- Outline
 - E_T-Trigger Studies
 - Jet-Trigger Studies
 - CSC T₅ Note
 - Monitoring-Trigger Studies
 - Single-Top Selection Cuts
 - **Data-Production for Top Working Group**
 - Inclusive Selection Cuts for the Full Dress Rehearsal
 - **Future Plans**

Clemens & Marcello

SM

Clemens, Marcello, SM

SM

see this meris

Marcello meeting see Marcello

- E_T-Trigger Studies
 - SumET and MET are intrinsically "low quality" trigger items
 - depend strongly on detector systematics
 - easy to fake
 - despite lack of hard neutrinos in the final state, QCD is major background
 - trigger items must always be used in combination with other items

- E_T -Trigger Studies
 - low MET thresholds cannot be used, due to poor resolution and large fluctuations
 - thresholds of 50 GeV and more needed (still in combination with other items)

Turn-On of MET trigger items as LVL1

- Jet-Trigger Studies
 - several studies have been performed to test, characterise and improve the jet triggers for top events
 - jet seem to be in good shape for top selection/analyses

10000	Sample	J3	35	J45	2J4:	5	3J45	4J4	5	J60	J8	30	J170	J300
LVL1	$t\overline{t}_{lep}$	4.6.10	$^{-1}$ 4.0	6.10^{-1}	$4.5 \cdot 10^{-}$	3.9	10^{-1}	2.8.10	¹ 4.5	$\cdot 10^{-1}$	3.8.10	$^{-1}$ 2.5	$\cdot 10^{-1}$	$7.0 \cdot 10^{-2}$
LVL1	$t\bar{t}_{had}$	3.7.10	$^{-1}$ 3.	$7 \cdot 10^{-1}$	$3.7 \cdot 10^{-1}$	3.6	10^{-1}	$3.2 \cdot 10^{-}$	1 3.7	10^{-1}	3.3.10	$^{-1}$ 2.2	$\cdot 10^{-1}$	$6.3 \cdot 10^{-2}$
LVL1	QCD	1.1.10	^{⊦6} 4.:	5.10^{+5}	$1.1 \cdot 10^{+3}$	5 2.2	10+4	$6.6 \cdot 10^{+}$	$\frac{3}{7.8}$	10^{+4}	1.6.10+	^{⊦4} 3.6	·10 ⁺³	$2.4 \cdot 10^{+2}$
LVL1	W+Jet	5.5.10	-1 5.3	5.10^{-1}	5.2.10	3.8	10^{-1}	$1.2 \cdot 10^{-}$	5.1	$\cdot 10^{-1}$	3.7.10	$^{-1}$ 2.3	$\cdot 10^{-1}$	$6.6 \cdot 10^{-2}$
	Sample	J20	- I	Sample	J35	J45	2J45	3J45	4J45	J60	J80	J170	J300	J160
LVL2	$t\bar{t}_{lep}$	4.6.10	LVL1	tt_{lep}	0.999	0.998	0.971	0.853	0.600	0.972	0.820	0.542	0.151	$8.1 \cdot 10^{-2}$
LVL2	$t\overline{t}_{had}$	3.7.10	LVL1	$t\overline{t}_{had}$	1.000	1.000	0.998	0.975	0.872	0.992	0.883	0.601	0.170	$7.4 \cdot 10^{-2}$
LVL2	QCD	1.1.10	LVL1	QCD	0.059	0.024	0.006	0.001	0.000	0.004	0.001	0.000	0.000	$2.8 \cdot 10^{+2}$
LVL2	W+Jet	5.5.10	LVL1	W+Jet	0.998	0.994	0.939	0.690	0.213	0.923	0.671	0.412	0.120	$3.4 \cdot 10^{-2}$
EF	$t\bar{t}_{lep}$	4.6.10		Sample	J20k	J20a	2J20b	3J20c	4J20d	4J50	3J65	2J120	J160	$5.2 \cdot 10^{-2}$
EF	$t\overline{t}_{had}$	3.7.10	LVL2	$t\overline{t}_{lep}$	0.999	0.999	0.988	0.923	0.742	0.204	0.262	0.136	0.176	$4.8 \cdot 10^{-2}$
EF	QCD	9.4·10 ⁻	LVL2	tt_{had}	1.000	1.000	0.999	0.993	0.950	0.395	0.410	0.188	0.200	$1.3 \cdot 10^{+2}$
EF	W+Jet	5.5.10	LVL2	QCD	0.059	0.059	0.014	0.004	0.001	0.000	0.000	0.000	0.000	$5.0 \cdot 10^{-2}$
			LVL2	W+Jet		0.998	0.969	0.807	0.349	0.043	0.108	0.097	0.134	177
			EF	tt_{lep}	0.999	0.998	0.980	0.895	0.688	0.099	0.143	0.078	0.112	
			EF	tt_{had}	1.000	1.000	0.998	0.984	0.920	0.209	0.237	0.112	0.129	
			EF	QCD	0.050	0.047	0.011	0.002	0.001	0.000	0.000	0.000	0.000	
			EF	W+Jet	0.993	0.992	0.932	0.707	0.274	0.018	0.052	0.058	0.090	

