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High precision measurements and predictions

Higgs boson: small cross-section, huge background.

Need for accurate prediction from the theory side.

Are theoretical predictions accurate enough?

EW: coupling small, perturbative corrections to LO processes known to be
small

QCD: completely another story...

1. protons are not described directly in the field theory: PDFs and their
uncertainty

2. αs not that small, even at high energies: αs(m
2
Z) ∼ 0.1

3. in some kinematical regimes the perturbativity of QCD may be spoiled

What can we do?

1. better predictions and more accurate data may improve PDFs

2. higher order computations
(not so easy actually: NNLO is already very complicated)

3. resummation
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Factorization theorem in QCD

σ(p1, p2) =
∑
i,j

partons

∫
dx1

∫
dx2 f

(1)
i (x1, µ

2) f
(2)
j (x2, µ

2) σ̂ij(x1p1, x2p2, µ
2)

x1,2: momentum fraction carried
by the parton

σ̂ij(p̂1, p̂2): partonic cross-section
(p̂i = xipi)

f
(1,2)
i (x1,2): PDFs: parton distribution

functions, universal
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p2

z1p1

z2p2

H1

H2

H

p1

p2

z1p1

z2p2

PDFs fi(x, µ
2) are non-perturbative objects, cannot be computed in pQCD

→ they must be extracted (“measured”) from data
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Higgs production at LHC
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Higgs production: gluon-gluon fusion

Several production modes, but the dominant channel is gluon fusion

Gluon Fusion

t
t

t
H

dominant production mode
sensitive to heavy particle spectrum

R. Harlander ( BU Wuppertal ) Inclusive Higgs Cross Sections January 2012 31 / 42

The partonic cross-section starts at order α2
s:

σ̂LO(z, αs) = σ0 α
2
s δ(1− z)

where I have defined

z =
m2
H

ŝ
=

m2
H

x1x2s
,

√
ŝ = partonic c.m. energy√
s = hadronic c.m. energy

At LO, z = 1 fixed by the kinematics.
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Perturbative corrections to gg → H

The partonic cross-section can be computed in perturbation theory

σ̂(z, αs) = z σ0 α
2
s

[
δ(1− z) + αsC

(1)(z) + α2
sC

(2)(z) + α3
sC

(3)(z) + . . .
]

︸ ︷︷ ︸
coefficient function C(z, αs)

State of the art:

NLO C(1)(z):

large mt approximation [Dawson 1991; Djouadi, Spira, Zerwas 1991]

full mt dependence [Spira, Djouadi, Graudenz, Zerwas 1995]

NNLO C(2)(z):

large mt approximation [Harlander, Kilgore 2002; Anastasiou, Melnikov 2002]

finite mt as an expansion in
mH

2mt
and in (1− z) [Harlander, Ozeren 2009]

NNNLO C(3)(z):

ONGOING: large mt as an expansion in (1− z) [Anastasiou et al.]

soft and other approximations: more details later...
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Problem

Perturbative corrections are large!!
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Observed fact

The large-mt approximation works surprisingly well even for large mH .
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Figure 1: Exact K-factor normalized to the effective one. The different lines represent a
single heavy fermion (solid line) and a single heavy scalar whose mass is renormalized in
the MS (dashed line) or in the on-shell scheme (dashed-dotted line).

The expressions reported above are, for the fermionic case, in full agreement with the
known results in the literature [15, 16]. They give the exact, i.e. for any value of the
particle masses, NLO contribution and correspondingly the exact K-factor defined as the
ratio between the NLO and LO cross sections. It is interesting to compare the value of
the exact K-factor with the one that can be obtained via an improved effective theory
calculation. By the latter we mean a result in which the effective NLO cross section is
obtained by multiplying the exact LO cross section by the O(αs) corrections evaluated in
the heavy particle limit [7]. As discussed above, while for fermions the NLO contribution in
the limit of heavy mass is independent upon the definition of the renormalized mass used,
the heavy scalar NLO contribution is actually dependent on the renormalization conditions
chosen.

