Vector Boson Scattering at the LHC

Christian Gumpert Supervisors: M. Kobel, M. zur Nedden

IKTP, TU Dresden

10. October 2012

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Outline

- Motivation
- Categorisation of Processes for the VVjj Final State

2 The $\ell^{\pm} \nu \ell^{\pm} \nu j j$ Final State

- Goals
- Event Topology
- Background processes
- Plots on Current Status
- Interference between EW and QCD Processes

Summary and Outlook

Outline

- Motivation
- Categorisation of Processes for the VVjj Final State

2 The $\ell^{\pm} \nu \ell^{\pm} \nu j j$ Final State

- Goals
- Event Topology
- Background processes
- Rubts on Current Status
- Interference between EW and QCD Processes

3 Summary and Outlook

Motivation

Theory

- vector boson scattering (VBS) is intimately related to nature of electroweak symmetry breaking (EWSB)
- mechanism of EWSB must regulate $\sigma(V_L V_L \rightarrow V_L V_L)$ at high energies
- VBS is sensitive to BSM physics, e.g. anomalous quartic gauge couplings, heavy resonances

Open quests

- VBS not yet observed experimentally
- \Rightarrow measure its cross section (\Rightarrow limits on aQGC)
 - Is the recently discovered boson the SM Higgs boson?
- \Rightarrow check its contribution to VBS

 $W^{\pm}W^{\pm}$ scattering | Introduction | Categorisation of Processes for the VVjj Final State

Vector Boson Scattering at the LHC

all those diagrams contribute to the final state VVjj and are $\mathcal{O}(\alpha_W^4)$

Categorisation of processes with VVjj signature

Categories

• VBS and other EW diagrams are not completely separable in a gauge invariant way

$$\begin{array}{l} \left. \begin{array}{l} \mathsf{VBS} \\ \mathsf{other \ EW} \end{array} \right\} = \mathcal{O}(\alpha_W^4) \quad (\text{referred to as \ EW \ processes}) \\ \\ \mathsf{QCD} = \mathcal{O}(\alpha_W^2 \alpha_s^2) \quad (\text{referred to as \ QCD \ processes}) \end{array}$$

Why do we pick the same-sign $W^{\pm}W^{\pm}$ channel?

- LHC is a hadron collider \Rightarrow consider only leptonic final states
- \Rightarrow 5 different final states

final state	VV	$\sigma_{\rm EW}$ [fb]	$\sigma_{\rm QCD}$ [fb]
$\ell^{\pm} \nu \ell'^{\pm} \nu' j j$	$W^{\pm}W^{\pm}$	21	20
$\ell^{\mp} u \ell'^{\pm} u' j j$	$W^{\mp}W^{\pm}$	96	1940
$\ell'^{\pm}\nu'\ell^{\pm}\ell^{\mp}jj$	$W^{\pm}Z$	16	502
$\ell^{\pm}\ell^{\mp} u u jj$	ZZ	5	116
$\ell^{\pm}\ell^{\mp}\ell'^{\pm}\ell'^{\mp}jj$	ZZ	1	40

- $W^{\pm}W^{\pm}$ has best σ_{EW} to σ_{QCD} ratio
- also small background from other SM processes
- $W^{\pm}Z$ also promising due to even smaller background from other SM processes

What are our goals?

Long-term goals

- establish first significant observation of VBS
- \Rightarrow will require combination of several channels
 - measurement of $\sigma_{\rm EW}$
- \Rightarrow requires understanding of $\sigma_{\sf QCD}$ (and interference effects)
 - setting limits on BSM physics (anomalous quartic gauge couplings)

Short-term (Moriond 2013)

- measurement of $\sigma_{\rm EW+QCD}$ in the channels $W^\pm W^\pm$ and $W^\pm Z$
- (interpret the result in terms how significant we observe the EW process)
- (set limits on aQGC)

VBS Event Topology

- two central leptons (1,2)
- two forward jets (3,4) which are separated in η and have large m_{jj}
- missing transverse energy due to the two neutrinos
- $W^{\pm}W^{\pm}$ scattering: leptons carry same electric charge

 $W^{\pm}W^{\pm}$ scattering | The $\ell^{\pm}\nu\ell^{\pm}\nu_{jj}$ Final State | Background processes

