Searches and Evidence: The Quest for the Nature of Dark Matter (Direct Searches)

Uwe Oberlack

Institut für Physik & PRISMA Cluster of Excellence Johannes Gutenberg-Universität Mainz http://xenon.physik.uni-mainz.de

Heraeus-Seminar First Results from the Large Hadron Collider Bad Honnef, Dec. 12, 2012

Outline

- Dark Matter: Evidence, Models, and the Magnificent WIMP
- Direct Detection Technique
- Status of WIMP DM Direct Detection
- XENON Dark Matter Search
- Future

Evidence for Dark Matter in the Solar System ?

times relative to orbits. Sun not to scale.

Evidence for Dark Matter in Spiral Galaxies Scale: ~10²¹ m (10⁵ lightyears)

Rotation curves (orbital velocity vs. galactocentric radius) remain flat well beyond the edge of the visible disk in spiral galaxies.

300

Evidence for Dark Matter in Galaxy Clusters

Scale: ~10²² m (10⁶ lightyears)

- Orbital velocities of galaxies exceed escape velocity estimated from visible mass in galaxies (Zwicky 1933).
- X-ray gas: pressure too great for visible mass. Traces gravitational potential.
- Gravitational lensing: measures total mass distribution in galaxy clusters.

NOAO/Kitt Peak: Uson, Dale NASA/CXC/IoA: Allen et al.

Evidence for Dark Matter from Cosmology

- Cosmic Microwave Background.
 - \rightarrow Uniformity at age 380,000 yr.
 - \rightarrow Flatness of the universe (with H₀)
 - Baryon density, etc.
- Supernovae as standard candles.
 - Expansion history of the universe.
- Galaxy surveys (wide or deep) and Simulations of structure formation.
 - \rightarrow Large scale structure.
 - \rightarrow Early structure formation. First stars. Quasars and galaxies.
- Big Bang Nucleosynthesis and light element abundances observed in the early universe.
 - → Limit on baryon density, consistent with CMB.
- Galaxy clusters
- **Baryon Acoustic Oscillations**
 - → standard ruler

TODAY

Dark

72%

(10¹⁰ lightyears)

Heraeus-Seminar Bad Honnef - 12-12-12

Atoms

4.6%

Dark

Matter

23%

Dark Matter Detection Methods

- Astrophysics / Cosmology: Gravitational Effects.
 - Rotation curves of spiral galaxies
 - Orbital velocities of galaxies in clusters (Zwicky 1933)
 - Colliding clusters (Bullet cluster)
 - CMB, large scale structure, lensing
- Direct Detection:
 - WIMP scattering
 - ► Axion searches, ...
- Indirect Detection: from annihilation or decay
 - Cosmic rays PAMELA positrons?
 Fermi, ATIC, HESS electrons? Anti-deuterons?
 - Neutrinos
 - Gamma-rays
- Accelerator-based Creation and Measurement:
 - Missing energy / momentum (+ jets + lepton(s))
 - Search for (possibly) DM-related particles (SUSY, extra dimensions, dark photon)

What do we know about Dark Matter?

- Gravitationally interacting
 How we know about Dark Matter
- Stable or long-lived

 $\Omega_{_{DM}} = 0.23$

- Cold or warm not hot (relativistic) Structure formation, CMB
- Non-baryonic
 CMB, Big Bang nucleosynthesis
- Electrically neutral
 <u>Dark</u> Matter

The Standard Model

Three Generations of Matter

Dark Matter requires physics beyond the Standard Model.

What do we know about Dark Matter?

