Flying phase-retarder set-up and Multiplebeam diffraction experiment at beamline P09 at Petra III

Maxim Polikarpov¹, Gabriel B. M. Fior² ¹ National Research Nuclear University (MEPhI), Moscow, Russia ² Federal University of São Carlos, UFSCar, Brazil DESY Summer Students Session

Hamburg, 5 September 2012

Contents

Part 1: Flying phase-retarder

- Motivation
- Theoretical aspects
- Assembly of the flying phase-retarder (FPR)
- Polarization analysis experiment
- Conclusions and list of improvements of FPR

Part 2: Multiple-beam diffraction experiment

Motivation

Phase-retarder in optic hutch:

- Three fixed crystal pairs
- Energy range: from 3.5 to 8.5 KeV
- UHV vacuum tank

- Want to change crystals easily
- Want energy range >8.5 keV

- Flying phase-retarder

Assembly of the phase-retarder

1) FPR was mounted in the experimental hutch 1 at P09 at PETRA III

2) Two diamond crystals (680 μ m, 640 μ m) for FPR were oriented by back-scattering Laue diffraction and then mounted so that the two (1,1,1) and (-1,-1,1) reflections lie in the ring plane when χ =0

Bragg diffraction and polarization control

Classical theory of X-r Bragg diffraction:

 $n\lambda = 2dsin\theta_B$

Dynamical theory of X-rays: Polarization of the incident beam can be changed by setting the crystal in the transmission Bragg geometry and rocking it near the (1,1,1) Bragg peak.

There are different angular offsets ($\Delta\theta$) for different polarization conditions ($\phi_{\sigma\pi} - phase \ shift$) of the outcoming beam:

$$\phi_{\sigma\pi} = -\frac{\left(\frac{\pi}{2}\right)r_e^2 \lambda_x^3 Re(F_G F_{-G}^*)\sin(2\theta_B)t_{eff}}{\Delta\theta \ (\pi V)^2} \sim \frac{\sin(2\theta_B)t_{eff}}{\Delta\theta}$$

ELECTROMAGNETIC WAVE ATTENTION TO THE ARROW ON THE BOTTOM, INDICATING A **LINEAR POLARIZATION** OF THE WAVE

Determination of the diamond mosaicity

Mosaicity always makes Bragg rocking curve too broad, which can reduce the degree of polarization experiments, when working too close to Bragg diffraction peak.

Mosaicity of diamond crystals was determined from rocking curve in Bragg diffraction experiments at (1,1,1) and (-1,-1,1) reflections in series.

Matlab simulations

In our project, we wanted to provide circular left- or right-handed polarization, which means that total phase shift must be $\pm \frac{\pi}{2}$.

The most comfortable energy range to work with 1/4 WP is 7-10 keV. But what if we want more?

Matlab simulations

Matlab simulations

Deviation angle dependence on energy for 1/8 WP

Deviation angle dependence on energy for $$\frac{1}{4}$$ WP

Polarization analysis

Polarization is defined by *Stokes parameters* P_1 , P_2 , P_3

In our experiment we made the polarization analysis for circular left- and right-polarized light (which was produced by FPR) to determine P_1 , P_2 , P_3

Polarization analysis results using two 1/8 WPs

Energy = 11.568 keV		Circular left-polarized light	Circular right-polarized light
(Pt L _{III} -edge)	P ₁	-0.13 ± 0.02	-0.19 ± 0.03
• P = 0	P ₂	0.02 ± 0.02	0.01 ± 0.02
$\int \frac{D^2 + D^2 + D^2}{D^2 + D^2} = 1$	P ₃	0.991 ± 0.003	0.981 ± 0.006
• $\sqrt{P_1 + P_2 + P_3 - 1}$			

• $I = I_0 (1 + \cos^2(2\theta) + P_1 \cos(2\eta) \sin^2(2\theta) + P_2 \cos(2\eta) \sin^2(2\theta))$

Conclusions

Flying Phase Retarder

- > Assembly of the phase-retarder sucessful circular polarized light can be obtained
- > Sucessful determination of Stokes Parameters P_1 , P_2 , P_3
- > Disadvantages and improvements:

Bigger control of z-position of diamond plate

1-piece composition of goniometer supporter (picture) to guarantee 90° (AP geometry)

Reduce sphere of confusion of chi circle

MBD: Multiple-beam diffraction experiment

- ✓ Basic concepts
- Procedures
- ✓ Results
- Conclusions

Direct determination of P₃: MBD experiment

- $P_{un} = 0$ and $\sqrt{P_1^2 + P_2^2 + P_3^2} = 1$ not always true
- direct measurement of Stokes Parameter P₃ needed
- Possible solution: MBD (Multiple-beam diffraction)
- Procedures: "Complete determination of x-ray polarization using multiple-beam Bragg diffraction", Qun Shen and K. D. Finkelstein, Phys. Rev. B 45 (9), 1992

