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Scope

The lectures focus on the phenomenology of physics beyond
the Standard Model associated with new particles in the
100 GeV– 10 TeV range. I will discuss indirect searches
exploiting precision measurements.

The concept is bottom-up, starting from the Standard Model
and its problems, with emphasis on the standard way beyond
the Standard Model: Grand unification and supersymmetry.
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The lectures focus on the phenomenology of physics beyond
the Standard Model associated with new particles in the
100 GeV– 10 TeV range. I will discuss indirect searches
exploiting precision measurements.

The concept is bottom-up, starting from the Standard Model
and its problems, with emphasis on the standard way beyond
the Standard Model: Grand unification and supersymmetry.

Not covered:
Search strategies for new particles at colliders, theories of
gravitation, large extra dimensions, strongly interacting Higgs
sectors, . . .
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The theorist’s toolbox

A theory’s particles and their interactions are encoded in the
Lagrangian L. To construct a Lorentz-invariant theory specify:

• the fields (corresponding to elementary particles): φj(x)
(spin-0), ψk (x) (spin-1/2), Aµ

l (x) (spin-1).
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l (x) (spin-1).

• the internal symmetries of L(φj , ψk ,A
µ
l ): Transforming

φj → Ujj ′φj ′ , ψk → U ′
kk ′ψk ′ , Aµ

l → U ′′
ll ′A

µ
l ′

leaves L invariant, L → L. Sum on repeated indices!
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The theorist’s toolbox

A theory’s particles and their interactions are encoded in the
Lagrangian L. To construct a Lorentz-invariant theory specify:

• the fields (corresponding to elementary particles): φj(x)
(spin-0), ψk (x) (spin-1/2), Aµ

l (x) (spin-1).

• the internal symmetries of L(φj , ψk ,A
µ
l ): Transforming

φj → Ujj ′φj ′ , ψk → U ′
kk ′ψk ′ , Aµ

l → U ′′
ll ′A

µ
l ′

leaves L invariant, L → L. Sum on repeated indices!

The set G of matrices U form a group, meaning that 1 ∈ G,
with U(1),U(2) ∈ G also U(1)U(2) ∈ G, and for each U ∈ G
there is an inverse U−1 ∈ G. The corresponding matrices
U ′,U ′′ fulfill the same multiplication law, e.g.
U(1)U(2) = U(3) ⇒ U(1)′U(2)′ = U(3)′. That is, the sets {U},
{U ′}, and {U ′′} are all representations of the symmetry
group G.
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The theorist’s toolbox

A theory’s particles and their interactions are encoded in the
Lagrangian L. To construct a Lorentz-invariant theory specify:

• the fields (corresponding to elementary particles): φj(x)
(spin-0), ψk (x) (spin-1/2), Aµ

l (x) (spin-1).

• the internal symmetries of L(φj , ψk ,A
µ
l ): Transforming

φj → Ujj ′φj ′ , ψk → U ′
kk ′ψk ′ , Aµ

l → U ′′
ll ′A

µ
l ′

leaves L invariant, L → L. The set G of matrices U form a
group.

• the representations of G according to which the fields
φj(x), ψk (x),A

µ
l (x) transform.

• whether L shall be renormalisable by power-counting or
not.
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More on symmetries

Example:
SU(2)={U ∈ C

2×2 : U†U = 1 and det U = 1}
U(~φ) = exp[iφjσ

j/2] is an SU(2) rotation with angle φ ≡ |~φ|
around the axis ~φ/φ. Pauli matrices:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

This is the defining representation of SU(2).
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More on symmetries

Example:
SU(2)={U ∈ C

2×2 : U†U = 1 and det U = 1}
U(~φ) = exp[iφjσ

j/2] is an SU(2) rotation with angle φ ≡ |~φ|
around the axis ~φ/φ. Pauli matrices:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

This is the defining representation of SU(2).
Application: Weak isospin: The left-handed (left-chiral) fermion
fields of the Standard Model,

L1=





νeL

eL



, L2=





νµL

µL



, L3=





ντL

τL



, Q1=





uL

dL



, Q2=





cL

sL



, Q3=





tL
bL





transform under the weak SU(2) group according to the defining
representation, e.g. Lj → exp[iφkσ

k/2]Lj , they are doublets.
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The right-handed fermion fields eR, µR, τR, uR, dR, sR, cR, bR, tR
are singlets of SU(2), they live in the trivial representation: e.g.
eR → eR.
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SU(2)={exp[iφjσ
j/2] : φ1,2,3 ∈ R}