 10^{24} Gravitationally interacting 10^{21} 10^{18} DMSAG Sub-panel HEPAP / AAAC, 2007 How we know about Dark Matter 10¹⁵ Stable or long-lived 10^{12} Q-ball 109 Ω_{DM} = 0.23 60 orders of magnitude 10^{6} Black Hole Remnant 10^{3} Cold or warm - not relativistic 10⁰ 10^{-3} Structure formation, CMB (dd) neutrinos WIMPs : wimpzilla 10⁻⁶ neutralino 10⁻⁹ Non-baryonic g. int KK photon branon -12 10 CMB, Big Bang nucleosynthesis 1 TP 10⁻¹⁵ 10⁻¹⁸ Electrically neutral 10⁻²¹ **Dark** Matter 10⁻²⁴ axino axion 10⁻²⁷ SuperWIMPs : Additional constraints from 10⁻³⁰ fuzzy CDM gravitino 10⁻³³ accelerator searches, direct and KK graviton 10⁻³⁶ indirect searches. 10-39 $10^{-33}10^{-30}10^{-27}10^{-24}10^{-21}10^{-18}10^{-15}10^{-12}10^{-9}10^{-6}10^{-3}10^{0}10^{3}10^{6}10^{9}10^{12}10^{12}10^{15}10^{18}$ mass (GeV)

This still leaves many options.

~ 50 orders of magnitude

Where to start? Look for "well motivated" candidates.

Weakly Interacting Massive Particles (WIMPs): A thermal relic at just the right density

Boltzmann equation:

$$\frac{dn_{\chi}}{dt} = -3 H n_{\chi} - \langle \sigma_{\text{eff}} v \rangle (n_{\chi}^2 - n_{\chi, \text{eq}}^2)$$

Decrease due to universe expansion

1 kT \gg m_xc²: equilibrium of WIMP pair creation and annihilation

$$\chi + \chi \leftrightarrow f + f$$
 etc

- 2 kT<m_xc²: WIMP creation suppressed by factor exp(-kT/m_xc²).
- 3 Weakly Interacting: freeze out when annihilation rate drops below expansion rate: $H > \Gamma_{ann} \sim n_{\chi} < \sigma_{a} v >$

results in **relic density**:

If m_x and σ_a related to the electroweak scale $\rightarrow \Omega_x h^2 \sim O(0.1)$ \checkmark "WIMP miracle" **Massive** particles: average WIMP velocity is non-relativistic. \rightarrow Cold Dark Matter Uwe Oberlack Heraeus-Seminar Bad Honnef - 12-12-12

A word on WIMPs

- Weakly interacting massive particles are just what the name says:
 - weakly interacting
 - massive
 - particles
- These are still quite generic properties and not tied to a specific model.
- The poster child and by far best studied WIMP has been a SUSY LSP in the form of a neutralino.
- However, one should not forget that there are other models that can produce WIMPs, e.g., Universal Extra Dimensions preserving Kaluza-Klein parity.

Indirect Dark Matter Searches Tracing Products of DM Annihilation or Decay

WIMP Pair Annihilation Flux

Rate of WIMP annihilations in a volume

 $dV = s^2 d\Omega ds$: $\langle \sigma_a v \rangle \frac{n_{DM}^2}{2} dV$ Number of WIMP pairs in dV: N(N-1)/2

leads to contribution in flux through an area dA perpendicular to the line of sight:

Intensity (per unit area, time and solid angle): from integral along line of sight

$$I(E,\theta) = \frac{\langle \sigma_a v \rangle}{8 \pi m_{DM}^2} \frac{dN_{\gamma}}{dE} \int \rho_{DM}^2 ds$$

Number of photons per annihilation in Energieintervall dE: $\frac{dN_{\gamma}}{dE} = \sum_{f} \frac{dN_{f}}{dE} b_{f}$ (spectra from particle physics model):

sum over all pair annihilation final states with photon spectra $\frac{dN_f}{dE}$ and branching ratio b_f

Uwe Oberlack

Heraeus-Se

13

Fermi: Gamma Radiation at GeV Energies

⁷ incoming gamma ray

electron-positron pair

Uwe Oberlack

Dwarf Spheroids probed in Gamma-Rays

H.E.S.S. MAGIC Veritas

Combined analysis of Milky Way satellites with Fermi Maja Llena Garde, Fermi Symp. 2011

