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Standard – Model  
of Particles and Forces 

Particle Physics: 
•  Quarks  
•  Leptons 
•  Force carriers:  
   γ, W, Z, Gluons 
•  Higgs  
 
elementary,  
no inner structure 
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Symmetries 
Standard-Model:  Symmetries in Quantum Mechanics 
•  Properties of fields  
    à Prediction of forces and their properties !! 
•  Analogy: Rotation of a ball à Phase of a wave 

 
Examples for Predictions,  
Discoveries & Nobel Prizes 
•  Weak and Strong Force 

•  3rd Neutrino,   Quarks: charm, top 

•  W, Z, Gluon 

•  Successful for ALL experiments  

•  Higgs ?? 

Problem:  
•  Difference between particles ? 

•  Masses are forbidden   
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Symmetry – Breaking 
„Symmetry is Art 	


without Phansatie“	



(unknown) 

Masses of known particles 

Higgs-mechanism 
•  Vacuum breaks Symmetry 
à W, Z masses predicted 
à Quark & Lepton masses possible 
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Critisism of the Standard Model 
Success: 
•  Few principles:  Relativity + Quantum Physics  

           Symmetry + Symmetry-breaking 
•  Predictions of several new Particles 
•  Predicts all laboratory measurements (Higgs? ) up to now 
•  Complete description of laws of nature ?  (first time since 1870?) 

Problems: 
•  17 Particles, 26 constants of nature, for 5% of energy density  

•  22 constants only due to Higgs !! 
     Explanation or parameterization ? 

•  High energy limit à quantum corrections 

•  No explanation for dark matter/energy 

•  No explanation for baryon asymmetry 
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The Big Questions 
Are the known particles elementary ? 
•  No size, no excitations ? 

 
Is the new particle a Higgs boson ? 
•  Could be just the first… 

Is the Standard-Model valid ? 
•  Few constants à many measurements ? 

Why just these particles ? 
•  New gauge bosons, fermions ? 
•  Grand Unification 

What is dark matter 
•  New conserved quantum number ? 

Are there other principles ? 
•  New fermion-boson symmetries… 
     Supersymmetry 
•  New space-time dimensions… 

21 Zusammenfassung
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The Large Hadron Collider at CERN 
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Why there is a breakthrough 
LHC: 

•  Magnet technology:  2 à 8 à 14 TeV 
•  pp - Luminosity: 20 à 3000 fb-1 

Detectors:  (ILC) 
•  Tracking at high particle fluxes 
•  Si- detectors, Calibration  

Parton densities:  (ILC) 
•  HERA experiments 

Theory (QCD):   (ILC) 
•  Higher order, or many particles 

“Sea”	
  

“Valence”	
  

Cross sections at the LHC 



Inh 

CMS Detector 
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mjj = 4,69 TeV 
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Are Particles elementary ? 

!P " !x = !c =2 "TeV "10#19m

2-jet 
top-pairs 

Point-like vs. Composite Quarks:  Scattering at high Pt 
Uncertainty relation 

•  Rate at high PT as predicted for pointlike particles 
à no internal “radius” of quarks found 

•  No resonances seen: 
à No excitations found up to   mq* > 3.84 TeV   
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Symmetrie - Breaking 

Postulate by Peter Higgs und others (1964): 
•  New field, which is not zero even in vacuum 
•  Particles interact with the field and obtain an effective mass 
•  à eq. of motions like those of a particle with mass 
•  à Mass explained as coupling to Higgs field  

  m = λ * vHiggs       (v = Higgs – field in vacuum) 
•  Exp. proof: Excitation of Higgs field à Higgs particle 
•  Analogy: Movement in water 
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Higgs  Formalism 

Vacuum is filled with Higgs – field = v 
Mass derived from coupling to Higgs à 1 value / fermion 

Higgs - Potential

V(Φ) = µ2Φ2 + λΦ4 Φ(x) = v +H(x)

H-W Interaction → W-Mass

L = g
2Φ2

W
2 = g

2
v
2
W

2

� �� �
Mass

+g
2
vHW

2 + g
2
H

2
W

2

� �� �
Interaction

MW =
1

2
gv → v = 246GeV

Higgs-Electron Interaction → Elektron-Mass

L = ceΦe
2 = ceve

2 + ceHe
2

Me = cev → ce = Me/246GeV

1
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Search for the Higgs - Particle 
Production of Higgs – Particle 
•  Requires particle with high coupling ~mass:  top quark 
•  à multi-stage process  
    à small rate (1/min) 

 
Detection via decay products 
•  p p à H à Z Z à e+e- e+e-  

•  p p à H à Z Z à e+e- µ+µ-  , ... 

