TRANSVERSE DOUBLE SPIN ASYMMETRY IN INCLUSIVE HADRON PRODUCTION AT HERMES

Summer Student Program 2012

Andrea Signori – University of Pavia

Transverse double spin asymmetry in inclusive hadron production

DESY - HERMES, 06/09/2012

PHYSICAL MOTIVATION

- > Why measure *single* and *double spin asymmetries* in the inclusive case ?
- Investigation of the spin structure of the nucleon
- Commonly used framework for SIDIS: TMDs approach

> Additional information about TMDs can be accessed trough inclusive hadron production $ep^{\uparrow} \rightarrow hX$

INTRODUCTION

> Azimuthal **Single** Target Spin Asymmetry

preliminary results obtained at HERMES

> Transverse **Double** Spin Asymmetry

$$A_{LT}(\phi) = \frac{\left[\overrightarrow{\sigma}^{\uparrow}(\phi) + \overleftarrow{\sigma}^{\downarrow}(\phi)\right] - \left[\overleftarrow{\sigma}^{\uparrow}(\phi) + \overrightarrow{\sigma}^{\downarrow}(\phi)\right]}{\overrightarrow{\sigma}^{\uparrow}(\phi) + \overleftarrow{\sigma}^{\downarrow}(\phi) + \overleftarrow{\sigma}^{\uparrow}(\phi) + \overrightarrow{\sigma}^{\downarrow}(\phi)}$$

HERMES EXPERIMENT

- Fixed target experiment: data taking 1995 2007
- Longitudinally polarized HERA lepton beam (27.6 GeV)
- Transversely polarized target (2002 2005)

COLLECTED STATISTICS

- Analyzed data sample: 2003, 2004, 2005 with transversely polarized hydrogen target and longitudinally polarized lepton beam
- Identified hadrons: 2 < p_h < 15 GeV</p>

DATA	BEAM POL	π*	π.	Κ+	K-
2003	P _b > 20	1 989 672	1 696 773	172 674	95 136
	P _b > 0	2 292 242	1 954 731	200 187	110 401
2004	P _b > 20	15 890 147	13 596 376	1 421 980	790 199
	P _b > 0	16 771 258	14 349 457	1 498 649	832 582
2005	P _b > 20	29 294 679	25 048 242	2 611 985	1 470 133
	P _b > 0	34 078 048	29 139 691	3 037 998	1 710 463

EXTRACTION METHOD / 1

> Cross section parametrization

 $d\sigma_{LT}(\phi) = d\sigma_{UU}[1 + P_B A_{LU}(\phi) + S_T(\phi) A_{UT}(\phi) + P_B S_T A_{LT}(\phi)]$

Fourier decomposition of asymmetries

$$A_{LT}(\phi) = A_{LT}^{\cos(0\phi)} + A_{LT}^{\cos(\phi)}\cos(\phi) + A_{LT}^{\sin(\phi)}\sin(\phi)$$

$$A_{LU}(\phi) = A_{LU}^{\cos(0\phi)} + A_{LU}^{\cos(\phi)}\cos(\phi) + A_{LU}^{\sin(\phi)}\sin(\phi)$$

$$A_{UT}(\phi) = A_{UT}^{\cos(0\phi)} + A_{UT}^{\cos(\phi)}\cos(\phi) + A_{UT}^{\sin(\phi)}\sin(\phi)$$
physical
9 parameters in our fit

DESY

EXTRACTION METHOD / 2

Since we are performing a fit with **different physical settings** (2 beam pol states x 2 target pol states = **4 total configurations**, each one with its own luminosity value) the normalization factor N is very important:

it allows to *account* for possible *misbalances* in *different physical configurations*

EXTRACTION METHOD / 3

Derivation of the normalization factor N as a function of the moments, polarization and luminosity:

 $N = \overrightarrow{N}^{\uparrow} + \overleftarrow{N}^{\uparrow} + \overrightarrow{N}^{\downarrow} + \overleftarrow{N}^{\downarrow}$ We should find the *expression of the asymmetries* as functions of the four *number densities* and *polarizations*.