• Relevante Grenzen bei niedrigen WIMP-Massen für zwei Zerfallskanäle

Indirect Searches – Upper Limits

Figure 6: Time evolution of limits. References: EGRET Draco [196]; Fermi Dwarfs [85]; Fermi Halo (CPS) [95]; Fermi Halo (col.) [118]; Whipple Draco [105]; Veritas Willman I [111]; Veritas Segue I [197]; CTA Segue I and GC [195]; HESS GC [115]; EGRET $\gamma\gamma$ [123]; Fermi $\gamma\gamma$ 1yr [124]; Fermi $\gamma\gamma$ 2yr (VW) [125]; Fermi $\gamma\gamma$ 2yr (col.) [126]; GAMMA-400 [35].

Torsten Bringmann, Christoph Weniger arXiv:1208.5481

Indirect Searches – The Fermi "130 GeV Line"

Outline

- Dark Matter: Evidence, Models, and the Magnificent WIMP
- Direct Detection Technique
- Status of DM Direct Detection
- XENON Dark Matter Search
- Future

z=0.0

Via Lactea 2 (2008) http://www.ucolick.org/~diemand/vl

Galactic Dark Matter

80 kpc

WIMP Dark Matter Direct Detection

- Scattering of WIMPs χ off of nuclei A. \rightarrow nuclear recoil
 - elastic or inelastic?
 - spin-independent (~A²) or spin-dependent?
- Energy spectrum:

- $m_{\chi} \sim 10 10^4 \text{ GeV/c}^2$, $\mu = (m_{\chi} m_n)/(m_{\chi} + m_n)$
- ▶ v_x ~ 230 km/s
- "Ŝtandard" spherical halo:
 Featureless recoil spectrum <E> ~ O(10 keV)
- ▶ ρ_{χ}/m_{χ} : local number density of WIMPs $\rho_{\chi} \sim 0.3 \text{ GeV/c}^2/\text{cm}^3$, $\rho_{\chi}/m_{\chi} \leq 10 / \text{ L}$
- σ_s cross section per nucleus.

Typical rate < 10⁻³ events / kg / day

Heraeus-Seminar Bad Honnef - 12-12-12

R(kpc)

WIMP-Nucleon Scattering, Nuclear Form Factor

Spin-independent scattering **Zero momentum transfer**:

 $\sigma = \frac{4 \ \mu^2}{\pi} \left[Z \ f_p + (A - Z) \ f_n \right]^2 \quad \begin{array}{l} \text{coherent} \\ \text{scattering} \\ \text{reduced mass} \quad \mu = \frac{m_{\chi} \ m_N}{m_{\chi} + m_N} \quad \begin{array}{l} m_{\chi} \ll m_N : \mu \approx m_{\chi} \\ m_{\chi} \gg m_N : \mu \approx m_N \\ f_p \ , \ f_n : \text{scattering amplitudes protons, neutrons} \\ \text{usually:} \quad f_p \approx f_n \Rightarrow \sigma \propto A^2 \end{array}$

Finite momentum transfer: Form factor ↔

Fourier transform of nuclear density

$$F^{2}(q) = \left| \int \rho(r) \exp\left\{ i \frac{\vec{q} \cdot \vec{r}}{\hbar} \right\} dr \right|^{2}$$
$$= \left(\frac{3 j_{1}(qR_{1})}{(qR_{1})} \right)^{2} \exp\left[-(qs)^{2} \right]$$

