Measurement of the top-quark mass using J/ψ -in-jet candidates at the CMS experiment

Maria Giulia Ratti Università degli Studi di Milano

Supervisors: Maria Aldaya and Sebastian Naumann

September 6th, 2012

• The most precise value of the **top-quark mass** now available (Tevatron, June 2012):

 $m_t = 173.18 \pm 0.94$ GeV

- At the LHC several methods are being used, most of them requiring the full reconstruction of the top event
- An alternative method was suggested (Kharchilava, 1999) and studied for CMS at simulation level (CMS Physics TDR, 2006) but not used in data yet
- It would use final states of $t\overline{t}$ with J/ψ -in-jet candidates

very CLEAN (appealing) but extremely RARE (challenging)

- Simulation studies suggest small systematic uncertainties
- Given the clean signature, the approach is interesting for **high-luminosity** scenarios (increased pile-up)

3

(日本) (日本) (日本)

$t\overline{t}$ production and decay

At the LHC $t\bar{t}$ pairs are **produced** in pp collisions ($\sigma_{t\bar{t}} \approx$ 165 pb at 7 TeV) via:

- gluon gluon fusion (pprox 85%)
- q ar q annihilation (pprox 15%)

In the Standard Model, the top quark decays almost exclusively into W + b \rightarrow the W **decay** modes define the $t\bar{t}$ final states:

- All-hadronic (6 jets)
- Semileptonic (1 lepton + 4 jets)
- Dileptonic (2 leptons + 2 jets)

${\sf J}/\psi$ final states in dilepton channel

- In the **dilepton channel** of $t\bar{t}$, consider the following final state:
- Two hard isolated leptons
- Two neutrinos
 => missing E_T
- Two b quarks => two **b-jets** => one of them $J/\psi \rightarrow \mu^+\mu^-$

- The invariant mass of the two muons + isolated lepton (from the same top) = $m_{J/\psi L}$ is correlated with the top mass
- Generate distributions of $m_{J/\psi L}$ for different values of m_t and compare them to data ==>Template method
- In principle $J/\psi \to e^+e^-$ could also be considered and the semileptonic $t\bar{t}$ channel investigated

Silicon tracker, EM calorimeter, hadronic calorimeter, muon chambers

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Data Samples and Event Selection

- Data: CMS 2011, 4.9 fb⁻¹, 7 TeV
- Monte Carlo: Fall11 MadGraph + Pythia tt sample (64M events)
- Preselection close to standard reference selection for dileptons in CMS
 - Dileptonic triggers
 - Two hard isolated leptons (ee, e $\mu,~\mu\mu$), $p_T>20$ GeV, $|\eta|<2.4$
- Look for opposite-sign dimuon candidates in jets
 - Particle-flow jets, anti- k_T , R=0.5, $p_T > 30$ GeV, $|\eta| < 2.4$

• Dimuons in the jet is like requiring b-tagging

Data Samples and Event Selection

- Data: CMS 2011, 4.9 fb⁻¹, 7 TeV
- Monte Carlo: Fall11 MadGraph + Pythia tt sample (64M events)
- Preselection close to standard reference selection for dileptons in CMS
 - Dileptonic triggers
 - Two hard isolated leptons (ee, e μ , $\mu\mu$), p_T > 20 GeV, $|\eta|$ < 2.4
- Look for opposite-sign dimuon candidates in jets

• Particle-flow jets, anti- k_T , R=0.5, $p_T > 30$ GeV, $|\eta| < 2.4$

	Data	tīt sig (MC)	tīt bkg (MC)	$t\overline{t}$ fraction
Preselection	3462315	21613	142	1%

• Dimuons in the jet is like requiring b-tagging

Data Samples and Event Selection

- Data: CMS 2011, 4.9 fb⁻¹, 7 TeV
- Monte Carlo: Fall11 MadGraph + Pythia *t*t sample (64M events)
- Preselection close to standard reference selection for dileptons in CMS
 - Dileptonic triggers
 - Two hard isolated leptons (ee, e μ , $\mu\mu$), p_{T} > 20 GeV, $|\eta|$ < 2.4
- Look for opposite-sign dimuon candidates in jets
 - Particle-flow jets, anti- k_{T} , R=0.5, p_{T} > 30 GeV, $|\eta|$ < 2.4

	Data	tīt sig (MC)	tīt bkg (MC)	$t\overline{t}$ fraction
Preselection	3462315	21613	142	1%
Dimu-in-jet	525	206	1	39%

