40 GeV
 - >=1 Jet > 30 GeV
 - >=1 Lepton > 5 GeV

- Common single top
 - >=2 Jets > 30 Gev
 - >=1 Leptons > 5 GeV
 - Missing Et > 20 GeV

Results

- Applying these cuts on TAGs obtained by the usual CSC data sample (13.0.30), I can predict the composition of the Top DPD data at FDR for 0.8 pb⁻¹
- Semi-leptonic topology: (ε=65%)
 240 correct events, ~30000 background (QCD, other topologies)
- Fully-hadronic topology: (ε=69%)
 205 correct events, ~120000 background events
- Common Single Top: (ε=53-66%)
 1-39 correct events, ~300000 background events
- Topologies are not mutually exclusive!

Conclusion

- By applying the logical OR of all three topologies, one can achieve ~60-70% efficiency for all channels
- Discriminating power at this level sufficient to perform some rough topology recognition
- The resulting ntuple size is less than 500k, which is manageable with the current computing facilities
- Trigger efficiencies and more detailed background studies must be included
- To be investigated: Top Mass Reconstruction at TAG Level?