Momentum transfer: $q = \sqrt{s} m_N E_r$ j_1 : first spherical Bessel function $R_1 = \sqrt{R_0^2 - 5 s^2}$, $R_0 \approx 1.2 \text{ fm } A^{1/3}$, $s \approx 1 \text{ fm}$ Helms form factor density profile $\rho(r) = \int_{\text{volume}} \rho_0(\mathbf{r}')\rho_1(\mathbf{r} - \mathbf{r}')d^3x'$ $\left\{\frac{3}{4-3}, r < r_n\right\}$

$$\rho_0(r) = \begin{cases} 4\pi r_n^3 & r > r_n \\ 0 & r > r_n \\ \\ \rho_1(r) = \frac{1}{(2\pi s^2)^{\frac{3}{2}}} e^{-r^2/2s^2} . \end{cases}$$

Heraeus-Seminar Bad Honnef - 1

22

SUSY – MSSM

WIMPs have been most extensively studied in the SUSY framework, but numerous other theories can provide WIMPs too.

MSSM: Minimal Supersymmetric Standard Model

• 105 (!) additional physical parameters: (e.g., PDG http://pdg.lbl.gov/, Supersymmetry Part I) Masses (scalar masses, gauginos) Requires (at least) 2 Higgs bosons in the SM + 2 Higgsinos CP phases Mixing angles (e.g., for neutralinos & charginos), ...

Standard-Teilchen

SUSY-Teilchen

Uwe Oberlack

WIMP Scattering Cross Sections

Example SUSY (direct searches are sensitive to other models as well)

- Cross sections χ quark and χ gluon with various SUSY models cover large parameter space: constrained by accelerator and direct search experiments, and cosmology.
- Spin-independent interactions: coupling to mass of nucleus. Coherence $\rightarrow \sigma \propto A^2$

- **Spin-dependent** interactions: coupling of spins of nucleus and neutralino.Interactions with paired nucleons in the same energy state cancel.
 - \rightarrow no A² enhancement

 $\sigma \propto (\text{J+1})/\text{J}$

Complementarity in Dark Matter Searches: Direct Searches, Indirect Searches, and the LHC

Constrained Minimal Supersymmetric Standard Model CMSSM / mSUGRA

• Reduction to 5 additional parameters defined at the GUT scale (~10¹⁶ GeV):

m₀: universal supersymmetry-breaking scalar mass

m_{1/2}: universal supersymmetry-breaking gaugino mass

A₀: universal supersymmetry-breaking trilinear scalar interaction

tan β : ratio of vacuum expectation values of two (required) Higgs doublet sign(μ). μ : mass of supersymmetric higgsinos.

Value(µ) determined by electroweak symmetry breaking (EWSB)

• Renormalization group equations determine sparticle mass spectrum at low energies.

Direct Searches and the LHC in the CMSSM

"Consequently, looking beyond the CMSSM and NUHM1, ..., not only seems timely now, but mandatory."

O. Buchmueller et al. arXiv:1207.7315

Naturalness of SUSY WIMPs

Ph. Grothaus, Manfred Lindner, Y. Takanishi, arXiv:1207.4434

- pMSSM with 11 free parameters: $\tan \beta$, M_1 , M_2 , M_3 , M_A , μ , $m_{\tilde{\ell}_L}$, $m_{\tilde{\ell}_R}$, $m_{\tilde{q}_{1,2}}$, $m_{\tilde{q}_3}$, a_0
- Measure for naturalness: Δ_{tot}

 $m_Z^2 = \frac{|m_{H_d}^2 - m_{H_u}^2|}{\sqrt{1 - \sin^2 2\beta}} - m_{H_u}^2 - m_{H_d}^2 - 2|\mu|^2$

$$\Delta_{\text{tot}} \equiv \sqrt{\sum_{p_i = \mu^2, b, m_{H_u}^2, m_{H_d}^2} \{\Delta p_i\}^2}$$
$$\Delta p_i \equiv \left| \frac{p_i}{M_Z^2} \frac{\partial M_Z^2(p_i)}{\partial p_i} \right| = \left| \frac{\partial \ln M_Z^2(p_i)}{\partial \ln p_i} \right|$$

