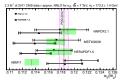
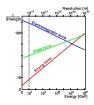

First Determination of α_S from the $t\bar{t}$ Cross Section


Sebastian Naumann-Emme

DESY, CMS

LHC Physics Discussion @ DESY, 2012-10-30

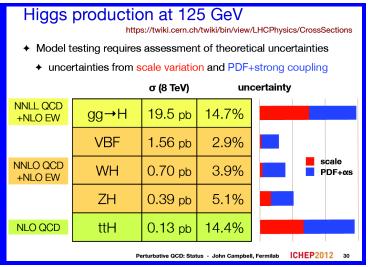


Motivation: QCD and the SM

Beside the quark masses, there is only one free parameter in the QCD Lagrangian: the strong coupling constant α_S

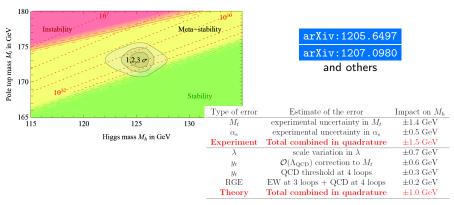
QCD predicts a functional form for the energy dependence, $\alpha_S(Q)$, but actual values have to be obtained from experiments

Determinations of α_S at different Q are fundamental measurements


Tests of the coupling at high Q are of particular interest for the validity of the Standard Model

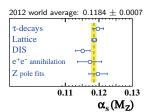
 α_S does not only have an impact on the calculations on matrix-element level, it is an important parameter also for non-perturbative computations: parton distribution functions (PDFs), parton showers

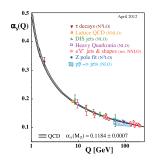
Motivation: Higgs


And $lpha_{
m S}$ contributes significant uncertainties also to other QCD predictions, e.g. for $tar{t}$

Motivation: Fate of the Universe

α_S and its uncertainty also crucial for the stability of the EW vacuum:




$$M_h \; [\mathrm{GeV}] > 129.4 + 1.4 \left(\frac{M_t \; [\mathrm{GeV}] - 173.1}{0.7}\right) - 0.5 \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0_{\mathrm{th}}$$

Motivation: Measurements of α_s

 α_{S} has been measured in a variety of processes

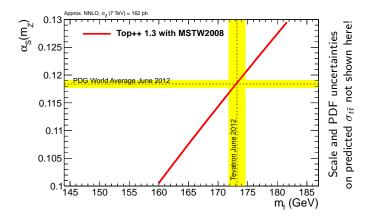
Results are typically translated assuming the validity of the $\alpha_S(Q)$ evolution and compared at $Q = m_Z$

Precision of $\alpha_S(m_Z)$ world average: 0.6%

Average dominated by low-Q data

Still only few points above 209 GeV (LEP limit): jet data up to the TeV scale but suffering from large theory uncertainties and only NLO available

 $t \bar{t}$ production occurs at $(2m_t + \text{boost}) \approx 360 \text{ GeV}$


Full NNLO for $\sigma_{t\bar{t}}$ available "soon"?!?

α_S vs. m_t (for a given $\sigma_{t\bar{t}}$)

Beside \sqrt{s} , two main parameters that determine the predicted $\sigma_{t\bar{t}}$: α_S and m_t , both currently known with \approx the same precision

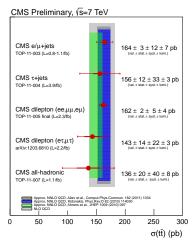
α_S vs. m_t (for a given $\sigma_{t\bar{t}}$)

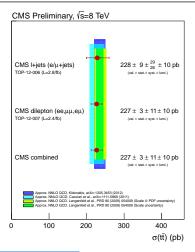
Beside \sqrt{s} , two main parameters that determine the predicted $\sigma_{t\bar{t}}$: α_S and m_t , both currently known with \approx the same precision

We can take the measured $\sigma_{t\bar{t}}$ and either . . .