The Pauli matrices are the generators of SU(2), they satisfy the
commutation relations

[

σk

2
,
σl

2

]

= iǫklm
σm

2

with the Levi-Civita tensor defined by
ǫ123 = ǫ231 = ǫ312 = 1, ǫlkm = −ǫklm.
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SU(2)={exp[iφjσ
j/2] : φ1,2,3 ∈ R}

The Pauli matrices are the generators of SU(2), they satisfy the
commutation relations

[

σk

2
,
σl

2

]

= iǫklm
σm

2

with the Levi-Civita tensor defined by
ǫ123 = ǫ231 = ǫ312 = 1, ǫlkm = −ǫklm.
The SU(2) matrices U(~φ) are continuous functions of the
parameters φj , making SU(2) a Lie group of matrices.
The generators of a Lie group span a vector space, the Lie
algebra. The Lie algebra su(2) of SU(2) is spanned by
σ1

2
,
σ2

2
,
σ3

2
and therefore consists of all hermitian 2 × 2

matrices with trace zero. (su(2) is a real Lie algebra, meaning
that only linear combinations with real coefficents are allowed.)
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Any set of matrices T 1,T 2,T 3 satisfying the commutation
relations

[

T k ,T l
]

= iǫklmT m

form a representation of su(2). The 33 = 27 numbers ǫklm are
the structure constants of su(2).

Important: adjoint representation
[

T k
su(2)

]

lm
:= −iǫklm

T 1
su(2)=









0 0 0
0 0 −i
0 i 0









, T 2
su(2)=









0 0 i
0 0 0
−i 0 0









, T 3
su(2)=









0 −i 0
i 0 0
0 0 0









.
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The generators are related to quantum numbers (charges) of
the fields:
Doublets: Take L1 as an example:

(σ1)2 + (σ2)2 + (σ3)2

4
L1 =

1
2

(

1
2
+ 1
)

L1,
σ3

2
L1 =

1
2

(

νeL

−eL

)

.

That is, the weak isospin quantum number IW of the doublets is
found as IW = 1/2, the third component of the weak isospin is
I3
W = ±1/2 for neutrino and electron, respectively.

Here IW and I3
W are defined in analogy to the spin quantum

numbers s and s3 in quantum mechanics.
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The adjoint representation has IW = 1:

(

T 1
su(2)

)2
+
(

T 2
su(2)

)2
+
(

T 3
su(2)

)2
= 1 (1 + 1) 1

Eigenvectors of T 3
su(2):

T 3
su(2)





1
i
0



 =





1
i
0



 , T 3
su(2)





0
0
1



 = 0, T 3
su(2)





1
−i
0



 = −





1
−i
0



 .

We find eigenvalues I3
W = 1, 0,−1, i.e. the adjoint

representation is a triplet.
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Gauge principle

If the group parameters (φj in the case of SU(2)) depend on the
space-time coordinate x = (t , ~x), one calls the symmetry local
or gauged.
A lagrangian which is bilinear in the fields describes a free
particle.
Example: Electron field e, a 4-component Dirac spinor field,
with mass m:

Lfree = e
[

i /∂ − m
]

e

Here /∂ = γµ∂µ with the Dirac matrices γµ and e = e†γ0.
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Gauge principle

If the group parameters (φj in the case of SU(2)) depend on the
space-time coordinate x = (t , ~x), one calls the symmetry local
or gauged.
A lagrangian which is bilinear in the fields describes a free
particle.
Example: Electron field e, a 4-component Dirac spinor field,
with mass m:

Lfree = e
[

i /∂ − m
]

e

Here /∂ = γµ∂µ with the Dirac matrices γµ and e = e†γ0.
Lfree is invariant under global (i.e. x-independent) phase
transformations

e → eiφe.
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Lfree = e
[

i /∂ − m
]

e

is not invariant under local phase transformation with
exp [−iφ(x)]. Spoiler:
∂µ exp [−iφ(x)] = −i(∂µφ(x)) exp [−iφ(x)]

The group of phase transformation is called U(1), for “unitary
1 × 1 matrices”. The structure constants of U(1) vanish, thus
different U(1) transformations always commute and U(1) is
called Abelian.
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Remedy: Gauge field Aµ and covariant derivative