Complementarity in the pMSSM

- cm⁻² • **pMSSM:** "SUSY without 10⁻³⁸ covered by indirect dark matter prejudice": 19 free parameters search experiments at the weak scale section 10-40 IceCube 1800 days Spin-dependent scattering 10-42 cross section Cross covered by dire (indirect search with neutrinos, ^ch 10-44 direct search) က ea Ú spin-dependent **10**⁻⁴⁶ Spin-independent scattering > 90% of all DARWIN cross section (direct search) matter models covered 10-48 Test of models beyond the (LHC 10 fb⁻¹) **10**⁻⁵⁰ SM (accelerator search) 10-52 10-50 10-48 10-46 10-44 10-42 spin-independent cross section cm⁻²
- plus: Annihilation / Decay
 (indirect searches γ, ν, CR)

When DM is discovered:

- Independent measurements for confirmation.
- Measurements of properties: understanding its nature.

Backgrounds in Direct DM Search

Cross-sections are *very* small: <10⁻⁴⁴ cm² or 10⁻⁸ pb (spin-independent)

10⁶

10⁵

 10^{4}

 10^{3}

 10^{2}

10¹

Vluon Intensity [m² yr⁻¹]

Without background, sensitivity ∞ (mass × exposure time)⁻¹

With background subtraction \propto (M t)^{-1/2} until limited by systematics.

Backgrounds:

Gamma-rays & beta decays:

~100 events/kg/day Need very good β and γ background discrimination. Shielding: low-activity lead, water, noble liquids (active), liquid N₂, ...

Neutrons from (α, n) and spontaneous fission (concrete, rock, etc.):

~ 1 event/kg/day (LNGS) Neutron moderator (polyethylene, paraffin, ...)

Neutrons from CR muons:

Rate depending on depth. µ-veto, n-veto, shielding

α decays from natural decay chains

surface effects, recoiling nucleus

1 1 1 1

DM Detector Overview Detection Principles

Outline

- Dark Matter: Evidence, Models, and the Magnificent WIMP
- Direct Detection Technique
- Status of DM Direct Detection
- XENON Dark Matter Search
- Future

Have we detected Dark Matter?

DAMA/LIBRA

R. Bernabei et al. arXiv:0804.2738, arxiv:1002.1028

- Successor of DAMA/Nal experiment
- 5x5 array of 9.7 kg Nal(TI) crystals viewed by 2 PMTs each.
- PMTs with single photoelectron threshold, operating in coincidence.
- Total mass:
 - DAMA/Nal 1996-2002: ~100 kg
 - DAMA/LIBRA 2003-2008: 232.8 kg
 - DAMA/LIBRA: since 11/2008: 242.5 kg
- Heavy shield:

>10 cm of Cu, 15 cm of Pb + Cd foils, 10/40 cm PE/paraffin, ~1 m concrete

Radon sealing

DAMA/LIBRA Annual Modulation

R. Bernabei et al. EPJ C 56, 333 (2008), arxiv:0804.2741 EPJ C 67, 39 (2010), arxiv:1002.1028

60°

kmis

- ~250 kg of Nal counters
- 1.17 ton-year exposure (2010)
- Modulation in 2-6 keV single hits: 8.9 σ
- Mostly in 2-4 keV, ~0.02 cts/d/kg/keV
- Total single rate ~1 cts/d/kg/keV
- Standard DM distribution: < ~5% modulation
- Period & phase about right for DM.
- No annual modulation in 6-14 keV.
- No annual modulation in multiple hits. (which?)
- DM detection?
- Conflict with other experiments in standard scenarios that test the larger steady state

December

Uwe Oberlack

30 km/s

Drukier, Freese, Spergel PRD 86 Freese et al. PRD 88

June

Low Mass WIMPs? Inelastic Dark Matter? Luminous DM?

... or some yet to be understood detector or background effect?

