Symmetries

Electroweak

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (~

Physics beyond the Standard Model

Ulrich Nierste

Karlsruhe Institute of Technology KIT Center Elementary Particle and Astroparticle Physics

Graduate School 1504 "Mass, Spectra, Symmetry", Autumn Block Course

10-11 October 2012

The lectures focus on the phenomenology of physics beyond the Standard Model associated with new particles in the 100 GeV- 10 TeV range. I will discuss indirect searches exploiting precision measurements.

The concept is bottom-up, starting from the Standard Model and its problems, with emphasis on the *standard way beyond the Standard Model*: Grand unification and supersymmetry.

The lectures focus on the phenomenology of physics beyond the Standard Model associated with new particles in the 100 GeV- 10 TeV range. I will discuss indirect searches exploiting precision measurements.

The concept is bottom-up, starting from the Standard Model and its problems, with emphasis on the *standard way beyond the Standard Model*: Grand unification and supersymmetry.

Not covered:

Search strategies for new particles at colliders, theories of gravitation, large extra dimensions, strongly interacting Higgs sectors, ...

Symmetries

Electroweak

Contents of Lecture I

Standard Model

Generalities

Symmetries

Electroweak interaction

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆= のへで

Symmetries

The theorist's toolbox

A theory's particles and their interactions are encoded in the Lagrangian \mathcal{L} . To construct a Lorentz-invariant theory specify:

the fields (corresponding to elementary particles): φ_j(x) (spin-0), ψ_k(x) (spin-1/2), A^μ_l(x) (spin-1).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The theorist's toolbox

A theory's particles and their interactions are encoded in the Lagrangian \mathcal{L} . To construct a Lorentz-invariant theory specify:

- the fields (corresponding to elementary particles): φ_j(x) (spin-0), ψ_k(x) (spin-1/2), A^μ_l(x) (spin-1).
- the internal symmetries of $\mathcal{L}(\phi_j, \psi_k, A_l^{\mu})$: Transforming

$$\phi_j \to U_{jj'}\phi_{j'}, \quad \psi_k \to U'_{kk'}\psi_{k'}, \quad A^{\mu}_l \to U''_{ll'}A^{\mu}_{l'}$$

leaves \mathcal{L} invariant, $\mathcal{L} \to \mathcal{L}$. Sum on repeated indices!

The theorist's toolbox

A theory's particles and their interactions are encoded in the Lagrangian \mathcal{L} . To construct a Lorentz-invariant theory specify:

- the fields (corresponding to elementary particles): φ_j(x) (spin-0), ψ_k(x) (spin-1/2), A^μ_l(x) (spin-1).
- the internal symmetries of $\mathcal{L}(\phi_j, \psi_k, A_l^{\mu})$: Transforming

 $\phi_j \to U_{jj'}\phi_{j'}, \quad \psi_k \to U'_{kk'}\psi_{k'}, \quad A^{\mu}_l \to U''_{ll'}A^{\mu}_{l'}$

leaves \mathcal{L} invariant, $\mathcal{L} \to \mathcal{L}$. Sum on repeated indices!

The set *G* of matrices *U* form a *group*, meaning that $1 \in G$, with $U^{(1)}, U^{(2)} \in G$ also $U^{(1)}U^{(2)} \in G$, and for each $U \in G$ there is an inverse $U^{-1} \in G$. The corresponding matrices U', U'' fulfill the same multiplication law, e.g. $U^{(1)}U^{(2)} = U^{(3)} \Rightarrow U^{(1)'}U^{(2)'} = U^{(3)'}$. That is, the sets $\{U\}$, $\{U'\}$, and $\{U''\}$ are all *representations* of the symmetry group *G*.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The theorist's toolbox

A theory's particles and their interactions are encoded in the Lagrangian \mathcal{L} . To construct a Lorentz-invariant theory specify:

- the fields (corresponding to elementary particles): φ_j(x) (spin-0), ψ_k(x) (spin-1/2), A^μ_l(x) (spin-1).
- the internal symmetries of $\mathcal{L}(\phi_j, \psi_k, A_l^{\mu})$: Transforming

$$\phi_j \to U_{jj'}\phi_{j'}, \quad \psi_k \to U'_{kk'}\psi_{k'}, \quad A^{\mu}_l \to U''_{ll'}A^{\mu}_{l'}$$

leaves \mathcal{L} invariant, $\mathcal{L} \to \mathcal{L}$. The set *G* of matrices *U* form a *group*.

