Vector Boson Scattering at the LHC

Christian Gumpert
Supervisors: M. Kobel, M. zur Nedden

IKTP, TU Dresden

10. October 2012

GEFÖRDERT VOM

Bundesministerium
für Bildung und Forschung

Outline

(1) Introduction

- Motivation
- Categorisation of Processes for the $V V_{j j}$ Final State
(2) The $\ell^{ \pm} \nu \ell^{ \pm} \nu j j$ Final State
- Goals
- Event Topology
- Background processes
- Plots on Current Status
- Interference between EW and QCD Processes
(3) Summary and Outlook

Outline

(1) Introduction

- Motivation
- Categorisation of Processes for the $V V_{j j}$ Final State
(2) The $\ell^{ \pm} \nu \ell^{ \pm} \nu j j$ Final State
- Goals
- Event Topology
- Backgrownd processes
- Rubtron Current Status
- Interference between EW and QCD Processes
(3) Summary and Outlook

Motivation

Theory

- vector boson scattering (VBS) is intimately related to nature of electroweak symmetry breaking (EWSB)
- mechanism of EWSB must regulate $\sigma\left(V_{L} V_{L} \rightarrow V_{L} V_{L}\right)$ at high energies
- VBS is sensitive to BSM physics, e.g. anomalous quartic gauge couplings, heavy resonances

Open quests

- VBS not yet observed experimentally
\Rightarrow measure its cross section (\Rightarrow limits on aQGC)
- Is the recently discovered boson the SM Higgs boson?
\Rightarrow check its contribution to VBS

Vector Boson Scattering at the LHC

VBS diagrams
 with

self-coupling vertices

Higgs contributions
VBS final state is $V V_{j j}$

Other pure EW diagrams with same final state

all those diagrams contribute to the final state $V V_{j j}$ and are $\mathcal{O}\left(\alpha_{W}^{4}\right)$

Categorisation of processes with $V V_{j j}$ signature

Possible diagrams for $V V_{j j}$ final state with QCD vertices

Categories

- VBS and other EW diagrams are not completely separable in a gauge invariant way

$$
\begin{aligned}
\left.\begin{array}{c}
\mathrm{VBS} \\
\text { other EW }
\end{array}\right\} & =\mathcal{O}\left(\alpha_{W}^{4}\right) \quad \text { (referred to as EW processes) } \\
\mathrm{QCD} & =\mathcal{O}\left(\alpha_{w}^{2} \alpha_{s}^{2}\right) \quad \text { (referred to as QCD processes) }
\end{aligned}
$$

Why do we pick the same-sign $W^{ \pm} W^{ \pm}$channel?

- LHC is a hadron collider \Rightarrow consider only leptonic final states
$\Rightarrow 5$ different final states

final state	VV	$\sigma_{\text {EW }}[\mathrm{fb}]$	$\sigma_{\mathrm{QCD}}[\mathrm{fb}]$
$\ell^{ \pm} \nu \ell^{\prime \pm} \nu^{\prime} j j$	$W^{ \pm} W^{ \pm}$	21	20
$\ell^{\mp} \nu \ell^{\prime \pm} \nu^{\prime} j j$	$W^{\mp} W^{ \pm}$	96	1940
$\ell^{\prime \pm} \nu^{\prime} \ell^{ \pm} \ell^{\mp} j j$	$W^{ \pm} Z$	16	502
$\ell^{ \pm} \ell^{\mp} \nu \nu j j$	$Z Z$	5	116
$\ell^{ \pm} \ell^{\mp} \ell^{\prime \pm} \ell^{\prime \mp} j j$	$Z Z$	1	40

- $W^{ \pm} W^{ \pm}$has best $\sigma_{\text {EW }}$ to σ_{QCD} ratio
- also small background from other SM processes
- $W^{ \pm} Z$ also promising due to even smaller background from other SM processes

What are our goals?

Long-term goals

- establish first significant observation of VBS
\Rightarrow will require combination of several channels
- measurement of σ_{EW}
\Rightarrow requires understanding of σ_{QCD} (and interference effects)
- setting limits on BSM physics (anomalous quartic gauge couplings)

Short-term (Moriond 2013)

- measurement of $\sigma_{\text {EW }+ \text { QCD }}$ in the channels $W^{ \pm} W^{ \pm}$and $W^{ \pm} Z$
- (interpret the result in terms how significant we observe the EW process)
- (set limits on aQGC)

VBS Event Topology

- two central leptons $(1,2)$
- two forward jets $(3,4)$ which are separated in η and have large $m_{j j}$
- missing transverse energy due to the two neutrinos
- $W^{ \pm} W^{ \pm}$scattering: leptons carry same electric charge

Backgrounds to the $\ell^{ \pm} \nu \ell^{\prime \pm} \nu^{\prime} j j$ Final State

