A Fast Track towards the Higgs Spin and Parity Paper Seminar

Christian Gumpert

IKTP, TU Dresden

11. October 2012

TECHNISCHE UNIVERSITÄT DRESDEN

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

arxiv:1208.6002 [hep-ph]

A Fast Track towards the 'Higgs' Spin and Parity

John Ellis,^{1,2} Dae Sung Hwang,³ Verónica Sanz,^{2,4} and Tevong You^{5,2}

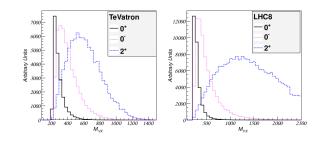
 ¹Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, Strand, London, UK
²Theory Division, Physics Department, CERN, CH-1211 Geneva 23, Switzerland
³Department of Physics, Sejong University, Seoul 143747, South Korea
⁴Department of Physics and Astronomy, York University, Toronto, ON, Canada, M3J 1P3
⁵Theoretical Particle Physics and Cosmology Group, Physics Department, Kings College London, Strand, London, UK (Dated: August 30, 2012)

Content of the paper

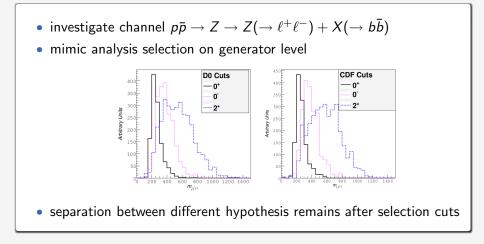
- 1 introduction to the recently discovered boson
- 2 technical setup for different J^P assignments
- **3** definition of observables sensitiv to the J^P configuration
- 4 overview of related data analyses at the LHC and Tevatron
- **(5)** estimation of sensitivity to J^P state by simulating experimental event selections

Introduction

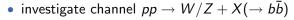
Facts on the new boson

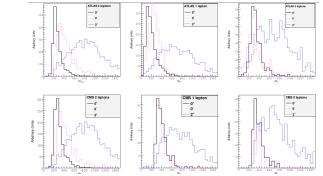

- mass around 126GeV
- decay into a pair of on-shell photons
- \Rightarrow spin 1 is already excluded

Implementation overview


- investigated J^P configurations: $0^+, 0^-, 2^-$
- implemented pseudo-scalar couplings in MADGRAPH and FEYNRULES
- $\bullet\,$ graviton-like couplings implemented in the $\rm HELAS$ library
- distributions for different scenarios generated with $\rm MADGRAPH$ and $\rm PYTHIA$ without any detector simulation
- fast detector simulations are done with $\operatorname{DelPHES}$

Proposed observable


- suggestions: look at the production of the new boson X via radiation off a vector boson
- invariant boson vector boson mass m_{VX} is sensitive to the spin and parity of the boson
- rise of the cross section at the production threshold different for different J^P configurations


Simulating Tevatron analyses

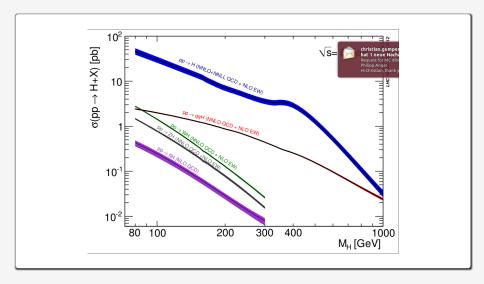
Simulating LHC analyses

• use transverse masses in case of neutrinos in the final state

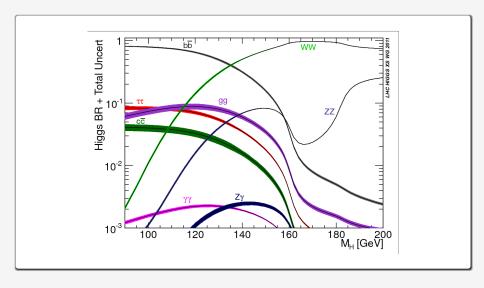
Overview of results

- estimating separation significance using toy experiments
- neglect other experimental backgrounds and systematic uncertainties

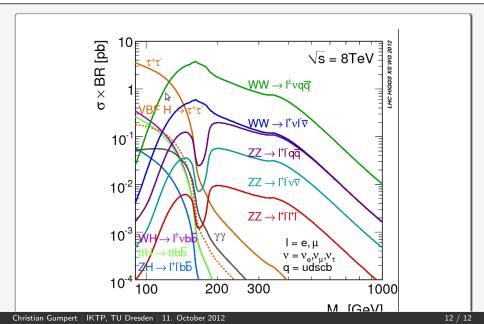
Experiment	Category	Hypothesis A	Hypothesis B	Significance in σ
CDF	01	0^{+}	$2^+(0^-)$	3.7 (1.3)
	11	0^{+}	$2^+(0^-)$	2.5 (1.0)
	21	0^{+}	$2^+(0^-)$	1.4 (0.78)
	Combined	0^{+}	$2^+(0^-)$	4.8 (1.6)
D0	01	0^{+}	$2^+(0^-)$	3.5 (1.2)
	21	0^{+}	$2^+(0^-)$	1.8 (1.2)
	Combined	0^{+}	$2^+(0^-)$	4.0 (1.6)
ATLAS	21	0^{+}	$2^+(0^-)$	2.4 (1.1)
CMS	21	0^{+}	$2^+(0^-)$	2.3 (0.70)


Summary and Discussion

- investigate production of new boson via radiation off a vector boson
- \Rightarrow invariant mass m_{VX} is sensitiv to spin and parity of the new boson
 - discrimination power larger for Tevatron experiments


Discussion

questions, comments, thoughts


Higgs boson production at the LHC

Higgs boson branching ratios

Higgs boson production times branching ratios