- the representations of *G* according to which the fields $\phi_j(\mathbf{x}), \psi_k(\mathbf{x}), A_l^{\mu}(\mathbf{x})$ transform.
- whether *L* shall be *renormalisable by power-counting* or not.

Example:

SU(2)={ $U \in \mathbb{C}^{2\times 2}$: $U^{\dagger}U = 1$ and det U = 1} $U(\vec{\phi}) = \exp[i\phi_j\sigma^j/2]$ is an SU(2) rotation with angle $\phi \equiv |\vec{\phi}|$ around the axis $\vec{\phi}/\phi$. Pauli matrices:

$$\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

This is the defining representation of SU(2).

Example:

SU(2)={ $U \in \mathbb{C}^{2 \times 2} : U^{\dagger}U = 1$ and det U = 1} $U(\vec{\phi}) = \exp[i\phi_j\sigma^j/2]$ is an SU(2) rotation with angle $\phi \equiv |\vec{\phi}|$ around the axis $\vec{\phi}/\phi$. Pauli matrices:

$$\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

This is the defining representation of SU(2).

Application: Weak isospin: The left-handed (left-chiral) fermion fields of the Standard Model,

$$L^{1} = \begin{pmatrix} \nu_{eL} \\ e_L \end{pmatrix}, \ L^{2} = \begin{pmatrix} \nu_{\mu L} \\ \mu_L \end{pmatrix}, \ L^{3} = \begin{pmatrix} \nu_{\tau L} \\ \tau_L \end{pmatrix}, \ Q^{1} = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \ Q^{2} = \begin{pmatrix} c_L \\ s_L \end{pmatrix}, \ Q^{3} = \begin{pmatrix} t_L \\ b_L \end{pmatrix}$$

transform under the weak SU(2) group according to the defining representation, e.g. $L^{j} \rightarrow \exp[i\phi_{k}\sigma^{k}/2]L^{j}$, they are doublets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

The right-handed fermion fields e_R , μ_R , τ_R , u_R , d_R , s_R , c_R , b_R , t_R are singlets of SU(2), they live in the trivial representation: e.g. $e_R \rightarrow e_R$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\mathsf{SU}(2) = \{ \exp[i\phi_j \sigma^j/2] : \phi_{1,2,3} \in \mathbb{R} \}$

The Pauli matrices are the generators of SU(2), they satisfy the commutation relations

$$\left[\frac{\sigma^k}{2}, \frac{\sigma^l}{2}\right] = i\epsilon_{klm}\frac{\sigma^m}{2}$$

with the Levi-Civita tensor defined by

 $\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = \mathbf{1}, \ \ \epsilon_{\textit{lkm}} = -\epsilon_{\textit{klm}}.$

 $\mathsf{SU}(2) = \{ \exp[i\phi_j\sigma^j/2] : \phi_{1,2,3} \in \mathbb{R} \}$

The Pauli matrices are the generators of SU(2), they satisfy the commutation relations

$$\left[\frac{\sigma^k}{2}, \frac{\sigma^l}{2}\right] = i\epsilon_{klm}\frac{\sigma^m}{2}$$

with the Levi-Civita tensor defined by

 $\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = 1$, $\epsilon_{lkm} = -\epsilon_{klm}$. The SU(2) matrices $U(\vec{\phi})$ are continuous functions of the parameters ϕ_j , making SU(2) a *Lie group* of matrices. The generators of a Lie group span a vector space, the *Lie algebra*. The Lie algebra su(2) of SU(2) is spanned by $\frac{\sigma^1}{2}, \frac{\sigma^2}{2}, \frac{\sigma^3}{2}$ and therefore consists of all hermitian 2 × 2 matrices with trace zero. (su(2) is a *real* Lie algebra, meaning that only linear combinations with real coefficients are allowed.)