CoGeNT

- Single P-type point contact (PPC) Germanium detector: 440 g mass, 330 g fiducial (CDMS: 250 g per detector) Low electronic noise, hence low threshold (0.4 keVee)
- Located in Soudan mine (2100 mwe)
- Passive shield + Muon veto

CoGeNT: What are these low-energy events? arxiv:1106.0650, arxiv:1208.5737

12

CDMS (SUF)

CDMS (Soudan)

11

10

CoGeNT: Annual Modulation?

arxiv:1106.0650

- 145 kg day exposure
- ~2.8 σ effect
- solid line: expected DM phase
- dotted line: best fit

CRESST II: Phonons + Scintillation

CRESST

Cryogenic Rare Event Search with Superconducting Thermometers

light + phonons (scintillating crystals)

Max-Planck-Institut München, TU München Universität Tübingen, Oxford University, Gran Sasso

Transition Edge Sensors (TES) superconducting phase-transitionthermometer tungsten Tc~15mK

 ΛT

CRESST II: What are these excess counts?

- Data from 9 CaWO₄ detectors
- Exposure: 730 kg d
- 57 events observed in O-band (in allen Detektoren)
- Acceptance region (detector specific): O-band in ~10-40 keV
- Background estimated from sidebands:
 - α-events: 9.3
 neutrons (generate mostly O-recoils):
 17.3
 e/γ leakage: 9.0
- Excess events not explained by modeled background: 4.6 σ (?)
- Hint of low-mass WIMPs? best fit: M_x ~ 13 GeV/c², σ ~ 3×10⁻⁵ pb = 3×10⁻⁴¹ cm² confidence region?
- Systematic background uncertainty?

^{ad Henne}Further background reduction ⁴¹

Low Mass WIMPs?

... or yet to be understood detector or background effects?

Spoiling the party: Limits

CDMS-II: Phonons + Charge (Cryogenic Germanium)

- Located at Soudan mine (Minnesota)
- Ge crystals operated at ~40 mK
- Fast phonon read-out with Tungsten Transition-edge sensors (TES) direct measurement of nuclear recoil energy SQUID Readout
- Low-voltage drift for charge read-out e.m. background suppression with charge / phonon ratio
- Suppression of surface events with phonon timing signal

CDMS-II Spin-Independent Limit

- 2 events observed after all cuts.
- Pre-opening background estimate: 0.6 events
- Revised estimate: 0.8 +/- 0.1 events •
- 23% chance for background. .
- CDMS-II completed. •
- Next phase: Super-CDMS (15 kg) at Soudan mine construction and first operation in parallel

Science 327, Issue 5973, 1619 (2010)

10⁻⁴¹

Heraeus-Seminar Bad Honnef - 12-12-12

Outline

- Dark Matter: Evidence, Models, and the Magnificent WIMP
- Direct Detection Technique
- Status of DM Direct Detection
- XENON Dark Matter Search
- Future

France, Germany, Israel, **The XENON Collaboration** Netherlands, China (Xe100 only) AIZ UNIVERSITY of COMBRA Columbia UCLA Zürich LNGS SJTU Rice Coimbra (Xe100) JGU NI Jubatech Westfälischie Wilhelms-Universität מכוז ויצביז לבדע MILWETTE Subatech Mainz Nikhef Heidelberg Münster Bologna Weizman

USA, Switzerland, Portugal, Italy,

The XENON Program

GOAL: Explore WIMP Dark Matter with a sensitivity of $\sigma_{s_1} \sim 10^{-47}$ cm².

Requires ton-scale fiducial volume with extremely low background.

CONCEPT:

- Target LXe: excellent for DM WIMPs scattering. Sensitive to both axial and scalar coupling.
- Detector: two-phase LXeTPC: 3D position sensitive, self-shielding
- Background discrimination: simultaneous charge & light detection.
- PMT readout with >3 pe/keV.
 Low energy threshold for nuclear recoils (~6-8 keV).