In Fig. 1 we plot the exact NLO K-factor normalized to the effective one as a function
of mH/mi, for the case of a single fermion (continuos line) and of a single scalar. For the
latter we consider two options: i) On-shell condition for m0 and MS renormalization of the
coupling A defined at the MS µ scale µ = m0, with A(m0) = m0 (dash-dotted line). ii)
MS renormalization both for A and m0 with µ = m0 and A(m0) = m0(µ) (dashed line).
The results presented in the figure have been obtained assuming a hadronic center-of-mass
energy

√
s = 14 TeV, using the parametrization CTEQ6M [34] to describe the partonic

content of the proton, and setting the factorization and renormalization scales equal to the
Higgs boson mass. These choices will be used also in the figures of the following sections.
From Fig. 1 it appears that in the fermion case the difference between the exact and the
effective K-factor is at most 10% and that already when mH < 2 m1/2 the difference is below
1%. Instead, in the scalar case the situation is more complicated. Both cases i) and ii)
show a spike at the opening of the mH = 2 m0 threshold. This spike is due to logarithmic

8

NLO, LHC @ 14 TeV [Bonciani, Degrassi, Vicini 2007]
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How these corrections look like? (in the large mt limit)

NLO virtual diagrams292 S. Dawson / Hi ggs boson pr oduct i on

Fi g. 5. Feynman di agr ams gi vi ng vi r t ual cont r i but i ons t o t he subpr ocess gg - Hi n t he i nf i ni t e t op- quar k
mass l i mi t .
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We must nowcomput e t he vi r t ual cont r i but i ons t o gg - - > Hwhi ch ar e f ound f r om
t he di agr ams of f i g . 5. To O( a' ) , t he coupl i ng of t he Hi ggs boson t o gl uons i n t he
Mt o, n - > x l i mi t can be f ound by not i ng t hat t he Hi ggs boson coupl es t o t he t r ace of
t he ener gy- - moment umt ensor [ 4, 14] * ,

ß( g, )

 

, ( ) ( 3 . 23)2g,

wher e . sA i s t he scal e cur r ent . The ( 1 + 8) t er mar i ses f r oma subt l et y i n t he use of
t he l ow- ener gy t heor em [ 2, 15] . Si nce t he l sl i ggs coupl i ng t o ' , z, ~avy f er mi ons i s

I t hank t l i c aut hor s of ' r ef . 121 f or poi nt i ng out my omi ssi on of ` t he ( I + 6) t er m i n t he or i gi nal
ver si on cf ` t hi s paper ,

∝ δ(1− z)

NLO real emission diagrams290 S. Dawson / Hi ggs boson pr oduct i on

Fi g. 4. Feynman di agr ams cont r i but i ng t o t he subpr ocess gg - - > gH. The dot r epr esent s t he ef f ect i ve
gl uon- Hi ggs coupl i ng i n t he i nf i ni t e t op- quar k mass l i mi t .

The coef f i ci ent of t he l og ~, 2 t er m i n ô coul d have been pr edi ct ed by r enor mal -
i zat i on gr oup ar gument s,
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boson f r om gl uon f usi on we need bot h t he r eal cont r i but i ons f r om gg - - > gHand
t he vi r t ual l oop cor r ect i ons f r om gg - > H. We bei ng wi t h t he r eal cont r i but i on
whi ch i s f ound f r omt he Feynman di agr ams of f i g. 4. The mat r i x el ement squar ed
f or gg - > gHhas been comput ed by El l i s et al . [ 12] and by Hi nchl i f f e and Novaes
[ 13] i n t he E - - > 0 l i mi t . I t i s si mpl est t o comput e t he ampl i t ude f or t he pr ocess
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non-trivial z dependence
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Soft logs

Infrared divergences in both virtual and real emission diagrams.

Soft divergences: the energy is small
(in the case of real emission, the emitted gluon is soft)

Soft divergences cancel by the Kinoshita-Lee-Nauenberg theorem.
Residual terms are the so called soft logarithms

C(z, αs) 3
[
logk(1− z)

1− z

]
+

The + symbol defines a distribution via∫ 1

0

dz [f(z)]+ g(z) =

∫ 1

0

dz f(z) [g(z)− g(1)]

Formally:

[f(z)]+ = f(z)− δ(1− z)
∫ 1

0

dx f(x)
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Another observed fact

The soft part approximates well the full result.