Symmetries

Electroweak

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Any set of matrices T^1, T^2, T^3 satisfying the commutation relations $\begin{bmatrix} T^k, T^l \end{bmatrix} = i\epsilon_{klm}T^m$

form a *representation* of su(2). The $3^3 = 27$ numbers ϵ_{klm} are the *structure constants* of su(2).

Important: adjoint representation

$$\begin{bmatrix} T_{su(2)}^{k} \end{bmatrix}_{lm} := -i\epsilon_{klm}$$

$$T_{su(2)}^{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \ T_{su(2)}^{2} = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}, \ T_{su(2)}^{3} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The generators are related to quantum numbers (charges) of the fields:

Doublets: Take L¹ as an example:

$$\frac{(\sigma^1)^2 + (\sigma^2)^2 + (\sigma^3)^2}{4} L^1 = \frac{1}{2} \left(\frac{1}{2} + 1\right) L^1, \quad \frac{\sigma^3}{2} L^1 = \frac{1}{2} \left(\frac{\nu_{eL}}{-e_L}\right).$$

That is, the weak isospin quantum number I_W of the doublets is found as $I_W = 1/2$, the third component of the weak isospin is $I_W^3 = \pm 1/2$ for neutrino and electron, respectively.

Here I_W and I_W^3 are defined in analogy to the spin quantum numbers s and s₃ in quantum mechanics.

Symmetries

The adjoint representation has $I_W = 1$:

$$\left(T_{su(2)}^{1}\right)^{2} + \left(T_{su(2)}^{2}\right)^{2} + \left(T_{su(2)}^{3}\right)^{2} = 1(1+1)\mathbf{1}$$

Eigenvectors of $T_{su(2)}^3$:

$$T_{\mathrm{su}(2)}^{3}\begin{pmatrix}1\\i\\0\end{pmatrix} = \begin{pmatrix}1\\i\\0\end{pmatrix}, \quad T_{\mathrm{su}(2)}^{3}\begin{pmatrix}0\\0\\1\end{pmatrix} = 0, \quad T_{\mathrm{su}(2)}^{3}\begin{pmatrix}1\\-i\\0\end{pmatrix} = -\begin{pmatrix}1\\-i\\0\end{pmatrix}.$$

We find eigenvalues $I_W^3 = 1, 0, -1$, i.e. the adjoint representation is a triplet.

・ロト・西ト・モート ヨー うへの

If the group parameters (ϕ_j in the case of SU(2)) depend on the space-time coordinate $\mathbf{x} = (t, \vec{\mathbf{x}})$, one calls the symmetry *local* or *gauged*.

A lagrangian which is bilinear in the fields describes a free particle.

Example: Electron field e, a 4-component Dirac spinor field, with mass *m*:

 $\mathcal{L}_{\text{free}} = \overline{e} \left[i \partial \!\!\!/ - m \right] e$

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Here $\partial = \gamma^{\mu} \partial_{\mu}$ with the Dirac matrices γ^{μ} and $\overline{\mathbf{e}} = \mathbf{e}^{\dagger} \gamma^{0}$.

If the group parameters (ϕ_i in the case of SU(2)) depend on the space-time coordinate $\mathbf{x} = (t, \vec{\mathbf{x}})$, one calls the symmetry *local* or *gauged*.

A lagrangian which is bilinear in the fields describes a free particle.

Example: Electron field e, a 4-component Dirac spinor field, with mass *m*:

 $\mathcal{L}_{\text{free}} = \overline{e} \left[i \partial \!\!\!/ - m \right] e$

Here $\partial = \gamma^{\mu}\partial_{\mu}$ with the Dirac matrices γ^{μ} and $\overline{\mathbf{e}} = \mathbf{e}^{\dagger}\gamma^{0}$. $\mathcal{L}_{\text{free}}$ is invariant under *global* (i.e. *x*-independent) phase transformations

 $e \rightarrow e^{i\phi}e$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Symmetries

Electroweak

$$\mathcal{L}_{\text{free}} = \overline{e} \left[i \partial - m \right] e$$

is not invariant under local phase transformation with exp $[-i\phi(x)]$. Spoiler: $\partial_{\mu} \exp [-i\phi(x)] = -i(\partial_{\mu}\phi(x)) \exp [-i\phi(x)]$

The group of phase transformation is called U(1), for "unitary 1×1 matrices". The structure constants of U(1) vanish, thus different U(1) transformations always commute and U(1) is called *Abelian*.

