The CMS Pixel Detector

Study of the CMS pixel detector in the DESY Testbeam using a beam telescope

Mikhail Mikhasenko

Institute of High Energy Physics, Protvino Moscow Institute for Physics and Technology Deutsches Elektronen-Synchrotron

September 6th, 2012

Outline

- Introduction to the Testbeam
 - DESY Testbeam 21
 - 2 The telescope
- The CMS pixel sensor
- Resolution and efficiency studies
- Conclusion

The DESY-II Testbeam

 $e^{\pm} \to {\rm bremsstrahlung} \ \gamma \to e^+ e^- \ {\rm pairs} \to {\rm magnet} \to {\rm collimator} \to {\rm the \ Testbeam}.$

- electrons and positrons with 1-6 GeV
- rate in range of kHz
- ← The rate of particles as function of the energy at testbeam 21 for different converter target.

The experimental setup

Testbeam + telescope \rightarrow particle tracks + timing information

Pixel Modules

Motivation:

- innermost tracker in CMS will be upgraded
- intermediate development prototypes need testing

A single Si-CMS pixel detector consists of:

- sensors layer $(52 \cdot 80 = 4160 \text{ pixels, each } 150 \times 100 \,\mu\text{m}^2)$
- read-out chip, bump bonded to sensor.
- infrastructure

total thickness: $(285 \,\mu\text{m} + 175 \,\mu\text{m})$

How does a pixel sensor work. Underlying physics

- Electrons and holes are generated by an ionizing particle passing through the pixel sensor.
- 2 Electric field \rightarrow drift in silicon.
- 3 Diffusion area $\sim 100 \, \mu \text{m}^2$
- The charge can be split between pixels.
- **⑤** In CMS: Lorentz angle is 19° in 3.8 T B-field.

Pixels

- One run is $\approx 10^5$ events.
- 52 columns \times 80 rows = 4160 pixels.

- The beam profile can be seen in the hit map.
- The pixel charge histogram shape shows:
 - Threshold \approx 4 keV.
 - The bump is result of direct hit.
 - The long tail of the Landau distribution.

Clusters

- A cluster is a group of neighboring pixels which have non-zero charge.
- The cluster charge distribution has a Landau shape. \leftarrow Our e^\pm are Minimal Ionizing Particles.

Resolution and efficiency

• Efficiency definition:

$$\varepsilon = \frac{N_{CMS}}{N_{telescope}},$$

 Resolution: distance between expected hit and measured one.

The pixel resolution is $7 \,\mu \text{m}$. The pixel size is $100 \times 150 \,\mu \text{m}^2$

Angle dependency measurements

In CMS the Lorentz angle is decreasing with radiation damage. \rightarrow test in setup. Expected behavior of CC as function of angle:

$$L(\alpha) = D \times \frac{1}{\cos \alpha}$$

Optimal angle: highest resolution, because of best sharing of the diffusion area between pixels.

$$\alpha_{opt} = \arctan \frac{100 \mu m}{285 \mu m} = 19.3^\circ$$

The α_{opt} corresponds to an average cluster size equaled 2.

Conclusion

Testbeam enables studies of sensors with particle tracks Extensive measurements performed:

- angle dependancy of sensor properties
- Also (not shown):
 - threshold dependency studies.
 - bias voltage scans (required voltage is approx. 100 V).
 - extensive timing studies to ensure synchronization between DESY-II accelerator and our setup.

Theoretical expectations were derived and confirmed.

For more details please read my report!

Acknowledgment

I want to thank my supervisors

- Thomas Eichhorn
- Hanno Perrey
- Daniel PITZL

and the CMS collaboration and DESY!

THANK YOU