Pixel Beam Telescope -Online Monitor

Timing, Tests and Optimisation Michał Wysokiński AGH University of Science and Technology, Krakow, Poland

Supervisor: Igor Rubinsky

1. Test beams

DESY test beam

 Test beams are used for determinig properties of new cutting edge detector

systems

They

 use
 devices
 called
 telescopes

Pixel telescopes

Telescopes work like a normal camera

What do we want to measure with the telescope?

Check whether a device works or not and measure its properties: - resolution - etc...

5 4 3 DUT 2 1 0 Track Fit beam

2. Pixel Telescopes for test beams Pixel telescopes

"Datura" telescope

- 6 telescope planes
- MIMOSA 26 sensors:
 - 1152x576 pixels
 = 0.7 Mpix
 - "pictures" are taken every 115.2 μs
 - binary readout
- Sensors are usually cooled to 15°C (to stabilize their performance in time)

Architecture

Architecture

3. Goals

Goals

 Make the Online Monitor as robust and fast as possible (make it a real-time tool).

- 2) Add new features for users' convenience.
- 3) Test it with the real data.

Preliminary analysis

Avg Evt Processing Time vs Threshold

Preliminary analysis

Avg Evt Processing Time vs Threshold

Preliminary analysis

Avg Evt Size vs Threshold

Threshold impacts the event size [hits/event] significantly.

AILAS EXPERIMENT

Profiling

• I started with profiling...

 Profiling – analysis of how much time is spent in different functions and how many times they are being called

 ...and I was about to find out that my start would not be very simple...

Will structural optimisations be enough? Or new algorithms will have to be developed?

- This version of the Online Monitor was originally developed within the ATLAS pixel test beam group
- It is very good but there is always something to improve, so I decided to investigate the algorithms

5. Clusterisation

Previous clusterisation algorithm

 How does the previous clusterization algorithm work?

It compares every single hit with the rest from the same plane - $O(n^2)$

5. Clusterisation

New clusterisation algorithm

- 1. Let's sort all hits
- 2. Now we can look only for the nearest neighbours
- 3. O(n*log(n) + n)

Performance

Did it help?

4. Clusterisation

Processing Time

5. Correlation

Previous correlation algorithm

 How does the previous correlation algorithm work?

It correlates all clusters between every two planes - O(n²)

5. Correlation

New correlation algorithm

- 1. Let's try to reconstruct all tracks first
- 2. Then we could use reconstructed tracks to get information about correlations
- 3. ... and in addition to that we now know how many tracks (roughly) we have in a single
- 4. O(n*log(n))

event

5. Correlation How the new correlation algorithm works? **Telescope Plane 1 Telescope Plane Telescope Plane 1 Telescope Plane 2** 2 3 4 3 4 99 **Telescope Plane 1 Telescope Plane 2** Graph 3 4 1.8 1.6 1.4 9 12 7 9 14 16 12 18 DESY 29 AGH

5. Correlation

Changes in Plots

Old Correlation Plot

New Correlation Plot

All clusters are being correlated.

Only clusters with associated tracks are being correlated.

5. Correlation Performance Did it help? 2GeV beam (2 kHz)

Processing Time

Difference in Processing Time [%]

6. New features

The only solution left was to skip the incoming events.

6. New features

Performance with skipping 90 % of events

Processing Time

Difference in Processing Time [%]

7. Summary

Summary

The Online Monitor:

- became a real-time tool
- has new data quality monitoring functionalities
- conducts self-analysis about its performance

We took data necessary for the performance study of the telescope.

BACKUPS

5. Correlation

Tracks per Event plot in the Online Monitor

