MAMA at FLASH

Momentum and momentum spread analysis at FLASH:

The Accelerator and the magnetic spectrometer

Luca Somaschini DESY, 6 - Sept - 2012

Motivation: SASE Beam Requirements

SASE: Self Amplified Spontaneous Emission

The beam undergoes a process called micro-bunching, due to the energy transfer from electrons to electromagnetic wave.

The power of the electromagnetic wave grows exponentially with z until saturation

 L_g : exponential characteristic growth length.

To decrease L_g means to reduce the undulator length

It is necessary to obtain:

- Small Transverse Emittance: Good overlap of electron-photon all over the undulator length
- > High Peak Current: High radiation power within a small length
- Small Energy Spread: As many particles as possible within the lasing bandwidth and to allow good compression

RF CAVITIES:

Seven 1.3 GHz modules 8 cavities per module 9 cells per cavity RF pulsed at 10 Hz 1-800 bunches per pulse

Up to 1.25 GeV

MODUL 6

BUNCH COMPRESSORS Reduce the bunch length Increase the peak current

3.2

BUNCH COMPRESSORS Reduce the bunch length Increase the peak current

2.2

Longitudinal phase space is scanned by means of a spectrometer to determine:

- > Mean Momentum
- > Momentum Spread

Multiple particle

- Same initial position but different momenta
- Different position depending on the momentum

 $f(x) = g(x_0, x_o') * h(\delta)$

Dipole

A good knowledge of the moments requires a good knowledge of the dipole filed:

-350

-300

-200

-100

0.16

0.14

0.12

0.1

0.08

0.04

0.02

200 z/mm 0.06

100

0

+∞

B(l)dl

max

R

Hysteresis Cylce

- Important to move ALWAYS on the falling cycle edges.
- Small area but significant momentum difference
- Need to know the B field for each current

Field Difference

Difference between measure and fitted value. NO interpolation

Momentum Difference

Momentum Difference

- Small field differences translate into great momentum differences
- Typically exponential with three parameters is used
- Exponential with 4 parameter provides best fitting

MAMA Software

Calibration:

Extablish relation position-pixel

Beam Acquisition

Image of the beam on the screen

Beam Acquisition

The Dispersion takes places only in one direction

Beam Acquisition

Transverse spread is only due to beam size It has to be as small as possible

Beam Acquisition

Sum over trasverse direction

Luca Somaschini | Mama at FLASH | 06-09-2012 |

Possibility to define background reduction

Development of an analysis code:

- Inspired by MAMA code for PITZ (by Lipka)
- Matlab Based

Project is meant to be expanded and improved....it's not a complete project:

- The code must be simple and easy to be modified
- Separate features and functions on separate files

Four files with separate functions:

- > MAMA_GUI.fig: Graphic information
- MAMA_GUI.m: Callback definition
- > MAMA_main.m: Test file
- Data.m: Class with:
 - Parameters
 - Acquired data
 - Analysis functions

MAMA @ FLASH

	m	
Import Conf.	X Right Limit:	105
Export Conf.	X Left Limit:	595
Import Img.	Y Upper Limit:	70
Acquire Img.	Y Lower Limit:	433
	File in Use	
/Volumes/	DESY/DESY/MAMA/Analys -28/I_15_55_46.mat	sis/2012-08
Offline	Analyzed Area	
	X Right Limit:	1
	X Left Limit:	640
	X Left Limit: Y Upper Limit:	640 1
LOAD	X Left Limit: Y Upper Limit: Y Lower Limit:	640 1 480

Input Selection-		
File Load	File in Use	e
Acquire	/Volumes/DESY/DESY/MAM -28/I_15_55_4	A/Analysis/2012-08 6.mat
Export		
Acquire BKC	N Images	Subtract BKG

Parameters and S	Parameters and Statisctics				
Dipole Current:	1.8513	А			
P 0:	5.3795	MeV/c			
B eff:	0.12628	т			
DMaan	5 26442	MeV/c			
P Mean:	5.36443	MeV/c			
P HMS:	0.0996212	MeV/c			
P Mean Error:	0.0051599	MeV/c			
F HWG EITOL	0.0030400				
Distribut	on	Export Analysis			
Distributi	on	Export Analysis			

Further Improvements:

- > Embedded control on the machine:
 - Control of the screen
 - Control on the dipole current and hysteresis cycle
 - Control on the beam status
- > Embedded logbook printout
- Current Scan function for non-fitting beams
 - Multiple pictures for a single analysis
 - To generate momentum distribution as a function of the dipole current

Than to DESY and to MPY group

Thank you!

Luca Somaschini | Mama at FLASH | 06-09-2012 |

Thanks to ALL the summer students...