TTbar_Lep

p_T threshold [GeV]

TTbar_Lep

• Jet-Trigger Studies

- CSC T₅ Note
 - deadline for first referee draft has been December 21st
 - we contributed to 5 out of approx. 13 sections (topics discussed before)
 - now in peer review

- Monitoring-Trigger Studies
 - 'efficiency' a matter of definition (using MC)
 - 'absolute' efficiency: mostly for rate determination

events selected by trigger total event number

e.g. in which fraction of events was L1_J23 fired

Abs

• 'effective' efficiency: for checking the 'quality' of a trigger item

events containing right number of object-type in question and selected by trigger events containing right number of object-type in question

events containing the object in question and selected by trigger events containing the object in question

e.g. out of the events that had 2 jets, how many passed the L1_2J23 trigger

e.g. out of the events that had 2 jets with more than 23 GeV each, how many passed the L1_2J23 trigger

Count noKin

Count

- the 'effective' efficiency should always be higher than the 'absolute' efficiency
- within the 'effective' efficiencies the latter one should be the higher one

- Monitoring-Trigger Studies
 - in real life (real data) only events selected by any trigger will be stored
 - -> need a relative measurement of the efficiency
 - -> Monitoring Trigger (J23XE50 one jet with at least 23 GeV and 50 GeV missing Energy)
 - only consider events selected by J23XE50 and get efficiencies of other items 'relative' to J23XE50
 - J23XE50 'cause it's large acceptance and constancy across signal and background

- so far study has only been done on 1000 events (TopView ntuple based on 13.0.30)
- more statistics on the way
 - -> will allow for systematic error evaluation
 - -> will of course increase accuracy (might solve some of the 'problems')

- Monitoring-Trigger Studies
 - 'absolute' efficiency at Level 1:

'direct' L1Abs / J23XE50_L1Abs

- Monitoring-Trigger Studies
 - 'effective' efficiency at Level 1:

'direct' count L1noKin / J23XE50_L1noKin

- Monitoring-Trigger Studies
 - 'effective' efficiency at Level 1:

'direct' count L1 / J23XE50_L1

- Monitoring-Trigger Studies
 - 'absolute' efficiency at Level 2:

'direct' L2Abs / J23XE50 L2Abs

- Monitoring-Trigger Studies
 - 'effective' efficiency at Level 2:

'direct' count L2noKin / J23XE50_L2noKin

- Monitoring-Trigger Studies
 - 'effective' efficiency at Level 2:

'direct' count L2 / J23XE50_L2

- Monitoring-Trigger Studies
 - 'absolute' efficiency at EventFilter:

'direct' EFAbs / J23XE50_EFAbs

- Monitoring-Trigger Studies
 - 'effective' efficiency at EventFilter:

'direct' count EFnoKin / J23XE50_EFnoKin

- Monitoring-Trigger Studies
 - 'effective' efficiency at EventFilter:

'direct' count EF / J23XE50_EF

- Monitoring-Trigger Studies
 - comparison:

- Future Plans
 - Finish started studies/projects
 - Monitoring-Trigger Study
 - Single-Top Selection Cuts
 - Data-Production for Top Working Group
 - Inclusive Selection Cuts for the Full Dress Rehearsal
 - Decide on some physics analysis topic