C(1)(z) = C
(1)
soft(z) + C

(1)
non-soft(z)

Figure 2: K-factors for Higgs production for the full NLO result and the NLO-SV, NLO-

SVC, NNLO-SV and NNLO-SVC approximations.

order corrections, and, in particular, allows us to assume that a similar situation

occurs at NNLO. As expected, the agreement between the three results improves for

larger masses.

The right-hand side of Fig. 2 shows the SV and SVC results at NNLO. Again,

the SVC band sits higher than the SV one, the ratio of the corresponding cross

sections being almost the same as the one at NLO, as shown in the inset plot. The

contribution from non-leading terms lnk(1 − z), with k < 3 (which are not under

control within the SVC approximation), is not included, but it is expected to be

numerically less important‖.

As is well known, the customary procedure (that we also are using) of varying the

scales to estimate the theoretical uncertainty can only give a lower limit on the ‘true’

uncertainty. This is well demonstrated by Fig. 2, which shows no overlap between

the LO and NLO bands. However, the NLO and NNLO bands do overlap, thus

suggesting that the perturbative expansion begins to converge from NNLO. Note

also that the size of the NNLO bands is smaller than that of the NLO bands: the

scale dependence at NNLO is smaller than at NLO.

Considering the results obtained at NLO, it is reasonable to expect the full NNLO

K-factor to lie inside the SV and SVC bands, and most probably, closer to the SVC

one. In particular, for a light Higgs boson (MH ∼< 200 GeV), this expectation would

correspond to an increase of 15 to 25% with respect to the full NLO result, i.e. a

‖We have tried to add a term ln2(1− z) with a coefficient as large as that of the term ln3(1− z),

finding only a small (about 5%) modification.

14

LHC @ 14 TeV [Catani, de Florian, Grazzini 2001]
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Connection between these facts

The two facts are not unrelated...

The dominant soft terms are mt-independent,

i.e. they are the same in the full (finite mt) result
and in the large-mt approximated result.

Then, the success of the large mt approximation can thus be justified (at
least in part) by the success of the soft approximation.
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Soft-gluon resummation

The NnLO term in the expansion of C(z, αs) contains

αns

[
logk(1− z)

1− z

]
+

, 0 ≤ k ≤ 2n− 1

due to n gluon emissions.

As z → 1 (soft limit), the soft logs become large.

When

αs log
2(1− z) ∼ O(1)

all the soft terms in the perturbative series are equally important, and
any truncation would be meaningless.

Resummation of soft-gluon logarithms

[Catani, Trentadue, NPB 327 (1989) 323] [Sterman, NPB 281 (1987) 310]
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Brief summary

We have discussed large-mt and soft approximations and soft-gluon
resummation.

Three questions:

1. when does the large-mt approximation work so good?

2. when does the soft part of the cross-section approximate well the full
result?

3. when is soft-gluon resummation actually relevant/needed?

We are going to answer these questions...

Marco Bonvini Precise determination of the Higgs production cross-section at the LHC 14



Dominance of the soft limit

Driver: soft approximation, good in the partonic soft limit z → 1
In real life, we are interested in the hadron-level cross-section.

The connection is not straightforward!

σ(τ) =

∫ 1

τ

dz

z
L
(τ
z
, µ2
)
C(z, αs(µ

2)) τ =
m2
H

s

(
z =

m2
H

ŝ

)
where I have defined the gluon luminosity

L (x, µ2) =

∫ 1

x

dy

y
g

(
x

y
, µ2

)
g(y, µ2)

The region z ∼ 1 is ALWAYS included in the integration region!
When is that region dominant?

