tt Asymmetry and Top Polarization at ATLAS

Reinhild Yvonne Peters

Georg-August University Göttingen & DESY

Outline

My group

tt̄ asymmetries

Top polarization

Conclusion & Outlook

My Group

- YIG "Approaching the fundaments of physics using top quarks at the LHC"
 - Started in July 2012
 - YIG Leader: Yvonne Peters
- Post-Doc: Cécile Deterre (since September 2012)
- 1st PhD Student: Ralph Schäfer (since October 2012)
- Desy Fellow joining our team:
 Sara Borroni

Analyses we (plan to) do

- tt̄ spin correlation in dilepton
 - Just me → won't cover here
- tt̄ asymmetry in dilepton
 - Cécile's thesis topic plan to stay involved and expand
- Top quark polarization in dilepton
 - Were involved in preliminary for Top2012 in I+jets final state

tt Asymmetry

tt Production at Tevatron and LHC

- tt̄ production via strong interaction
- At Tevatron:

At LHC:

20% 7 TeV:

Baernreuther, Cakon, Mitov, PLB 710. 612 (2012)

20 times higher @LHC (7TeV):

$$\sigma = 164.6^{+11.4}_{-15.7} pb$$

tt Production at Tevatron and LHC

+ 15%

- tt̄ production via strong interaction
- At Tevatron:

At LHC:

7 TeV:

612 (2012)

Production cross section (@Tevatron): NNLO+NNLL:
$$\sigma = 7.24^{+0.23}_{-0.27} pb$$
 @ m_t=172.5GeV Baernreuther, Cakon, Mitov, PLB 710,

20 times higher @LHC (7TeV):

$$\sigma = 164.6^{+11.4}_{-15.7} pb$$

Final States in tt

$$B(t\rightarrow W^+b)=100\%$$

tt̄→W+bW-b̄: Final states are classified according to W decay

Top Pair Branching Fractions

pure hadronic:

≥6 jets (2 b-jets)

dilepton:

2 isolated leptons;

High missing E₊

from 2 neutrinos; T+T 1%

2 b-jets

Final States in tt

$$B(t\rightarrow W^+b)=100\%$$

tt̄→W+bW-b̄: Final states are classified according to W decay

pure hadronic:

≥6 jets (2 b-jets)

Top Pair Branching Fractions

Asymmetry Idea

- LO: No charge asymmetry expected
- NLO QCD: Interference between qq diagrams
 - Asymmetry in QCD:Interference of C=1 and C=-1 amplitudes are odd under $t \leftrightarrow \bar{t} \rightarrow cause asymmetry$
- Tree level and box diagrams:
 - Positive asymmetry

- Initial and final state radiation:
 - Negative asymmetry

Tevatron and LHC Difference

- Tevatron: pp̄ is CP eigenstate → pp (LHC) is not → different way to measure the effect at Tevatron and LHC
- LHC: Quarks valence quarks, antiquark always from the sea → antitop less boosted and more central than top in case of asymmetry
- LHC: Measure charge asymmetry

$$A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

$$A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

Tevatron

$$\Delta y = y_t - y_{\bar{t}}$$

 $\Delta y = y_t - y_{\bar{t}}$ $\Delta |y| = |y_t| - |y_{\bar{t}}|$

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

LHC

Tevatron Results

D0 and CDF: asymmetry larger than SM prediction has been measured

CDF:
$$A_{FR}^{t\bar{t}} = 16.2 \pm 4.7\%$$

(NLO (QCD+EW) prediction: 6.6%)

 $DØ: A_{FB}^{t\bar{t}} = 19.6 \pm 6.5\%$

CDF saw dependence on m_{..}

Measurement performed at LHC → deviation?

LHC Results dilepton

Inclusive measurements:

- $-A''=0.023\pm0.012(stat)\pm0.008(syst)$
 - MC@NLO prediction: 0.004±0.001

 $-A_c = 0.057 \pm 0.024(stat) \pm 0.015(syst)$

$$A_C^{ll} = \frac{N(\Delta |\eta| > 0) - N(\Delta |\eta| < 0)}{N(\Delta |\eta| > 0) + N(\Delta |\eta| < 0)}$$

1600 1400 1200 Norm. uncertainty 1000 800 600 400 200

ATLAS Preliminary

 $L dt = 4.7 fb^{-1}$

 $-A_c = 0.029 \pm 0.018(stat) \pm 0.014(syst)$

 $|\eta_{\scriptscriptstyle \parallel}|$ - $|\eta_{\scriptscriptstyle \parallel}|$