- no irreducible background due to same-sign lepton pair
\Rightarrow contributions only from detector effects
(1) charge mis-reconstruction: $\mathcal{O}(0.3 \%)$ for electrons
$\Rightarrow \mathrm{Z}+$ jets, $t \bar{t}, W^{ \pm} W^{\mp}$ scattering
(2) mis-identification of jets as leptons
$\Rightarrow \mathrm{W}+$ jets, $t \bar{t}$, single top
(3) inefficiencies in lepton identification
$\Rightarrow W^{ \pm} Z, Z Z, Z \gamma^{*}$
(4) asymmetric photon conversions
$\Rightarrow W \gamma^{*}$
(5) double parton interactions
- most effects are small but due to the tiny signal cross section relevant for this analysis
- can not rely on correct modelling of all detector effects in simulated data \Rightarrow data-driven background estimates (even more) crucial

VBS $W^{ \pm} W^{ \pm}$Scattering

P. Anger, C. Gumpert, M. Kobel, F. Socher, U. Schnoor, A. Vest

Coming March 2013
An ATLAS Production

Interference between EW and QCD processes

- final goal: measure σ_{EW} for the $V V_{j j}$ final state
- in nature we will always measure the coherent sum of purely electroweak diagrams and diagrams containing QCD vertices

$$
\begin{aligned}
\sigma_{\mathrm{EW}+\mathrm{QCD}} & =\sigma_{\mathrm{EW}}+\sigma_{\mathrm{QCD}}+\sigma_{\mathrm{INT}} \\
& =\sigma_{\mathrm{EW}}+\sigma_{\mathrm{QCD}}(1+\underbrace{\frac{\sigma_{\mathrm{INT}}}{\sigma_{\mathrm{QCD}}}}_{\varepsilon})
\end{aligned}
$$

- How large is the contribution from the interference to the total cross section?
- in a general phase space
- in a VBS enhanced phase space
- How does the interference affect differential distributions?
- Can we absorbe interference contributions in the QCD sample using (simple) scaling factors $(1+\varepsilon)$?

Datasets used

- consider process pp $\rightarrow e^{+} \nu_{e} \mu^{+} \nu_{\mu j} j$
- use Sherpa to generate samples for the categories EW, QCD and EW+QCD separately
$\Rightarrow \sigma_{\mathrm{INT}}=\sigma_{\mathrm{EW}+\mathrm{QCD}}-\sigma_{\mathrm{EW}}-\sigma_{\mathrm{QCD}}$
- two different phase space definitions:

	general	VBS
$\left\|\eta_{\ell}\right\|$	≤ 6	≤ 2.5
$p_{T, \ell}$	$\geq 15 \mathrm{GeV}$	$\geq 20 \mathrm{GeV}$
$\left\|\eta_{j}\right\|$	≤ 6	≤ 4.5
$p_{T, j}$	$\geq 15 \mathrm{GeV}$	$\geq 30 \mathrm{GeV}$
$m_{j j}$	$\geq 150 \mathrm{GeV}$	$\geq 500 \mathrm{GeV}$
$\left\|\Delta \eta_{j j}\right\|$	-	≥ 2.4
$\eta_{j 1} \times \eta_{j 2}$	-	<0
ζ	-	>-0.5
$E_{T, \text { miss }}$	-	$>40 \mathrm{GeV}$
$m_{\ell \ell}$	-	$>20 \mathrm{GeV}$

Invariant Mass of the Two Tagging Jets

η Separation of the Two Tagging Jets

Comparison of Total Cross Sections

σ in $f b$	general	VBS
$\sigma_{\mathrm{EW}+\mathrm{QCD}}$	4.63 ± 0.005	0.707 ± 0.002
σ_{EW}	2.21 ± 0.002	0.616 ± 0.001
σ_{QCD}	1.97 ± 0.002	0.062 ± 0.0003
σ_{INT}	0.454 ± 0.006	0.029 ± 0.002
$\sigma_{\mathrm{QCD}}+\sigma_{\mathrm{INT}}$	2.43 ± 0.005	0.091 ± 0.002
$\sigma_{\mathrm{QCD}}\left(\Delta \eta_{j j}\right)$	2.42 ± 0.002	0.072 ± 0.0004
$\sigma_{\mathrm{QCD}}\left(m_{j j}\right)$	2.43 ± 0.002	0.087 ± 0.0005
$\sigma_{\mathrm{QCD}}\left(m_{j j} \otimes \Delta \eta_{j j}\right)$	2.43 ± 0.002	0.081 ± 0.0005

only statistical uncertainties, uncertainty on reweighted QCD samples does NOT include uncertainties from the reweighting

Summary

Conclusion

- observation/measurement of VBS is very important to understand the mechanism of EWSB
- $W^{ \pm} W^{ \pm}$most promising for observation of the EW process
- contribution from interference in VBS phase space is $\leq 5 \%$

Outlook

- low signal cross sections and difficult background estimation
\Rightarrow expect only sensitivity to $\sigma_{\mathrm{EW}+\mathrm{QCD}}$ in the $W^{ \pm} W^{ \pm}$and $W^{ \pm} Z$ channels for Moriond 2013
\Rightarrow world's first limits on aQGCs
- analysis of/combination with other channels during the shut down
\Rightarrow improve limits on aQGCs, observation of the EW process

Backup

The ATLAS detector