τ ∼ 1 (hadronic threshold limit): z ∈ [τ, 1] always in the threshold region
⇒ The soft terms dominate for sure

τ � 1 (at LHC 8 TeV and mH = 125 GeV: τ ' 10−4): let’s see...
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Saddle point argument

σ(τ) =

∫ 1

τ

dz

z
L
(τ
z

)
C(z, αs)

Mellin transform:

σ(N) =

∫ 1

0

dτ τN−1 σ(τ) = L (N)C(N,αs)

Inverse Mellin transform

σ(τ) =

∫ c+i∞

c−i∞

dN

2πi
τ−NL (N)C(N,αs)

The integral is dominated by the values of N in the proximity of
the saddle point N = N0:

log
1

τ
= − d

dN
logL (N)

∣∣∣∣
N0

− d

dN
logC(N,αs)

∣∣∣∣
N0

[MB, Forte, Ridolfi, NPB 847 (2011) 93-159]

[MB, Forte, Ridolfi, PRL 109 (2012) 102002]
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Then we rephrase the questions:

1. when does the large-mt approximation work so good?

2. when does the soft part of the cross-section approximate well the full
result?

3. when is soft-gluon resummation actually relevant/needed?

⇓

1. Is the large-mt approximation good at the saddle point N0?

2. Is the soft approximation good at the saddle point N0?

3. Is soft-gluon resummation needed at the saddle point N0?

σ(N) = L (N)C(N,αs)

Hadron level kinematics mH ,
√
s (or τ) ⇒ saddle point N0
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Position of the saddle point

A unique real saddle N0 always exists.
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Note that these curves do not depend on the perturbative order.
This is due to the fact that they are mainly determined by the PDFs.
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Partonic comparison

C(N,αs) = 1 + αs C
(1)(N) + α2

s C
(2)(N) + α3

s C
(3)(N) + . . .

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10  12C
(1

) (N
) /

 C
(1

) fin
ite

 m
t(N

)

N

 0

 5

 10

 15

 20

 25

 30

C
(1

) (N
)

mH = 125 GeV

finite mt
pointlike
soft part

?
Based on all-order considerations, we can argue that

soft terms dominate for N & 2

(and, a fortiori, the large-mt approx has to be good at least in the same region)
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Example of conclusions one may draw

Assuming mH = 125 GeV

N0 ' 2.06 for LHC 7 TeV

N0 ' 2.03 for LHC 8 TeV

N0 ' 1.92 for LHC 14 TeV  1.8
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LHC large-mt soft

7 TeV very good (∼ 1%) quite good (4− 9%)
8 TeV very good (∼ 1%) quite good (4− 9%)

14 TeV good (∼ 1− 2%) not so good (5− 10%)

The larger
√
s, the worse the soft and large-mt approximations.
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Is soft-gluon resummation really needed ?

Actually no.

In N space, the loss-of-perturbativity condition becomes

αs log
2(1− z) & 1 ⇒ αs log

2N & 1

which gives, roughly,
N & 10

But the saddle point is never so large!!!

Soft-gluon resummation can just be used as a (useful!) tool to predict
higher order (soft) terms and refine the current NNLO results.
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Saddle point method: summary

Approximations: parton level

Connection parton- to hadron-level: σ(N) = L (N)C(N,αs)

The saddle point N0 determines the region which gives the dominant
contribution to the inverse Mellin transform

The saddle point is independent on the perturbative order and on other
details: property of the considered subprocess, determined by PDFs

Based on all-order considerations, we can argue that soft terms dominate in
the region N & 2

Soft-gluon resummation never needed, but possibly useful

The larger the collider energy
√
s, the smaller the saddle point N0, the

worse the soft approximation

What can we do when N0 . 2?
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Singularity structure in N space

C(N,αs) = 1 + αsC
(1)(N) + . . .
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Singularity structure in N space: idea

Once we know the dominant singularities in N space (N = 1, N →∞)
we have a good control of the physical region 1 < N <∞.

