

Finding dark matter with IceCube

Meike de With Graduiertenkolleg Fall Block Course, Berlin October 10, 2012

Outline

- Dark matter
- Detecting dark matter
- The IceCube detector
- Detecting WIMPs with IceCube
- Direction reconstructions in IceCube
- Work plan

Dark matter

- Non-luminous matter which must be non-baryonic
- Evidence for dark matter can • be found on all scales:
 - Rotation curves of galaxies
 - Gravitational lensing
 - Cosmic Microwave Background anisotropies
- Probably a thermal relic (created in the very early Universe)

WIMPs

- Weakly Interacting Massive Particles ('cold dark matter')
- WIMP miracle: WIMPs have
 ~ right relic density to be dark matter
- Different models:
 - Supersymmetry
 - (Universal) extra dimensions
 - ...

Detecting WIMPs

......

Direct detection

- WIMP scatters off nucleus (energy deposit: ~ keV)
- Two types of interaction:
 - Spin-independent (SD),
 WIMP couples to nuclear mass
 - Spin-dependent (SI),
 WIMP couples to nucleon spin
- Discrepancy between results from different experiments

Indirect detection

- Three channels:
 - Antimatter
 - Gamma rays
 - Neutrinos
- Search for signal from regions with high dark matter density:
 - Galactic dark matter halo
 - Galactic center
 - Dwarf spheroidal galaxies
 - Galaxy clusters
 - The Sun
 - The Earth

indirect detection

- Three channels:
 - Antimatter
 - Gamma rays
 - Neutrinos
- Search for signal from regions with high dark matter density:
 - Galactic dark matter halo
 - Galactic center
 - Dwarf spheroidal galaxies
 - Galaxy clusters
 - The Sun
 - The Earth

indirect detection

Neutrino detection principle

- Neutrinos can interact, result:
 - Tracks from charged current ν_{μ} interactions
 - Cascades from other interactions (neutral current, v_e, v_τ)
- In a medium, charged particles will emit Cherenkov radiation
- Record intensity and arrival times of Cherenkov radiation -> allows to reconstruct energy and direction of charged particle

The IceCube detector

Detecting dark matter with IceCube

- Benchmark channels are used:
 - $\ \chi \chi \to WW/\tau\tau$
 - $\chi \chi \rightarrow bb$
 - $-\chi\chi \rightarrow \upsilon\upsilon$
- Resulting neutrinos have GeV to TeV energies: DeepCore is important here!
- Search for an excess of neutrinos from a certain direction -> good direction reconstruction is very important!
- Can constrain annihilation cross section (like gamma rays) or WIMPnucleon interaction cross section (like direct detection experiments)

Constraining the annihilation cross section

Neutrino capture and annihilation

- WIMPs lose energy by scattering in the Sun with capture rate $\Gamma_{\rm C}$
- They annihilate in the Sun with annihilation rate $\Gamma_{\rm A}$
- Equilibrium ($\Gamma_{\rm C} = 2\Gamma_{\rm A}$) is usually reached for the Sun, not always for the Earth
- Probe nucleon-WIMP
 interaction cross section

Constraining the nucleon-WIMP cross section

- For SI scattering, direct detection limits are better
- For SD scattering, IceCube limits are better (Sun consists of protons)

Direction reconstruction in IceCube/DeepCore

- Current 'standard': SPEFit
- Input: times and locations of 'pulses' in DOMs
- For certain track hypothesis, determine for each pulse the time delay (real arrival time expected arrival time)
- Determine likelihood for each pulse from Pandel function
- Find track hypothesis for which total likelihood is maximal

Possible improvements

- SplineMPE:
 - determine time delay distributions from Monte Carlo simulations, tabulate them, fit them with spline functions
- MuEx:
 - Start with input pulses (original sample)
 - Create N 'bootstrap samples' by sampling with replacement
 - Do Pandel fit to each bootstrap sample (bootstrap fits)
 - Determine average of bootstrap fits
 - Use average of bootstrap fits as seed for a fit on the original sample

Testing reconstructions for low-energy events

- Using Monte Carlo events with E_v between 1 and 190 GeV
- Determine space angle: angle between true and reconstructed muon track
- Clearly improvement w.r.t. standard fit (SPE2)

Work plan

- Decide on a region to use for this analysis
- Simulate signal and background events
- Determine optimal cuts to remove background events
- See if there is an excess
- Work on combining limits from different experiments

Conclusions

- Current evidence point to a significant fraction of the total matter density in our Universe being 'dark' matter
- WIMPs are an important dark matter candidate for which many experiments (LHC, direct, indirect) are searching
- Indirect searches with neutrinos can probe the WIMP-nucleon scattering cross section (Sun, Earth) and the self-annihilation cross section (Galactic Center, Galactic Halo, galaxy clusters, dwarf spheroidal galaxies)
- To determine the mass and properties of the dark matter, searching in different channels is important

Back-up slides

RADUIERTEN KOLLEG Masse Spektrum Symmetrie

Meike de With | Graduiertenkolleg block course | October 10, 2012 | 20

Signs of dark matter on all scales

• Rotation curves of galaxies

Gravitational lensing

Cosmic Microwave Background
 anisotropies

• About 22% of the Universe consists of Dark Matter

expected

R (kpc)

10

M33 rotation curve

v (km/s)

100