Dµ = ∂µ + igeAµ

with Aµ → Aµ + ∂µφ(x)/ge. Need also kinetic term (i.e. bilinear
term) for Aµ, conveniently expressed in terms of the field
strength tensor Fµν = ∂µAν − ∂νAµ. Find quantum
electrodynamics:

LQED = e
[

i /D − m
]

e − 1
4

FµνFµν

Interpretation: Aµ is the photon field. It medi-
ates the electromagnetic force between elec-
trons. ge ≈ 0.30 accompanying Aµ is the
electromagnetic coupling constant.

e e

Aµ
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Next SU(2): Consider lepton doublet L1 =

(

νeL

eL

)

: The

covariant derivative involves three gauge fields W 1
µ ,W

2
µ ,W

3
µ :

Dµ = ∂µ − igW a
µ

σa

2

and

L = Li /DL − 1
4

F a
µνFµν a

Novel feature of non-Abelian gauge theory:

F a
µν = ∂µW a

ν − ∂νW a
µ + gǫabcW b

µW c
ν

Thanks to the third term in F a
µν the lagrangian contains

self-interactions of the gauge bosons.
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Gauge bosons live in the adjoint representation
[

T k
su(2)

]

lm
:= −iǫklm:

Three parameters needed to describe an SU(2) rotation
multiply three Pauli matrices.

⇒ Adjoint representation consists of 3 × 3 matrices.
⇒ three W-bosons!
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Gauge bosons live in the adjoint representation
[

T k
su(2)

]

lm
:= −iǫklm:

Three parameters needed to describe an SU(2) rotation
multiply three Pauli matrices.

⇒ Adjoint representation consists of 3 × 3 matrices.
⇒ three W-bosons!

One parameter needed to describe a U(1) phase rotation
exp [−iφ(x)]. The structure constant is zero, because U(1) is
Abelian.

⇒ Adjoint representation consists of the 1 × 1 matrix 0.
⇒ one gauge boson Aµ!
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Recall the eigenvectors of of T 3
su(2):





W 1

W 2

W 3



 =
W+

√
2





1
i
0



+
W−

√
2





1
−i
0



+ W 3





0
0
1





with W± =
W 1 ∓ iW 2

√
2

.

Hence

T 3
su(2)





W 1

W 2

W 3



 =
W+

√
2





1
i
0



− W−

√
2





1
−i
0





and we realise that W+,W−,W 3 have the I3
W quantum

numbers 1,−1, 0, respectively.
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Everything learned from U(1) and SU(2) generalises to other
Lie groups as well:

We’ll encounter SU(N) gauge theories with N = 2, 3, 4, 5:
The Lie algebra su(N) is spanned by N2 − 1 traceless hermitian
N × N matrices, therefore there are N2 − 1 gauge bosons and
the adjoint representation consists of (N2 − 1)× (N2 − 1)
matrices.
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Everything learned from U(1) and SU(2) generalises to other
Lie groups as well:

We’ll encounter SU(N) gauge theories with N = 2, 3, 4, 5:
The Lie algebra su(N) is spanned by N2 − 1 traceless hermitian
N × N matrices, therefore there are N2 − 1 gauge bosons and
the adjoint representation consists of (N2 − 1)× (N2 − 1)
matrices.

Other popular models of new physics involve SO(N), the group
of real orthogonal N × N matrices with determinant equal to 1.
SO(N) has N(N − 1)/2 generators, which are traceless
imaginary antisymmetric matrices.
SO(N) matrices describe rotations in R

n.
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Simple groups:

subgroup U of group G: g1, g2 ∈ U ⇒ g1g2 ∈ U,
also: g−1

2 g1g2 ∈ U
invariant subgroup U of G: g1 ∈ U, g2 ∈ G ⇒ g−1

2 g1g2 ∈ U

A group G is called simple, if it has no invariant Lie subgroups
(other than G and 1). The SU(N) and SO(N) groups (except for
SO(4)) are simple.
E.g. SO(2) is a subgroup of SO(3), but it is not invariant.
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With g1, g′
1 ∈ G1 and g2, g′

2 ∈ G2 the pairwise multiplication
(g1, g2) · (g′

1, g
′
2) = (g1g′

1, g2g′
2) defines another group, the

direct product G1 × G2.
G1 and G2 are invariant subgroups of G1 × G2.