Direct determination of P₃: MBD experiment

- Definition of ψ
- Map of diffraction planes for a crystal with diamond structure (GaAs in our case) around main reflection H = (2,2,2)
- E = 8,076 KeV
- We found a peak intensity at -84.54 degree => possible indexation: 351/-113

Direct determination of P₃: MBD experiment

- Find the main (H) and the detoured (L) reflections for MBD
- > Rocking the ψ axis near L and for each ψ value rock θ axis
- > Plot integrated (θ rocking) intensity dependence on ψ (asymmetric curve)

Q. Shen, K.D. Finkelstein Phys. Rev. B, 45 (1992)

- Seneration of circular left / right: 400 microns diamonds; 1 single plate at QWP
- GaAs sample (diamond structure), multiple scattering condition around H = (2,2,2), "forbidden reflection"
- Polarization analysis with PG001 to get P1 and P2
- > 1 single equation to solve; one single multiple scattering condition to find

20 18 Interpreting the data: Integrated intensity (normalized) 16 14 MANAM ✓ Check for asymmetric profile 12 10 ✓ Analyze theta scans (movies) CL fscan ✓ Solve the linear system CL_lup 2 Constraint in time : fast scan vs lup scan 0,2 -0,2 0,0 0,4 ψ (mrad) 20 20 18 18 Integrated intensity (normalized) Integrated intensity (normalized) 16 16 14 14 12 12 psi_cent 10 10 CR fscan Clin fscan 8 8 CR lup Clin lup 6 6 2 0 0 0,2 0,3 -0,2 0,0 0,2 0,4 -0,2 -0,1 0,0 0,1 ψ (mrad) ψ (mrad)

2,5

2,0

1,5

1,0

0,0

-0.5

ΔI/I(222) 0,5 y=a+b*x

Slope

No Weightin

0,11332

-0.97534

0.94967

Value

-0.0224

-0,3557

Equation

Weight

Residual Sum of Squares

Pearson's r

Adj. R-Squan

Plotting this intensity difference versus > $1/\Delta\psi$, a linear trend should be obtained

CL night lup line detailed

Standard Error

0.01951

0,0147

2

Equation

Weight

Residual Sur

of Squares

Pearson's r

Adi. R-Souare

0

 \odot deltal

2

Weight

Residual Sum of Squares

Pearson's r

Adj. R-Square

a + b"x

No Weighting

delta

0,0475

-0.98384

0,9668

3

 $v = a + b^*x$

No Weighting

0.009

0.8805

0,78288

Linear Fit of cr psi integral lup deltal Linear Fit of cr psi integral lup deltal

3

0.00522 0.11294

 \odot

rd Error

0,01022

0.0116

Value

Linear Fit of cr psi integral lup deltal Linear Fit of cr_psi_integral_lup deltal

0,03258

-0.42079

0,0158

0.01447

MBD – Results: Solve the linear system

Interpreting the data:

✓ Check for asymmetric profile

✓ Solve the linear system

✓ Analyze theta scans (movies)

 $I_{int} = I B(\phi) \{\cos(\delta) [A_{\sigma\sigma} + A_{\pi\pi} \cos(2\theta)] + P1 \cos(\delta) [A_{\sigma\sigma} - A_{\pi\pi} \cos(2\theta)]$ $+ P2 \cos(\delta) [A_{\pi\sigma} + A_{\sigma\pi} \cos(2\theta)] + P3 \sin(\delta) [-A_{\pi\sigma} + A_{\sigma\pi} \cos(2\theta)] \}$

• When $\delta = 90 \Rightarrow \cos(delta) = 0$; opposite sign of slopes and same magnitude:

$$I_{int} = I B(\phi) \{ P3 \sin(\delta) \left[-A_{\pi\sigma} + A_{\sigma\pi} \cos(2\theta) \right] \}$$

We observe opposite signs but different magnitudes:

Two scenario :

 \Rightarrow δ ≠ 90; We have P1 and P2: P1 and P2 ~ 0; equation simplify as:

 $I_{int} = I B(\phi) \{ \cos(\delta) \left[A_{\sigma\sigma} + A_{\pi\pi} \cos(2\theta) \right] + P3 \sin(\delta) \left[-A_{\pi\sigma} + A_{\sigma\pi} \cos(2\theta) \right] \}$

$= > \delta = 90$; Normalization by I(2,2,2) not done properly ?; look into the data again

OR Look into the theta scan again; another peak in the ψ range: contamination of assymetry profile by another detour reflection ?

Interpreting the data:

- ✓ Check for asymmetric profile
- \checkmark Solve the linear system

✓ Analyze theta scans (movies)

Conclusions

PART 2 - MBD Experiment

> Principle of the experiment understood

- > Rocking curve of GaAs very sharp
- Fast scans rather than lup scans (azimuthal range of investigation limited)
 90° scan would take 30 hours
- > Analysis to be finished

Acknowledgments

>Sonia Francoual, Jörg Strempfer

> David Reuther, Dinesh Kumar Shukla

Thank you for your attention!