PHASES:

R&D	XENON10	XENON100	XENON1T
Start: 2002	2005-2007	2007 →	$2011 \rightarrow DM$ search 2015
-			
	Proof of concept.	Ongoing DM search.	Technical design studies.
	Total mass: 14 kg	Total mass: 170 kg	Total mass: ~ 3 t
	15 cm drift.	30 cm drift.	1 m drift.
	Best limit in '07:	Best limit in '11, '12:	Goal:
	$\sigma_{_{\rm SI}}$ ~10 ⁻⁴³ cm ²	2012: σ _{si} ~ 2 x 10 ⁻⁴⁵ cm ²	σ _{si} ~ 2 x 10 ⁻⁴⁷ cm ²

Liquid Xenon for Dark Matter Search

- Large atomic number A~131 best for SI interactions (σ~A²). Need low threshold.
- ~50% odd isotopes: SD interactions If DM detected: probe physics with the same detector using isotopically enriched media.
- No long-lived isotopes. Proven Kr-85 reduction to ppt level.
- High Z (54) and density: compact & self-shielding
- Scalability to large mass for σ~10⁻⁴⁷ cm² ~ 1 evt/ton/yr.
- "Easy" cryogenics (-100°C).
- Efficient and fast scintillator.
- Background discrimination in TPC. Ionization/Scintillation 3D imaging of TPC

The Liquid Xenon Dual Phase TPC Ionization + Scintillation

- Wimp recoil on Xe nucleus in dense liquid (2.9 g/cm³)
 → Ionization + UV Scintillation
- Detection of primary scintillation light (S1) with PMTs.
- Charge drift towards liquid/gas interface.
- Charge extraction liquid/gas at high field between ground mesh (liquid) and anode (gas)
- Charge produces proportional scintillation signal (S2) in the gas phase (10 kV/cm)
- 3D position measurement: X/Y from S2 signal. Resolution few mm. Z from electron drift time (~1 mm).

Background Discrimination in Dual Phase Liquid Xenon TPC's

Ionization/Scintillation Ratio S2/S1

3D Position Resolution: fiducial cut, singles/multiples

XENON100 (2007 –)

- 100 times lower background than XENON10
 - Material screening
 - Active LXe Veto
 - Low activity stainless steel
 - LXe self-shielding
 - Upgrade of XENON10 shield (Cu, water)
 - Cryocooler/Feedthroughs outside shield
- ~7 times larger target mass
 62 kg LXe target, 165 kg total
- New PMTs with lower activity and high QE total: 248 PMTs
 PRL 107, 131302 (2011)
- Improved electronics, grids, ...
- 100 live days DM search Jan June 2010 PRL 107, 131302 (2011)
 225 live days DM search Feb 2011 Mar 2012

Uwe Oberlack

XENON100 2012 Result

Comparison with 2011 result:

- Factor ~2.5 live time: 225 d
- reduced trigger threshold lower energy threshold: $8.4 \rightarrow 6.6 \text{ keV}_{nr}$
- reduced ⁸⁵Kr background 400 ppt → 19±4 ppt dominant bgd in 2011, now negligible

XENON100 – 2012 Result

- 224.6 live days, fiducial mass 34 kg. → raw exposure: 7636 kg×d
- Energy window: 3 30 PE S1 / 6.6 43.3 keVnr
- Profile Likelihood limit based on side-bands from calibration. Blind analysis.
- Extremely low electromag. background: (5.3±0.6)×10⁻³ events/(keVee kg day) in DM region
- Best SI upper limit. σ_{SI} = 2.0×10⁻⁴⁵ cm² @ 55 GeV/c² (90% CL)
- SUSY (CMSSM) parameter space further constrained in updated models incl. LHC limits.
- Strong tension with low mass WIMP interpretation for DAMA, CoGeNT, CRESST

Comparison with cuts-based analysis: 3-20 PE

- Observed after all cuts: 2 events.
 Expected background: (1.0 ± 0.2) events.
- Weighted effective exposure for 100 GeV WIMP:

arXiv:1207.5988 PRL 109, 181301 (2012) 2011 result: PRL 107, 131302

Status in WIMP DM Sensitivities (2012)