Observations:

the limit N → 1 doesn’t commute with the limit mt →∞

Singularity in N = 1 controlled by BFKL resummation

BFKL resummation affects PDF evolution
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GLAP evolution equations

Let’s consider only gluons:

µ2 d

dµ2
g(x, µ2) =

∫ 1

x

dz

z
P
(x
z
, αs(µ

2)
)
g(z, µ2)

or, in Mellin space,

µ2 d

dµ2
g(N,µ2) = γ(N,αs(µ

2)) g(N,µ2)

P and γ are the Altarelli-Parisi splitting-function and
anomalous-dimensions, respectively, related by

γ(N,αs(µ
2)) =

∫ 1

0

dxxN−1P (x, αs(µ
2))

and describe the splitting of a gluon into two gluons, one with fraction x
of the initial gluon momentum.
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Small-x logarithms

P (x, αs(µ
2)) has a perturbative expansion

P (x, αs(µ
2)) = αs

[
P (0)(x) + αs P

(1)(x) + α2
s P

(2)(x) + . . .
]

At small x, it can be shown that the dominant terms are of the form

αk+1
s

logj x

x
, 0 ≤ j ≤ k

(small-x or high-energy or BFKL logarithms) or, in Mellin space,

αk+1
s

1

(N − 1)j
, 0 ≤ j ≤ k + 1

When

αs log
1

x
∼ O(1) ⇔ αs

N − 1
∼ O(1)

resummation of these terms is needed.
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Small-x resummation

The anomalous dimension γ(N,αs) can be resummed by combining
GLAP equations with BFKL equations.
[Altarelli, Ball, Forte, NPB 742 (2006) 1-40]

What about coefficient functions?

It can be shown that the resummation of the leading small-N singularity
of the coefficient function C(N,αs) can be obtained from the resummed
gluon anomalous dimension γ(N,αs)

[Catani, Hautmann, NPB 427 (1994) 475-524]

[Altarelli, Ball, Forte, NPB 799 (2008) 199-240]

We have now the tools to build an approximate Higgs coefficient function
at higher orders.
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Higgs coefficient function at order α3
s

C(N,αs) = 1 + αs C
(1)(N) + α2

s C
(2)(N) + α3

s C
(3)(N) + . . .
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[Ball, MB, Forte, Marzani, Ridolfi (work in progress)]
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N3LO prediction for Higgs production

[Moch, Vogt, PLB 631 (2005) 48-57]: soft only
[Ball, MB, Forte, Marzani, Ridolfi (work in progress)]: soft and small-N
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Conclusions

Motivations

precise phenomenology at LHC requires accurate predictions

Higgs production at the LHC

is the large mt approximation good?
is the soft approximation good?
is soft-gluon resummation needed?

Results

saddle-point analysis:

relates the dominant partonic region to hadron kinematics
allows to establish when the approximations are good
shows that soft-gluon resummation is never really needed
hints that small-x (BFKL) resummation may be relevant at LHC

Approximate prediction for Higgs cross-section at N3LO using both
soft and small-z terms
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Backup slides
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Threshold resummation for Higgs production

LHC @ 14 TeV

Figure 8: Fixed-order and resummed K-factors for Higgs production at the LHC.

The impact of higher-order corrections is sometimes presented through the K-factors, defined
as the ratio of the cross section evaluated at each corresponding order over the LO result. The
K-factors are shown in Fig. 8, where the bands are obtained, as in Sect. 4.1, by varying the scales
µR and µF (simultaneously and independently) in the range 0.5MH ≤ µF , µR ≤ 2MH , with the
constraint 0.5 ≤ µF/µR ≤ 2. The LO result that normalizes the K-factors is computed at the
default scale MH in all cases. We see that the effect of the higher-order corrections increases with
MH . We also see that the soft-gluon resummation effects are more important at higher values of
MH . This is expected, since by increasing MH we are closer to the hadronic threshold, where soft-
gluon effects are larger. When MH increases, the scale dependence after resummation is smaller
than at the corresponding fixed orders. In the case of a light Higgs boson (MH ∼< 200 GeV), the
NNLO K-factor is about 2.1–2.2, which corresponds to an increase of about 20% with respect to
the NLO K-factor. In this low-mass range, the effects of resummation are also moderate: at NNLL
accuracy the central value of the cross section increases by about 6% with respect to NNLO.