Luca Somaschini | Mama at FLASH | 06-09-2012

The central particle is called reference particle

Every other measure is expressed referring to the reference particle frame

Momentum of the reference particle:

$$p_{0} = \frac{e}{\alpha} |B_{dipole}(I)| l_{eff}$$
$$\int_{-\infty}^{+\infty} B(l) dl$$
$$l_{eff} = \frac{-\infty}{B_{max}}$$

Search of the best fitting function:

$$B(I) = a + bI + cI^{2} + dI^{3}$$

$$B(I) = a + bI + cI^{2} + dI^{3} + eI^{4} + fI^{5} + gI^{6}$$

$$B(I) = \frac{a(I-b)}{1+e^{-\frac{c}{(I-b)^{2}}}}$$

$$B(I) = \frac{a(I-b)}{d+e^{-\frac{c}{(I-b)^{2}}}}$$

Momentum Difference ZOOM

The main statistical functions we can compute are:

> Mean Momentum:

$$\overline{p} = \frac{\sum_{i} p_{i} h_{i}}{\sum_{i} h_{i}}$$

> Momentum Spread:

$$p_{RMS} = \sqrt{\frac{\sum_{i} \left(\overline{p} - p_{i}\right)^{2} h_{i}}{\sum_{i} h_{i}}}$$

It is also possible to compute associate errors:

$$\sigma_{\overline{p}} = p_{RMS} \frac{\sqrt{\sum_{i} h_{i}^{2}}}{\sum_{i} h_{i}}$$

$$\sigma_{p_{RMS}} = \frac{\sigma_{\overline{p}}}{\sqrt{2}}$$

Graphic Interface

MAMA @ FLASH

Screen Calibration			Input Selection		
Import Conf.	X Right Limit:	105	File Load	Volumer/DESV/D	File in Use
Export Conf.	X Left Limit:	595	Acquire	-28/1	_15_55_46.mat
Import Img.	Y Upper Limit:	70	Export Acquire BKG	N Ima	Subtract BKG
Acquire Img.	Y Lower Limit:	433		IN ITTA	ues
	File in Use		Parameters and St	atisctics	
/Volumes/DE	SY/DESY/MAMA/Analys	is/2012-08	Dipole Current:	1.8513	Α
	-28/I_15_55_46.mat		P 0:	5.3795	MeV/c
ffline	Analyzed Area		B eff:	0.12628	т
	X Right Limit:	1	P Mean:	5.36443	MeV/c
	X Left Limit:	640	P RMS:	0.0996212	MeV/c
	Y Upper Limit:	1	P Mean Error:	0.0051599	MeV/c
LOAD	Y Lower Limit:	480	P RMS Error:	0.0036486	MeV/c
			Distributio		Export Applysic

1 Step: Screen Acquisition and calibration

Γ	Screen Calibration		
	Import Conf.	X Right Limit:	80
	Export Conf.	X Left Limit:	430
	Import Img.	Y Upper Limit:	90
	Acquire Img.	Y Lower Limit:	592
		File in Use	
	Screen_Setti	ngs/Screen_2012-08-22	-17_10.tif

- > Go to GUN mode
- Move in the screen
- > Turn on the light
- > Acquire a Screen image
- Turn off the light

Or

> Import a old screen image

1 Step: Screen Acquisition and calibration

Screen Calibration			
Import Conf.	X Right Limit:	80	
Export Conf.	X Left Limit:	430	
Import Img.	Y Upper Limit:	90	
Acquire Img.	Y Lower Limit:	592	
File in Use			
Screen_Setting	gs/Screen_2012-08-22-1	17_10.tlf	

> Calibration:

- Find a relation between screen size and pixels
- Set the screen border pixels

1 Step: Screen Acquisition and calibration

Screen Calibration		
Import Conf.	X Right Limit:	80
Export Conf.	X Left Limit:	430
Import Img.	Y Upper Limit:	90
Acquire Img.	Y Lower Limit:	592
	File in Use	
Screen_Setti	ngs/Screen_2012-08-22-	17_10.tif

> Export configuration:

- Screen Image
- Calibration Parameters
- Import configuration
 - Screen Image
 - Calibration Parameters
- File Path
 - Screen image in use
 - "ONLINE": acquired non save image

MAMA Software

2 Step: Image Acquisition

- > Set dipole current
- Acquire an image from the screen
- Load an image from file
- Export the acquired image
- Read the image in use:
 - File path
 - "ONLINE": acquired non saved image

3 Step: Background Reduction

- > Set number of samples
- > Acquire background
- Turn ON and OFF the BKG reduction
- Pictures and results are refreshed at every change

Step 4: Analysed area

Analyzed Area				
X Right Limit:	100			
X Left Limit:	200			
Y Upper Limit:	1			
Y Lower Limit:	640			

- Resize the analysed area to reduce noise
- Pictures and results are refreshed every time a change is made

Step 5: Results and Storing

Parameters and Sta	tisctics	
Dipole Current:	1.8513	Α
P 0:	5.3795	MeV/c
B eff:	0.12628	т
P Mean:	5.36443	MeV/c
P RMS:	0.0996212	MeV/c
P Mean Error:	0.0051599	MeV/c
P RMS Error:	0.0036486	MeV/c
Distribution	n	Export Analysis

- Read the results
 - Momentum and momentum spread
 - Associated errors
 - Dipole parameters
- Zoomed distribution view
- > Export entire class properties:
 - Pictures (matrixes and paths)
 - Dipole parameters
 - Screen and parameters
 - Statists results

Offline analysis

Possibility to reload saved data and perform new analysis

