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LC Tracking Requirements

In all concepts, outer Si tracking part of an integrated tracking system!
* Pattern recognition includes vertex detector (also ECal!)

* Outer silicon tracker has a primary role only in measuring pr.

* Physics requires excellent resolution at all 8, pr. Given B and AR:

. . Ohit(r—
* high pr resolution 1/\/Nhits (r—¢) X Ohit(r—) hit (r—¢)
— material
* low pr resolution oc vVmaterial o< v/ Nhigs minimize it

* forward tracking cannot be an afterthought. Nhits (non r-¢)

* Particle-flow calorimeters to measure jets with exquisite precision.
Must not place material in front of ECal that jeopardizes this mission.

* Cost and complexity should not be ignored.



Shopping List

*Provide coverage as hermetic as possible
*Minimize material/hit
*Minimize single-hit resolution in r-phi

*Minimize number of hits required to
achieve acceptable pattern recognition

*Employ simple, mature solutions where
possible to lower risks and contain costs.



Example: SiD for the ILC

Aggressive performance at a constrained cost

* 5-layer silicon vertexing detector
(~3x10° channels)

* 5-layer silicon microstrip tracker
(~3%107 channels)

* Finely segmented particle-flow
calorimeter with Si-W ECal
(~2x 108 channels)

All inside a 5T solenoid: SiD is
“small” (roughly CMS-sized)

SiD is a “particle flow” detector:
subdetectors work together to reconstruct
the physics objects, including tracks



SiD Tracker Coverage
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Reducing Material/Hit

1.4 | All Tracker

Large silicon trackers (ATLAS, CMS) = Beam Pipe
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* Cooling

* Readout
*Support

*Sensors

This is the primary challenge!




Reducing Power/Cooling: ILC Timing

~1 ms (1312 bunches)

~1 ms (1312 bunches) 199 ms, no beam
front end off

Pulsed operation of front end results in
~ 100X reduction in dissipated power

* Minimizes cable plant and cooling
* The SiD realization is KPiX ASIC
* 1024 channels
e 20 yW/channel avg. = 400 pW/cm?

=~600 W total for 30 million channels:
tracker can be gas cooled

KPiX used in ECal, possibly HCal, Muons also!

Number of Events
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Landau fit

MPV: 3.564
o = 0.60157
Eniries: 3257

10 = 20 25 9
Signal Amplitude [fC]



Reducing Readout Material

~1 ms (1312 bunches) 199 ms, no beam ~1 ms (1312 bunches)
digital section inactive

UBM/bumping/bonding by IZM

KPiX stores signals acquired during a bunch
train in 4 analog buffers

* Hits are time-stamped to individual bunch
crossings, reducing background susceptibility

* Digitization and readout occur between bunch bonded to ECal sensor
trains, minimizing potential for pickup of digital
activity on analog front end.

Along with an enormous repertoire of built-in
capabilities and flexibility of configuration, KPiX may
be bump-bonded directly to sensors




SiD Tracker Module Design

* Two bump-bonded KPiX ASICs with double-metal readout: no hybrid circuit board!

 Single-sensor modules ensure low capacitance = high signal/noise

* negligible single-hit inefficiency reduces reliance upon redundancy in layout
* excellent single-hit resolution provides best possible high-prt resolution

* per-sensor occupancy from physics+noise is small: allows use of single-sided
(r- only) modules in barrel without compromising pattern recognition

Power and readout

KPiX bonding also routed on double-metal
arrays

O

s s bias T
== |l = connection |

=
=

double-metal
traces
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Thinned Sensors?

The last place to pare down material
* High S/N is valuable!
* efficiency
* resolution
* purity (rate of noise hits)
* With 14,000 sensors; keep it simple, cheap
* 300 um, single-sided, p* in n-bulk, <100> Si
* Largest square sensor from 6’ wafer
* Want best resolution for channel count

* 25 micron sense pitch with 50 um readout

= 4-5 um single-hit resolution at high S/N.

resolution vs. readout(sense) pitch (um)
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Minimizing Support Material

Emphasis on mass-producibility, ease of
assembly, handling: conservative w.r.t. material

* Holds silicon flat; provides stable, repeatable mount

* Double-sided with addition of silicon on back side:
forward concept differs only in shape

* Pair of high-modulus carbon-fiber
composite sheets around Rohacell 31 foam

* 0.10% Xo average w/o mounting hardware

* Carbon-fiber reinforced PEEK 11
mounting clips glue to large-scale supports »

13



Minimizing Support Material

Modules tile CF/Rohacell cylinders (like D@, ATLAS):
minimizes material for given rigidity

* Module tilt corrects for Lorentz drift

* FEA results: 7 pm static deflection, fully loaded

:

* 0.3% Xo for solid cylinders: could be ~50% void — 3
1 7\5@& elevation

. . . . R f .