Backgrounds to the $\ell^{\pm}\nu\ell'^{\pm}\nu'jj$ Final State

- no irreducible background due to same-sign lepton pair
- $\Rightarrow\,$ contributions only from detector effects
 - **1** charge mis-reconstruction: $\mathcal{O}(0.3\%)$ for electrons
 - \Rightarrow Z+jets, $t\bar{t}$, $W^{\pm}W^{\mp}$ scattering
 - 2 mis-identification of jets as leptons
 - \Rightarrow W+jets, $t\bar{t}$, single top
 - 3 inefficiencies in lepton identification

$$\Rightarrow W^{\pm}Z, ZZ, Z\gamma^*$$

4 asymmetric photon conversions

$$\Rightarrow W\gamma^*$$

- 6 double parton interactions
- most effects are small but due to the tiny signal cross section relevant for this analysis
- can not rely on correct modelling of all detector effects in simulated data ⇒ data-driven background estimates (even more) crucial

ment Status

VBS W[±]W[±] Scattering

P. Anger, C. Gumpert, M. Kobel, F. Socher, U. Schnoor, A. Vest

Coming March 2013

An ATLAS Production

Interference between EW and QCD processes

- final goal: measure $\sigma_{\rm EW}$ for the VVjj final state
- in nature we will always measure the coherent sum of purely electroweak diagrams and diagrams containing QCD vertices

$$\sigma_{\rm EW+QCD} = \sigma_{\rm EW} + \sigma_{\rm QCD} + \sigma_{\rm INT}$$
$$= \sigma_{\rm EW} + \sigma_{\rm QCD} \left(1 + \frac{\sigma_{\rm INT}}{\sigma_{\rm QCD}} \right)$$

- How large is the contribution from the interference to the total cross section?
 - in a general phase space
 - in a VBS enhanced phase space
- How does the interference affect differential distributions?
- Can we absorbe interference contributions in the QCD sample using (simple) scaling factors $(1 + \varepsilon)$?

Datasets used

- consider process $pp
 ightarrow e^+
 u_e \mu^+
 u_\mu jj$
- use ${\rm SHERPA}$ to generate samples for the categories EW, QCD and EW+QCD separately
- $\Rightarrow \sigma_{\text{INT}} = \sigma_{\text{EW}+\text{QCD}} \sigma_{\text{EW}} \sigma_{\text{QCD}}$
 - two different phase space definitions:

	general	VBS
$\begin{array}{c} \eta_{\ell} \\ \rho_{T,\ell} \\ \eta_j \\ \rho_{T,j} \\ m_{jj} \\ \Delta\eta_{jj} \\ \eta_{j1} \times \eta_{j2} \\ \zeta \\ E_{T,\text{miss}} \\ m_{\ell\ell} \end{array}$	<pre>≤ 6 ≥ 15GeV ≤ 6 ≥ 15GeV ≥ 15GeV</pre>	$ \leq 2.5 \\ \geq 20 GeV \\ \leq 4.5 \\ \geq 30 GeV \\ \geq 500 GeV \\ \geq 2.4 \\ < 0 \\ > -0.5 \\ > 40 GeV \\ > 20 GeV $

Invariant Mass of the Two Tagging Jets

η Separation of the Two Tagging Jets

Comparison of Total Cross Sections

σ in <i>fb</i>	general	VBS
$\sigma_{\rm EW+QCD}$	$4.63 \pm 0.005 \\ 2.21 \pm 0.002$	$\begin{array}{c} 0.707 \pm 0.002 \\ 0.616 \pm 0.001 \end{array}$
$\sigma_{\sf EW}$ $\sigma_{\sf QCD}$	2.21 ± 0.002 1.97 ± 0.002	$\begin{array}{c} 0.010 \pm 0.001 \\ 0.062 \pm 0.0003 \end{array}$
σ_{INT}	0.454 ± 0.006	0.029 ± 0.002
$\sigma_{\rm QCD} + \sigma_{\rm INT}$	2.43 ± 0.005	0.091 ± 0.002
$\sigma_{QCD}(\Delta\eta_{jj})$	2.42 ± 0.002	0.072 ± 0.0004
$\sigma_{QCD}(m_{jj})$	2.43 ± 0.002	0.087 ± 0.0005
$\sigma_{QCD}(m_{jj}\otimes\Delta\eta_{jj})$	2.43 ± 0.002	0.081 ± 0.0005

Summary

Conclusion

- observation/measurement of VBS is very important to understand the mechanism of $\ensuremath{\mathsf{EWSB}}$
- $W^{\pm}W^{\pm}$ most promising for observation of the EW process
- contribution from interference in VBS phase space is $\leq 5\%$

Outlook

- low signal cross sections and difficult background estimation
- \Rightarrow expect only sensitivity to $\sigma_{\rm EW+QCD}$ in the $W^\pm W^\pm$ and $W^\pm Z$ channels for Moriond 2013
- \Rightarrow world's first limits on aQGCs
 - analysis of/combination with other channels during the shut down
- \Rightarrow improve limits on aQGCs, observation of the EW process

Backup

$W^{\pm}W^{\pm}$ scattering

The ATLAS detector