Symmetries

Electroweak

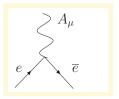
Remedy: Gauge field A_{μ} and covariant derivative

 $D_{\mu} = \partial_{\mu} + i g_{e} A_{\mu}$

with $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu}\phi(\mathbf{x})/g_e$. Need also kinetic term (i.e. bilinear term) for A^{μ} , conveniently expressed in terms of the field strength tensor $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. Find *quantum electrodynamics*:

$$\mathcal{L}_{\text{QED}} = \overline{\mathbf{e}} \left[i \mathbf{D} - m \right] \mathbf{e} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

Interpretation: A_{μ} is the *photon field*. It mediates the electromagnetic force between electrons. $g_e \approx 0.30$ accompanying A_{μ} is the electromagnetic coupling constant.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Next SU(2): Consider lepton doublet $L^1 = \begin{pmatrix} \nu_{eL} \\ e_L \end{pmatrix}$: The covariant derivative involves three gauge fields $W^1_{\mu}, W^2_{\mu}, W^3_{\mu}$:

$${\it D}_{\mu}=\partial_{\mu}-{\it i} g {\it W}_{\mu}^{a} rac{\sigma^{a}}{2}$$

and

$$\mathcal{L} = \overline{L}i \not\!\!D L - rac{1}{4} F^a_{\mu
u} F^{\mu
u\,a}$$

Novel feature of non-Abelian gauge theory:

$$\mathcal{F}^{\mathsf{a}}_{\mu
u}=\partial_{\mu}\mathcal{W}^{\mathsf{a}}_{
u}-\partial_{
u}\mathcal{W}^{\mathsf{a}}_{\mu}+g\epsilon_{\mathsf{abc}}\mathcal{W}^{\mathsf{b}}_{\mu}\mathcal{W}^{\mathsf{c}}_{
u}$$

Thanks to the third term in $F_{\mu\nu}^{a}$ the lagrangian contains *self-interactions* of the gauge bosons.

・ロト・「聞・ 《問・ 《問・ 《曰・

Symmetries

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Gauge bosons live in the adjoint representation $\left[T_{su(2)}^{k}\right]_{lm} := -i\epsilon_{klm}$:

Three parameters needed to describe an SU(2) rotation multiply three Pauli matrices.

- \Rightarrow Adjoint representation consists of 3×3 matrices.
- \Rightarrow three W-bosons!

Symmetries

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Gauge bosons live in the adjoint representation $\left[T_{su(2)}^{k}\right]_{lm} := -i\epsilon_{klm}$:

Three parameters needed to describe an SU(2) rotation multiply three Pauli matrices.

- \Rightarrow Adjoint representation consists of 3×3 matrices.
- ⇒ three W-bosons!

One parameter needed to describe a U(1) phase rotation $\exp[-i\phi(x)]$. The structure constant is zero, because U(1) is Abelian.

- \Rightarrow Adjoint representation consists of the 1 \times 1 matrix 0.
- \Rightarrow one gauge boson $A_{\mu}!$

Symmetries

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Recall the eigenvectors of of $T_{su(2)}^3$:

$$\begin{pmatrix} W^{1} \\ W^{2} \\ W^{3} \end{pmatrix} = \frac{W^{+}}{\sqrt{2}} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} + \frac{W^{-}}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix} + W^{3} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

with $W^{\pm} = \frac{W^{1} \mp iW^{2}}{\sqrt{2}}$.
Hence
 $T^{3}_{\mathrm{su}(2)} \begin{pmatrix} W^{1} \\ W^{2} \\ W^{3} \end{pmatrix} = \frac{W^{+}}{\sqrt{2}} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} - \frac{W^{-}}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}$

and we realise that W^+ , W^- , W^3 have the I_W^3 quantum numbers 1, -1, 0, respectively.

Symmetries

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Everything learned from U(1) and SU(2) generalises to other Lie groups as well:

We'll encounter SU(N) gauge theories with N = 2, 3, 4, 5: The Lie algebra su(N) is spanned by $N^2 - 1$ traceless hermitian $N \times N$ matrices, therefore there are $N^2 - 1$ gauge bosons and the adjoint representation consists of $(N^2 - 1) \times (N^2 - 1)$ matrices.