The gauge group of the Standard Model is
SU(3)× SU(2)× U(1) with the three factors describing the
strong, weak and hypercharge interactions.
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With g1, g′
1 ∈ G1 and g2, g′

2 ∈ G2 the pairwise multiplication
(g1, g2) · (g′

1, g
′
2) = (g1g′

1, g2g′
2) defines another group, the

direct product G1 × G2.
G1 and G2 are invariant subgroups of G1 × G2.

The gauge group of the Standard Model is
SU(3)× SU(2)× U(1) with the three factors describing the
strong, weak and hypercharge interactions.

Physical significance: A direct product of gauge groups
describes independent interactions. E.g. the gauge fields of
SU(2) (i.e. the W-bosons) carry no color or hypercharge.

Compare this with the electric charge:
The W-bosons carry electric charges!

U(1)em is a non-invariant subgroup of SU(2)× U(1)Y .
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A gauged internal symmetry with simple gauge group

• enforces the force carriers (gauge bosons) to have spin 1,
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• enforces the force carriers (gauge bosons) to have spin 1,

• forbids mass terms M2
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W WµWµ,

• completely fixes the form of the self-interaction of the
gauge bosons (in terms of the structure constants), i.e. the
three-boson and four-boson couplings,
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• fixes the interaction of gauge bosons, once the group
representations of the fermion fields are specified,
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A gauged internal symmetry with simple gauge group

• enforces the force carriers (gauge bosons) to have spin 1,

• forbids mass terms M2
AAµAµ, M2

W WµWµ,

• completely fixes the form of the self-interaction of the
gauge bosons (in terms of the structure constants), i.e. the
three-boson and four-boson couplings,

• fixes the interaction of gauge bosons, once the group
representations of the fermion fields are specified,

• involves only a single coupling constant g for the
boson-fermion and all boson-boson couplings.
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Electroweak interaction

Gauge group: SU(2)× U(1)Y

doublets: Q j
L =

(

u j
L

d j
L

)

und L j =

(

ν j
L
ℓ j

L

)

j = 1, 2, 3 labels the generation.

Examples: Q3
L =

(

tL
bL

)

, L1 =

(

νeL

eL

)

singlets: u j
R, d j

R and e j
R.
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Electroweak interaction

Gauge group: SU(2)× U(1)Y

doublets: Q j
L =

(

u j
L

d j
L

)

und L j =

(

ν j
L
ℓ j

L

)

j = 1, 2, 3 labels the generation.

Examples: Q3
L =

(

tL
bL

)

, L1 =

(

νeL

eL

)

singlets: u j
R, d j

R and e j
R.

Important: Only left-handed fields couple to the W boson.
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How many interactions does the Standard Model comprise?

Five!

• three gauge interactions

• Yukawa interaction of Higgs with quarks and leptons

• Higgs self-interaction
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Spontaneous symmetry breaking

Higgs doublet field H =

(

H+
1

H0
2

)

with hypercharge quantum

number y = 1/2.
(Beware of different normalisations of y in the literature!)

The classical Higgs potential is chosen such that it develops
minima with H 6= 0. To quantise the theory around this
minimum identify the value v at which |H|2 is minimal with the
vacuum expectation value of the quantised Higgs field.
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These minima are related by an SU(2)× U(1)Y gauge

transformation. Use this to choose 〈H〉 =
(

0
v

)

with

v = 174 GeV =
246 GeV√

2
.

Spontaneous symmetry breaking SU(2)× U(1)Y → U(1)em:

T 3
(

0
v

)

=
σ3

2

(

0
v

)

=
1
2

(

0
−v

)

6= 0, Y
(

0
v

)

=
1
2

(

0
v

)

6= 0

but

[

T 3 + Y1
]

(

0
v

)

=
σ3 + 1

2

(

0
v

)

=

(

1 0
0 0

)(

0
v

)

= 0

and we recognise the electric-charge operator

Q = T 3 + Y Gell-Mann–Nishijima relation
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Note: The mass parameter µ2 of the Higgs potential is the only
dimensionful parameter of the SM Lagrangian. Its value is

chosen to give the correct v =

√√
2/(4GF ), with the Fermi

constant GF determined from muon decay. All masses of
elementary particles are proportional to v .
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