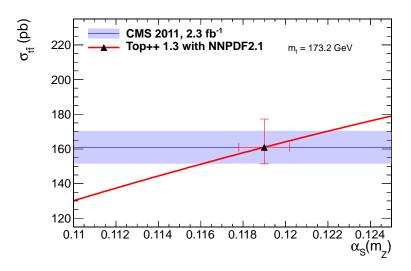
- fix α_S to extract m_t (this is what we have done last year and others had done before) or ...
- fix m_t to extract α_S (this is what we have done now for the very first time in CMS-PAS-TOP-12-022)

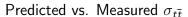
A simultaneous determination of m_t and α_S from the inclusive $\sigma_{t\bar{t}}$ fails because any variation of one of the two parameters in the predicted $\sigma_{t\bar{t}}$ can be compensated by a variation of the other


→ At some point in time, differential cross sections should do the trick!

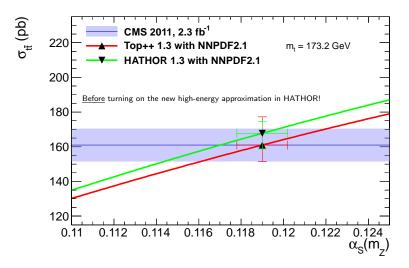

2012-10-30 S. Naumann-Emme 7/19

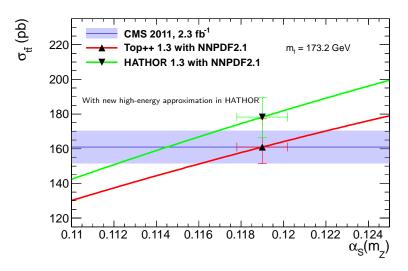
Measured $\sigma_{t\bar{t}}$

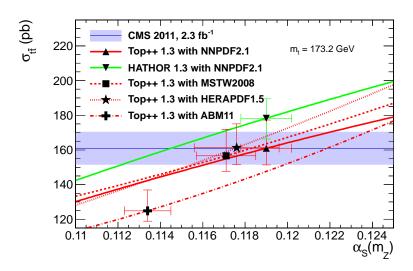


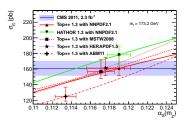


For the α_S extraction, we use the result of CMS-TOP-11-005: dileptonic channel, 2.3 fb⁻¹ at $\sqrt{s}=7$ TeV, accuracy of 4%, most precise $\sigma_{t\bar{t}}$ from the LHC so far

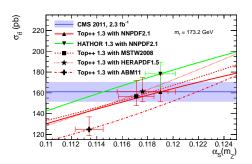








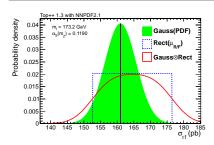
Predicted vs. Measured $\sigma_{t\bar{t}}$

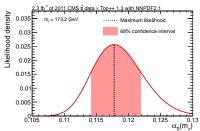

- Slope of predicted $\sigma_{t\bar{t}}$ determined by α_S evolution in the PDF set
- New high-energy approx. in HATHOR 1.3 increased prediction by $\approx 6\%$ (without this Top++ and HATHOR were much closer)
- For a given $\alpha_S(m_Z)$, only small differences seen between NNPDF, MSTW and HERAPDF while ABM yields lower $\sigma_{t\bar{t}}$ prediction

 \rightarrow reason: smaller gluon PDF in ABM

- Default ABM α_S rather small
 - ightarrow explanation: higher-twist corrections (for low-Q data) in ABM $lpha_{\mathcal{S}}$ fit

Predicted vs. Measured $\sigma_{t\bar{t}}$

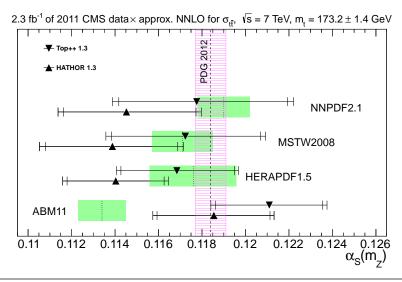

What about the α_S dependence of the measured $\sigma_{t\bar{t}}$?