Symmetries

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Everything learned from U(1) and SU(2) generalises to other Lie groups as well:

We'll encounter SU(N) gauge theories with N = 2, 3, 4, 5: The Lie algebra su(N) is spanned by $N^2 - 1$ traceless hermitian $N \times N$ matrices, therefore there are $N^2 - 1$ gauge bosons and the adjoint representation consists of $(N^2 - 1) \times (N^2 - 1)$ matrices.

Other popular models of new physics involve SO(N), the group of real orthogonal $N \times N$ matrices with determinant equal to 1. SO(N) has N(N-1)/2 generators, which are traceless imaginary antisymmetric matrices. SO(N) matrices describe rotations in \mathbb{R}^n .

Simple groups:

subgroup *U* of group *G*: $g_1, g_2 \in U \Rightarrow g_1g_2 \in U$, also: $g_2^{-1}g_1g_2 \in U$ invariant subgroup *U* of *G*: $g_1 \in U, g_2 \in G \Rightarrow g_2^{-1}g_1g_2 \in U$

A group *G* is called simple, if it has no invariant Lie subgroups (other than *G* and 1). The SU(N) and SO(N) groups (except for SO(4)) are simple.

E.g. SO(2) is a subgroup of SO(3), but it is not invariant.

With $g_1, g'_1 \in G_1$ and $g_2, g'_2 \in G_2$ the pairwise multiplication $(g_1, g_2) \cdot (g'_1, g'_2) = (g_1g'_1, g_2g'_2)$ defines another group, the direct product $G_1 \times G_2$.

 G_1 and G_2 are invariant subgroups of $G_1 \times G_2$.

The gauge group of the Standard Model is $SU(3) \times SU(2) \times U(1)$ with the three factors describing the strong, weak and hypercharge interactions.

With $g_1, g'_1 \in G_1$ and $g_2, g'_2 \in G_2$ the pairwise multiplication $(g_1, g_2) \cdot (g'_1, g'_2) = (g_1g'_1, g_2g'_2)$ defines another group, the direct product $G_1 \times G_2$.

 G_1 and G_2 are invariant subgroups of $G_1 \times G_2$.

The gauge group of the Standard Model is $SU(3) \times SU(2) \times U(1)$ with the three factors describing the strong, weak and hypercharge interactions.

Physical significance: A direct product of gauge groups describes independent interactions. E.g. the gauge fields of SU(2) (i.e. the W-bosons) carry no color or hypercharge.

Compare this with the electric charge:

The W-bosons carry electric charges! $U(1)_{em}$ is a non-invariant subgroup of $SU(2) \times U(1)_{Y}$.

Symmetries

◆ロト ◆課 ト ◆注 ト ◆注 ト ○注 ○ のへで

A gauged internal symmetry with simple gauge group

• enforces the force carriers (gauge bosons) to have spin 1,

Symmetries

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- enforces the force carriers (gauge bosons) to have spin 1,
- forbids mass terms $M_A^2 A_\mu A^\mu$, $M_W^2 W_\mu W^\mu$,

Symmetries

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- enforces the force carriers (gauge bosons) to have spin 1,
- forbids mass terms $M_A^2 A_\mu A^\mu$, $M_W^2 W_\mu W^\mu$,
- completely fixes the form of the self-interaction of the gauge bosons (in terms of the structure constants), i.e. the three-boson and four-boson couplings,

Symmetries

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- enforces the force carriers (gauge bosons) to have spin 1,
- forbids mass terms $M_A^2 A_\mu A^\mu$, $M_W^2 W_\mu W^\mu$,
- completely fixes the form of the self-interaction of the gauge bosons (in terms of the structure constants), i.e. the three-boson and four-boson couplings,
- fixes the interaction of gauge bosons, once the group representations of the fermion fields are specified,

Symmetries

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- enforces the force carriers (gauge bosons) to have spin 1,
- forbids mass terms $M_A^2 A_\mu A^\mu$, $M_W^2 W_\mu W^\mu$,
- completely fixes the form of the self-interaction of the gauge bosons (in terms of the structure constants), i.e. the three-boson and four-boson couplings,
- fixes the interaction of gauge bosons, once the group representations of the fermion fields are specified,
- involves only a single coupling constant *g* for the boson-fermion and all boson-boson couplings.