• Dimuons in the jet is like requiring b-tagging

${\sf J}/\psi$ mass peak

- Fundamental ingredient is the J/ψ meson (= $c\,\overline{c})$ produced in the b-hadronization

 $J/\psi \to \mu^+\mu^- => J/\psi$ reconstructed candidates from 2 opposite-sign muons in the same jet

• J/ ψ mass (PDG, 2012): 3096.916 \pm 0.011 MeV

• 30.4 \pm 6.1 J/ψ candidates, first time seen in $t\bar{t}$ data

э

伺い イヨン イヨン

- Data: CMS 2011, 4.9 fb⁻¹, 7 TeV
- Monte Carlo: Fall11 MadGraph + Pythia $t\bar{t}$ sample (64M events)
- Preselection close to standard reference selection for dileptons in CMS
 - Dileptonic triggers
 - At least two hard isolated leptons (ee, e μ , $\mu\mu$), p_{T} > 20 GeV, $|\eta|$ < 2.4
- Look for opposite-sign dimuon candidates in jets
 - Particle-flow jets, anti- k_{T} , R=0.5, p_{T} > 30 GeV, $|\eta|$ < 2.4
- Restrict to dimuon candidates in 2.8-3.2 GeV window

	Data	tt sig (MC)	tīt bkg (MC)	tt fraction
Preselection	3462315	21613	142	1%
Dimu-in-jet	525	206	1	39%
J/ψ window	38	18	0	48%

3

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$m_{J/\psi L}$ distribution

- We need to **match** the selected dimuons with the isolated leptons for each event
- In principle we would like lepton and ${\sf J}/\psi$ from the same top
- For statistical reasons we ignore this and consider both possible assignments Two entries per event: one "correct", one "wrong" 38 events → 76 entries

- Simulated mass: 172.5 GeV
- High statistic uncertainties on data
- Data and simulations agree within the uncertainties

$m_{J/\psi L}$ distribution in simulation

- Generate the templates:
 - fit Monte Carlo with Gaussian distribution
 - extract the reconstructed value of $m_{J/\psi L}$ as the mean of the Gaussian
 - repeat the same steps with different simulated top masses

 $m_t = 172.5 \,\, {
m GeV}$

- Simulated mass $m_t = 172.5$ GeV
- Gaussian in range 20 120 GeV
- Unbinned, maximum likelihood

•
$$m_{J/\psi L} = 67.21 \pm 0.66$$
 GeV

$m_{J/\psi L}$ distribution in simulation

 $m_t = 161.5 \, GeV$

- Generate the templates:
 - fit Monte Carlo with Gaussian distribution
 - extract the reconstructed value of $m_{J/\psi L}$ as the mean of the Gaussian

 $m_{t} = 184.5 GeV$

repeat the same steps with different simulated top masses

• Putting things together: correlation between simulated m_t and reconstructed $m_{J/\psi L}$

Good linear correlation

m_t (GeV)	$m_{J/\psi L}$ (GeV)
160.5	63.40 ± 0.75
172.5	67.21 ± 0.66
184.5	73.39 ± 0.77

• The steeper the curve the better

→ < ∃→

э

Comparison to data

• Fit the data with the same shape (Gaussian), extract mean value for $m_{J/\psi L}$, apply MC-based calibration

ightarrow Top mass: 166 \pm 11 (stat) \pm 26 (calib) GeV

• Within the huge statistic uncertainty the measurement is compatible with 173.18 \pm 0.9 GeV (systematics not evaluated)

Best-lepton assignment

Methods to **choose one lepton** to pair with the J/ψ : lower angle wrt J/ψ

Any lepton (two entries)

Lower angle lepton (one entry)

Measurement of the top-quark mass using J/ψ -in-jet candidates Maria Giulia Ratti - Desy SSP 2012

Best-lepton assignment: calibration and results

• Measured top mass in data: 168 \pm 28 (stat) \pm 36 (calib) GeV

- First time seen J/ψ -in-jet candidates in CMS $t\bar{t}$ data
- A preliminary calibration of the $m_{J/\psi L}$ correlation with the top mass is given, without accounting for systematics
- A very preliminary measurement of the top mass is given: 166 ± 11 (stat) ± 26 (calib) GeV. The precision is limited by lack of statistics, both in data and in simulations.
- J/ψ -in-jet candidates could be **promising for other searches** and for b-tagging in particular $(H \rightarrow b\bar{b} \rightarrow J/\psi J/\psi$?) at high luminosities

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A