In Fig. 9 we plot the NNLO and NNLL cross sections, with the corresponding scale-dependence
bands (computed as in Fig. 8), in the range MH =100–300 GeV. The corresponding numerical
results are given in Table 1, where σmin, σmax and σref correspond to the minimum, maximum and
central values in the bands.

5.3 Tevatron

Here we study the phenomenological impact of soft-gluon resummation on the production of the
SM Higgs boson at the Tevatron Run II.

As in the previous subsection, we show in Fig. 10 the scale dependence of the fixed-order and

24

[Catani, De Florain, Grazzini, Nason, 2003]
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Saddle point: a closer look

Saddle point: log
1

τ
= − d

dN
logL (N)− d

dN
logC(N,αs)

 0
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 0  1  2  3  4  5  6  7

lo
g(

1/
τ)

N

NNLO

large mt limit

τ = 0.001

τ = 0.0001

τ = 0.00001

luminosity and C
luminosity only

C only

N0 depends essentially on L (N) only, and mostly on its small-N behaviour.
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Small-x resummation (1)

Resummation of such logarithms is performed combining GLAP and BFKL
evolution equations, which describe the evolution of the gluon PDF g(x, µ2)
wrt µ2 and x respectively

µ2 d

dµ2
g(x, µ2) =

∫ 1

x

dz

z
P
(x
z
, αs(µ

2)
)
g(z, µ2)

−x d

dx
g(x, µ2) =

∫ ∞
0

dν2

ν2
K

(
µ2

ν2
, αs

)
g(x, ν2)

The BFKL equation is valid at small-x only.
Taking a double Mellin transform we get

[M − γ(N,αs)] g(N,M) = F0(N)

[N − 1− χ(M,αs)] g(N,M) = F̃0(M)

where χ(M,αs) is the Mellin transform of K(ν2, αs).
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Small-x resummation (2)

[M − γ(N,αs)] g(N,M) = F0(N)

[N − 1− χ(M,αs)] g(N,M) = F̃0(M)

These two solutions must coincide in the region where they are both valid

N ∼ 1, M ∼ 0

This brings to the duality relation

χ (γ(N,αs), αs) = N − 1 ↔ γ (χ(M,αs), αs) =M

At LO, χ(M,αs) = αsχ0(M) and then

χ0 (γ(N,αs)) =
N − 1

αs
→ γ(N,αs) = χ−10

(
N − 1

αs

)
resums all powers in

αs
N − 1

!!!
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Discussion on what is SOFT (1)

In z-space: Dk(z) =
[
logk(1−z)

1−z

]
+

2D1(N) =

= ψ2
0(N)− ψ1(N) + 2γψ0(N) + ζ2 + γ2

[
log(1− z)

1− z

]
+

' ψ2
0(N) + 2γψ0(N) + ζ2 + γ2

[
log 1−z√

z

1− z

]′
+

=

[
log(1− z)

1− z

]
+

− log
√
z

1− z

' log2
1

N − 1
2

+ 2γ log
1

N − 1
2

+ ζ2 + γ2 1√
z

[
log log 1

z

log 1
z

]
+

+ (ζ2 + γ2)δ(1− z)

' log2
1

N
+ 2γ log

1

N
+ ζ2 + γ2

[
log log 1

z

log 1
z

]
+

+ (ζ2 + γ2)δ(1− z)

' ψ2
0(N + 1) + 2γψ0(N + 1) + ζ2 + γ2 z

[
log 1−z√

z

1− z

]′
+

The last option allows to include all the terms αn
s log2n−1(1− z) in the soft terms

(equivalent to the collinear improvement of [Krämer, Laenen, Spira 1997], [Catani, de

Florian, Grazzini 2001], [Catani, de Florian, Grazzini, Nason 2003])
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Discussion on what is SOFT (2)

Dk =

[
logk(1− z)

1− z

]
+

D̃k =

 logk 1−z√
z

1− z

′
+

Dlog
k =

[
logk log 1

z

log 1
z

]
+

+ ckδ(1− z)
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