- Studied α_S dependence of the MC-based acceptance corrections
- Found measured $\sigma_{t\bar{t}}$ to change by less than 1% when increasing/decreasing assumed $\alpha_S(m_Z)$ by 0.0100 from central value of 0.1180
- \rightarrow Increase uncertainty (blue bland) on measured $\sigma_{t\bar{t}}$ accordingly

α_{S} Extraction Technique

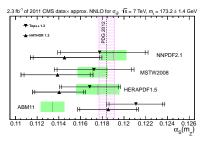
1.) Theory uncertainties (pred. $\sigma_{t\bar{t}}$): Convolve a Gaussian for the PDF uncertainty with a rectangular covering the whole range given by the variation of renormalization and factorization scale

2.) Theory \times measurement: Obtain a likelihood by folding the probability function for the predicted $\sigma_{t\bar{t}}$ with a Gaussian probability function for the


measured $\sigma_{t\bar{t}}$

$$L(\alpha_S) = \int f_{\mathrm{exp}}(\sigma|\alpha_S) \ f_{\mathrm{th}}(\sigma|\alpha_S) \ d\sigma$$

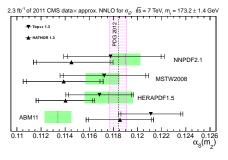
Results

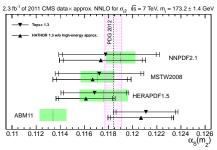


Results

		Most likely	Uncertainty	
		value	Total	From δm_t
Top++ 1.3	with NNPDF2.1	0.1178	+0.0045 -0.0039	+0.0015 -0.0015
HATHOR 1.3		0.1145	+0.0034 -0.0031	+0.0013 -0.0013
Top++ 1.3	with MSTW2008	0.1172	+0.0037 -0.0037	+0.0013 -0.0014
HATHOR 1.3		0.1139	+0.0033 -0.0034	+0.0013 -0.0013
Top++ 1.3	with HERAPDF1.5	0.1168	+0.0028 -0.0028	+0.0010 -0.0011
HATHOR 1.3		0.1140	+0.0024 -0.0024	+0.0010 -0.0010
Top++ 1.3	with ABM11	0.1211	+0.0027 -0.0027	+0.0010 -0.0010
HATHOR 1.3		0.1185	+0.0028 -0.0028	+0.0010 -0.0010

Which m_t do we use as constraint?


 No significant differences between results from Tevatron, ATLAS and CMS and between the size of their uncertainties


• Studies suggest that these MC-based massed deviate by \mathcal{O} (1 GeV) from the pole mass \curvearrowright Increased uncertainty accordingly, i.e. use total δm_t of 1.4 GeV

Results

- · Results obtained with NNPDF, MSTW, HERAPDF very similar to each other
- ullet ABM yields larger $lpha_{\mathcal{S}}$ due to smaller gluon PDF
- Can't find back the small ABM α_S (interesting because $t\bar{t}$ production should not be affected by their higher-twist corrections)
- The new high-energy approx. of HATHOR 1.3 results in 3% lower extracted $\alpha_S(m_Z)$ without this, Top++ and HATHOR almost identical

Summary and Outlook

First determination of α_S from $t\bar{t}$ production:

- Interesting energy regime for α_S measurements
- Rather competitive precision (equal or superior to results from jets)
- ullet Another example for the stringent tests of QCD possible with $tar{t}$ data
- Most complete study of α_S and PDF dependence of measured vs. predicted $t\bar{t}$ cross section so far
- Waiting for the full NNLO to resolve the current tension between different approximations

Outlook:

- Aiming at a simultaneous determination of α_S , m_t and gluon PDF from (differential) $t\bar{t}$ cross sections in addition to other data
- That would not only yield consistent results for these parameters but, at a later stage, also allow to test their running