$$\overrightarrow{N}^{\uparrow}/\overrightarrow{L}^{\uparrow} = \sigma_{UU}[1 + \overrightarrow{P}^{\uparrow}A_{LU} + S^{\uparrow}A_{UT} + \overrightarrow{P}^{\uparrow}S^{\uparrow}A_{LT}]$$

$$\overrightarrow{N}^{\downarrow}/\overrightarrow{L}^{\downarrow} = \sigma_{UU}[1 + \overrightarrow{P}^{\downarrow}A_{LU} + S^{\downarrow}A_{UT} + \overrightarrow{P}^{\downarrow}S^{\downarrow}A_{LT}]$$

$$\overrightarrow{N}^{\uparrow}/\overrightarrow{L}^{\uparrow} = \sigma_{UU}[1 + \overleftarrow{P}^{\uparrow}A_{LU} + S^{\uparrow}A_{UT} + \overleftarrow{P}^{\uparrow}S^{\uparrow}A_{LT}]$$

$$\overrightarrow{N}^{\downarrow}/\overrightarrow{L}^{\downarrow} = \sigma_{UU}[1 + \overleftarrow{P}^{\downarrow}A_{LU} + S^{\downarrow}A_{UT} + \overleftarrow{P}^{\downarrow}S^{\downarrow}A_{LT}]$$

$$\overrightarrow{N}^{\downarrow}/\overrightarrow{L}^{\downarrow} = \sigma_{UU}[1 + \overleftarrow{P}^{\downarrow}A_{LU} + S^{\downarrow}A_{UT} + \overleftarrow{P}^{\downarrow}S^{\downarrow}A_{LT}]$$

$$\overrightarrow{N}^{(moms, pol, lum)}$$

> E.g.: proper expression of A_{LT} from the analytical solution of the system

$$A_{LT} = \frac{\overrightarrow{n}^{\uparrow}(\overrightarrow{P}^{\downarrow} - \overrightarrow{P}^{\downarrow}) - \overrightarrow{n}^{\downarrow}(\overrightarrow{P}^{\uparrow} - \overrightarrow{P}^{\uparrow}) - \overleftarrow{n}^{\uparrow}(\overrightarrow{P}^{\downarrow} - \overrightarrow{P}^{\downarrow}) + \overleftarrow{n}^{\downarrow}(\overrightarrow{P}^{\uparrow} - \overrightarrow{P}^{\uparrow})}{\overrightarrow{n}^{\uparrow}\overrightarrow{P}^{\uparrow}S^{\downarrow}(\overrightarrow{P}^{\downarrow} - \overrightarrow{P}^{\downarrow}) + \overrightarrow{n}^{\downarrow}\overrightarrow{P}^{\downarrow}S^{\uparrow}(\overrightarrow{P}^{\uparrow} - \overleftarrow{P}^{\downarrow}) + \overleftarrow{n}^{\uparrow}\overrightarrow{P}^{\uparrow}S^{\downarrow}(\overrightarrow{P}^{\downarrow} - \overleftarrow{P}^{\downarrow}) + \overleftarrow{n}^{\downarrow}\overrightarrow{P}^{\downarrow}S^{\uparrow}(\overrightarrow{P}^{\downarrow} - \overrightarrow{P}^{\uparrow})}}$$

$$n = N/L$$
And we a Signari L HERMES collaboration 1.06/09/2012 L Page 8

PHYSICAL DEPENDENCE OF ASYMMETRIES

> Feynman variable

$$x_F = 2p_z^{CM}/\sqrt{s} \quad \rightarrow \quad x_F \approx p_z/E_{Beam}$$

PLOTS

> **Comparison** of extraction method with results on A_{UT}

Consistency of the results for different data taking years

> Sensitivity to the cut on beam polarization

> Final results

> Comparison of extraction method with results on A_{UT}

PLOTS - Comparison with results on A_{UT}

A_{UT}

0.08

 $\rightarrow \pi^{+} + X$

HERMES preliminary

 $e^{\pm} p^{\uparrow} \rightarrow K^{+} + X$

X_F

DES

> Consistency of the results for different data taking years

PLOTS - RESULTS FOR DIFFERENT YEARS

 $\vec{e}p^{\uparrow} \rightarrow \pi^+ + X$

ểp[↑]→ K⁺+X

> Sensitivity to the cut on beam polarization

PLOTS - SENSITIVITY ON BEAM POLARIZATION

PLOTS - SENSITIVITY ON BEAM POLARIZATION

> Final results

A_{IT} constant and sine moment – combined dataset

CONCLUSION

> non-zero A_{LT} found for π^+

In contrary to (some) expectation of a highly suppressed (two orders of magnitude compared to A_{UT}) amplitude

> Is this a *sign of a non-zero worm-gear* function?

> Thank you for your attention !

BACKUP SLIDES

PLOTS - RESULTS FOR DIFFERENT YEARS

 $\vec{e}p^{\uparrow} \rightarrow \pi^+ + X$

 $\vec{e}p^{\uparrow} \rightarrow K^{+}+X$

PLOTS - RESULTS FOR DIFFERENT YEARS

ểp[↑]→ π⁺+X

ểp[↑]→ K⁺+X

> A_UT constant and cosine moment - using cut on beam polarization