* Endcap disks are of similar construction ay from origin

D@ CFT support cylinder




Power and Readout Services

Spoked support rings host power and data concentrators

* Commercial optical transceivers work fine here for data \

 DC/DC conversion reduces cable plant for power, but...

peak current for tracker during pulses is ~10000 A! \ \
‘.

 Store charge for each pulse (~10 mC) locally on capacitors

* Carefully balance Lorentz forces in remaining cables “ “ H

Technology here is rapidly evolving.

Example: DC/DC charge-pump ASIC (LBNL)

CHG Phase — 10 F
i 5 6 7
£ ||C1 | ||c2 | ||cs B
! I 2 3 I 4 - 2 . 5 V
Vin _£4
T — 8 9 10 =T Load
i = 32 W -sec
DIS Phase — 4 . 5 A
5 6 7
i b Vin 1= 2= 3= c3 c4 — 6 . 8 g
E: & e —_ pomccemmciill | — Load
HH R A c5 \ c1 ] c2 B —,
ek AL only | mV droop during train but adds 0.3% Xo / layer
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SiD Simulation

Scrupulous accounting of
material is critical!

* Included in GEANT:
sensors, chips, cables,
connectors, bypassing, glue,
module supports, module

mounts, overlaps, power
distribution boards, DAQ

radiation lengths (X/Xo)

* Goal 0.8%/layer, currently
0.92%/layer

o Simulation includes overlaid
backgrounds
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Momentum Resolution

High pr resolution is excellent:
e | TeV tracks to 15-25 GeV for 6<30°

* Degrades significantly as 6—-0°

* Multiple scattering still dominates
below ~100 GeV

Low pr resolution is excellent:
|0 GeV tracks measured to 20-200 MeV

* | GeV measured to 2-20 MeV

* Would still benefit from less material!
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Tracking Efficiency Z'; 1ov — qq (uds)

* Efficiency is excellent for pr > | GeV,
reasonably good down to 200 MeV.

* Performance extends to forward region:
small modules, high S/N minimize ghost hits

* pr <200 MeV (VTX-only) is very difficult,
especially in presence of full backgrounds
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Tracking Purity

Rates of incorrectly assigned hits on tracks

(0] 15;};' L L) I L LR A

E - ] Z'; rev —> 44 (uds)

o) E +vy — hadrons + pairs

ch ->-false hits >0

LL 10'1 = o -+-false hits > 1 =
10° E
10-3 C vl | Ll .

0.1 1 10 100
p_ [GeV]

1 I 1 1 1 I
Z', tev —> qd (uds)
+ vy — hadrons + pairs
- p,>1 GeV, false hits >0

-+-p_>1 GeV, false hits > 1 £
totof**lototototorotototorotototolof lojofClol

o
i R i
- % *
' I
| % ol T T -
T
gl TR

* Rate of tracks with incorrect hits is low for pr > 200 MeV

* Stereo information not necessary in barrel, but helpful forward

Z'\ tev — qq (uds)
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How Does the Solution Differ for CLIC?

156 ns (312 bunches) 20 ms, no beam 156 ms (312 bunches)

“CLIC-SiD” is nearly
identical to SiD:

| || || ||
e e (N B B
\| |

- = L —A—

[ [ \ [ \ (. [ [ [ [ [
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* More aggressive timing for
pulsed power

* Believe KPiX scales to 10 ns _ _ - 03;
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CLIC-SiD Efficiency/Purity
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Pixel Trackers?

Some serious challenges to overcome...

STAR HFT “ultimate”

p

 Power:

* pixels must be small in phi for high-pr resolution,
small in z to improve tracking performance

* Small pixels x large area = huge channel counts

= Pror = 100 kW at 0.1 W/cm? = an LHC-sized
power and cooling problem (CMS is 30 kW)

* Assembly:
* Full tracker requires 250000 4 cm? sensors

= Even modest processing on each part incurs costs
that dwarf cost of sensors themselves.

... but in N years many more things will be possible!
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Summary

* The fact that silicon systems have either been low-mass (e.g. B-factory vertex
detectors) or large (hadron colliders) does not mean that large-scale, low-mass
silicon tracking detectors cannot be built

* The experimental environment at energy frontier e+e- colliders lends itself
particularly well to low-mass silicon tracking.

* The outer silicon tracker of the SiD detector concept embodies a set of solutions for
which most of the technical challenges have already been overcome

* We hope to have the problem of needing to complete remaining R&D on an
aggressive timescale.

* While the baseline uses “mature” silicon technologies, commercial process
development fuels rapid changes that will open up additional options in the future.
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