Outline

- Dark Matter: Evidence, Models, and the Magnificent WIMP
- Direct Detection Technique
- Status of DM Direct Detection
- XENON Dark Matter Search
- Future

Future Developments

Noble Liquids

• LXe:

XENON100 (taking data) XMASS (scintillation only, construction completed) LUX (commissioning) XENON1T (start construction 2012)

• LAr:

ArDM (commissioning underground) Mini-Clean (scint., under construction) DEAP-3600 (under construction) DarkSide-50 (under construction)

LXe & LAr Generation 3: DARWIN (R&D)

Cryogenic Germanium

• USA:

Super-CDMS (under construction) GeoDM (R&D)

• Europe:

Edelweiss-3 (under construction) EURECA (R&D) cryogenic Ge and crystals (?)

Superheated liquids COUPP (60 kg under construction) PICASSO

XENON1T (2011-2015)

- Liquid xenon TPC to explore $\sigma \sim 2 \times 10^{\text{-47}} \mbox{ cm}^2$
- Detector size: 1 m³, 3 t LXe, 1 t fiducial mass 300 PMTs (3")
- Water Cherenkov Muon Veto
- Hall B @ LNGS, Italy, approved by INFN
- Funded
- Construction start: fall 2012 very soon!
- First Dark Matter results expected in 2015

The Future of Direct Dark Matter Searches (next ~5 years)

DARWIN

Dark Matter WIMP Search with Noble Liquids

R&D and design study for an "ultimate" noble liquid Dark Matter facility in Europe

Goal:

Measurement of DM properties with sensitivity of ~10⁻⁴⁸ cm²

- limited by solar neutrinos

→ Measurement of p-p neutrinos with % precision (factor 200 NR/ER suppression)

Requirements: ⁸⁵Kr (^{nat}Kr < 0.1 ppt) ²²²Rn < 0.1 μ Bq/kg

25 groups from ArDM, DarkSide, WARP, XENON Europe: UZH, INFN, ETHZ, Subatech, Nikhef Germany: Dresden, KIT, Mainz, MPIK, Münster Israel: WIS USA: Columbia, Princeton, UCLA, Arizona SU

darwin.physik.uzh.ch

Outlook

Summary

- Rapid progress in Dark Matter direct searches:
 - Sensitivity advanced by 3 orders of magnitude in the last decade, increasing pace.
 - Noble liquid detectors now setting the pace in sensitivity.
- Confusing results in direct searches in the last couple of years:
 - CoGeNT, CRESST excess events & DAMA/LIBRA annual modulation: Low mass WIMPs? Or poorly understood backgrounds?
- XENON100: world-leading sensitivity.
 - Upper limit on (spin-independent) WIMP-nucleon cross-section $\sigma_s = 2.0 \times 10^{-45} \text{ cm}^2$ @ 50 GeV/c² (90% CL)
 - 2012: Factor 3.5 improvement over previous XENON100 limit, factor 20 over other experiments.
 - XENON100 (& others) in conflict with the low mass WIMP interpretation.
 - Inelastic DM (nearly) ruled out as explanation for annual modulation in DAMA/LIBRA.
 - New SD limit (world-best for pure neutron coupling)
- The future looks exciting:
 - New experiments in direct searches on the horizon.
 XENON1T starting construction. Pushing another 2 orders of magnitude in sensitivity.
 - Rapid progress at the LHC: Limits on new physics improving fast. No hint for SUSY yet. CMSSM feeling the heat.
 - New results in indirect searches: hints and limits.
 Fundamental problems of background subtraction remain.
- If DM consists of WIMPs we will likely find hints of them within the next 5 years. Uwe Oberlack Heraeus-Seminar Bad Honnef - 12-12-12 Thank you for your attention! 63