Systematics Atlas dilepton

Main systematic uncertainties:

	ee	еμ	μμ
Signal and background modeling			
Signal generator	0.011	0.003	0.002
ISR and FSR	0.004	0.004	0.006
Parton shower/fragmentation	0.001	0.004	0.003
PDF	<0.001	<0.001	<0.001
Z+jets	0.005	0.004	0.001
Diboson	<0.001	<0.001	<0.001
Single top	<0.001	<0.001	<0.001
Multijet background	0.014	0.002	<0.001
Detector modeling			
Jet efficiency and resolution	0.008	0.001	0.003
Jet energy scale	0.006	0.001	0.002
Muon efficiency and resolution	<0.001	0.001	0.002
Electron efficiency and resolution	0.005	0.003	<0.001
Calibration	0.019	0.002	0.004
Luminosity	0.002	<0.001	<0.001
Total	0.029	0.009	0.009

	ee	еμ	μμ
Signal and background modeling			
Signal generator	0.014	0.009	0.002
ISR and FSR	0.008	0.002	0.018
Parton shower/fragmentation	0.001	0.001	0.001
PDF	0.001	<0.001	<0.001
Z+jets	0.001	0.006	0.002
Diboson	<0.001	<0.001	<0.001
Single top	<0.001	<0.001	<0.001
Multijet background	0.012	0.010	0.001
Detector modeling			
Jet efficiency and resolution	0.007	0.001	0.005
Jet energy scale	0.003	0.002	0.006
Muon efficiency and resolution	0.004	0.003	0.005
Electron efficiency and resolution	0.013	0.006	0.002
Calibration	0.004	0.001	0.002
Luminosity	<0.001	0.001	<0.001
Total	0.028	0.017	0.021

Table 4: List of all systematic uncertainties on the lepton-based asymmetry.

able 5: List of all systematic uncertainties on the $t\bar{t}$ -based asymmetry.

Yvonne Peters 30.10.2012

LHC Results

- Results at LHC (CMS+ATLAS; I+jets and dilepton) so far compatible with SM calculation
- Preliminary result for dilepton asymmetry
 - Systematic uncertainties similar to statistical
 - Both uncertainties pretty large compared to prediction

 Many models predicting large asymmetry at the Tevatron, also predict top polarization !=0

15

Various BSM models predicting asymmetry>SM, predict also top polarization !=0

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{i,n}} = \frac{1}{2} \left(1 + \mathcal{P}_n \kappa_i \cos\theta_{i,n} \right)$$

 P_n : polarization; κ_i : spin analyzing power of decay product i;

 θ_i : angle between daughter direction in top rest frame and chosen axis (e. g. helicity: top direction in $t\bar{t}$ rest frame)

- First study done by DØ: good agreement with SM at reconstruction level
 - Reconstruction done with neutrino weighting
 - Plots are at Reco level

arXiv:1207.0364[hep-ex]

Atlas and CMS did first measurements of P_r

$$P_n = \frac{N(\cos(\theta_l^+) > 0) - N(\cos(\theta_l^+) < 0)}{N(\cos(\theta_l^+) > 0) + N(\cos(\theta_l^+) < 0)}$$

- CMS: dilepton final state
 - Reconstruction with matrix weighting technique
 - Extraction of P_n using unfolding technique

$$P_n = -0.009 \pm 0.029(stat) \pm 0.041(syst)$$

CMS PAS TOP-12-016

- Atlas: I+jets final state
 - tt̄ reconstruction using kinematic fit
 - Extraction of P_n using template fit
 - Get +1 and -1 templates by reweighting at truth level
 - Fit fraction of positive polarization ($\kappa P_n = 1-2f$)
- $f=0.470\pm0.009(stat)^{+0.023}_{-0.032}(syst)$ $\rightarrow \kappa P_n = -0.060\pm0.018(stat)^{+0.046}_{-0.064}(syst)$
- Results systematics limited (JES, top mass)
- Both CMS and Atlas results show good agreement with SM prediction

ATLAS-CONF-2012-133

Summary

- YIG just started
 - Cécile and me already having been involved in part of our analysis plans
 - Awesome team ramping up fast 8-)
- tt asymmetry: work ongoing on 7TeV analysis
 - Work on unfolding ongoing
- Top polarization:
 - Concentrate on tt̄ reconstruction studies right now
 - performing performance studies
 - What about MC? We would need MC with polarization information of the top quark