Symmetries

Electroweak

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

Electroweak interaction

Gauge group:
$$SU(2) \times U(1)_Y$$

doublets: $Q_L^j = \begin{pmatrix} u_L^j \\ d_L^j \end{pmatrix}$ und $L^j = \begin{pmatrix} \nu_L^j \\ \ell_L^j \end{pmatrix}$
 $j = 1, 2, 3$ labels the generation.
Examples: $Q_L^3 = \begin{pmatrix} t_L \\ b_L \end{pmatrix}$, $L^1 = \begin{pmatrix} \nu^{eL} \\ e_L \end{pmatrix}$

singlets: u_R^j , d_R^j and e_R^j .

Symmetries

Electroweak

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Electroweak interaction

Gauge group: $SU(2) \times U(1)_Y$ doublets: $Q_L^j = \begin{pmatrix} u_L^j \\ d_L^j \end{pmatrix}$ und $L^j = \begin{pmatrix} \nu_L^j \\ \ell_L^j \end{pmatrix}$ j = 1, 2, 3 labels the generation. Examples: $Q_L^3 = \begin{pmatrix} t_L \\ b_L \end{pmatrix}$, $L^1 = \begin{pmatrix} \nu^{eL} \\ e_L \end{pmatrix}$

singlets: u_R^J , d_R^J and e_R^J . Important: Only left-handed fields couple to the W boson.

How many interactions does the Standard Model comprise?

How many interactions does the Standard Model comprise?

Five!

• three gauge interactions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

How many interactions does the Standard Model comprise?

Five!

- three gauge interactions
- Yukawa interaction of Higgs with quarks and leptons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

How many interactions does the Standard Model comprise?

Five!

- three gauge interactions
- Yukawa interaction of Higgs with quarks and leptons
- Higgs self-interaction

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Spontaneous symmetry breaking

Higgs doublet field $H = \begin{pmatrix} H_1^+ \\ H_2^0 \end{pmatrix}$ with hypercharge quantum number y = 1/2. (Beware of different normalisations of y in the literature!)

The classical Higgs potential is chosen such that it develops minima with $H \neq 0$. To quantise the theory around this minimum identify the value v at which $|H|^2$ is minimal with the vacuum expectation value of the quantised Higgs field.

A D > A 日 > A H = A

These minima are related by an $SU(2) \times U(1)_Y$ gauge transformation. Use this to choose $\langle H \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$ with

 $v = 174 \,\mathrm{GeV} = \frac{246 \,\mathrm{GeV}}{\sqrt{2}}.$

Spontaneous symmetry breaking $SU(2) \times U(1)_Y \rightarrow U(1)_{em}$:

$$T^{3}\begin{pmatrix}0\\\nu\end{pmatrix} = \frac{\sigma^{3}}{2}\begin{pmatrix}0\\\nu\end{pmatrix} = \frac{1}{2}\begin{pmatrix}0\\-\nu\end{pmatrix} \neq 0, \qquad Y\begin{pmatrix}0\\\nu\end{pmatrix} = \frac{1}{2}\begin{pmatrix}0\\\nu\end{pmatrix} \neq 0$$

but

$$\begin{bmatrix} T^3 + Y\mathbf{1} \end{bmatrix} \begin{pmatrix} 0 \\ v \end{pmatrix} = \frac{\sigma^3 + \mathbf{1}}{2} \begin{pmatrix} 0 \\ v \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ v \end{pmatrix} = \mathbf{0}$$

and we recognise the electric-charge operator

 $Q = T^3 + Y$ Gell-Mann–Nishijima relation

うして 山田 マイボット ボット シックション

Note: The mass parameter μ^2 of the Higgs potential is the only dimensionful parameter of the SM Lagrangian. Its value is

chosen to give the correct $v = \sqrt{\sqrt{2}/(4G_F)}$, with the Fermi constant G_F determined from muon decay. All masses of elementary particles are proportional to v.