•  p p à H à W W 
•  p p à H à W W à Photons 

 
Similar final states without Higgs 
•  Much more frequent  

à  Search for excess of events with similar mass  
à  Calculate probability that a new particle is needed 

Die totale Breite (siehe Abbildung) spiegelt also bei kleinen Massen des Higgs die

Proportionalität zu m
2
b

und MH wieder. Bei MH < 130 GeV ist die Breite deutlich

kleiner als 1GeV. Rekonstruiert man die Masse des Higgs aus seinen Zerfallsproduk-

ten ist daher in diesem Bereich die natürliche Breite vernachlässigbar klein gegenüber

der experimentellen Auflösung.

Ab ca. 160 GeV ergibt sich ein starker Anstieg durch Zerfälle in W und Z. Auch

schon knapp unterhalb der kinematischen Schwelle (z.B. für H → W
+
W

−
, wenn

die W -Bosonen nur virtuell erzeugt werden können), kann ein Zerfall dominieren,

wenn die Unterdrückung durch den Propagator des virtuellen Teilchen durch die

viel größere Kopplung (hier HWW -Kopplung) mehr als ausgeglichen wird. Dies ist

inbesondere wichtig für Teilchen mit großer Breite, also für die Zerfälle

H → WW
∗
, ZZ

∗
, tt̄

∗

Da Photonen und Gluonen masselos sind koppeln sie nicht direkt an das Higgs-Boson.

Trotzdem sind Zerfälle

H → γγ

und

H → gg

über Schleifen von Fermionen und Bosonen möglich. Solche Beiträge können dann

auch in der Produktion wichtig sein.

Higgs Boson Decays 

W+, Z,  t, b, c, !,.........., g,   

W-, Z,  t, b, c, ",.........., g,   

!"

(+ W-loop contributions)  

Total width 

In den Schleifen dominieren dann wegen ihrer großen Kopplung an das Higgs die

schwersten Teilchen, t, b,W, Z. Durch die Schleifen sind die Formeln deutlich kom-

plizierter. Die wesentlichen Abhängigkeiten sind

Γ(H → γγ) ∼ α2
GF M

3
H

32
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Candidate: Higgs à 2 Photons   
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Higgs Results: 2 Photons 
Reconstruct Mγγ in data and compare with expectation 
•  Excess at Mγγ=125 GeV in both experiments CMS & ATLAS 

                                             +     
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Figure 3: The diphoton invariant mass distribution with each event weighted by the S/(S+ B)
value of its category. The lines represent the fitted background and signal, and the coloured

bands represent the ±1 and ±2 standard deviation uncertainties on the background estimate.

The inset shows the central part of the unweighted invariant mass distribution.

 H ! "" 
Signature: 2 isolated !, ! mass peak 
Bkgnd: QCD, and is large and partly 
irreducible: measured from data 

–  ATLAS measurement in 36 pb-1 
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Figure 13: Expected di-photon invariant mass distribution at √s= 7 TeV for an integrated luminosity of
1 fb−1. The left-hand plot has the signal contribution enhanced by a factor 10.

PYTHIA cross-section 10 TeV (pb) PYTHIA cross-section 7 TeV (pb) Rescaling factor
γγ 9.3×102 7.7×102 0.82
γ j 2.9×105 2.3×105 0.78
j j 1.5×109 1.1×109 0.78

Table 13: Cross-sections at
√s= 10 TeV and at √s= 7 TeV and the rescaling factor from √s= 10 TeV

for each background component.

mH (GeV) 110 115 120 130 140
Expected exclusion 5.8 5.0 4.6 4.4 5.2

Table 14: The mean signal cross-sections, in multiples of the standard model cross-section, that are
expected to be excluded at 95% CLwith an integrated luminosity of 1 fb−1, at√s= 7 TeV using H→ γγ .

7.4 Systematic Uncertainties in H→ γγ

In the di-photon channel, because all background properties will hopefully be estimated from the data in
side-bands, the correlations of systematic uncertainties between signal and background are typically very
small. For this reason signal and background related uncertainties will be treated separately. Systematic
errors are evaluated in this analysis using Monte Carlo toy experiments which are generated and fitted
using different parameterisations of the signal and background shapes or different numbers of events.
Three signal-related sources of systematic uncertainties are considered here by applying the varia-

tion and observing the change in results. The first is the precise knowledge of the mass resolution. In
particular the energy resolution will depend on the absolute calibration of the calorimeter using Z events.
To account for the possibility of having a constant term in the photon energy resolution increased from
0.7% to 1.1%, the limits are extracted using a degraded invariant mass distribution smeared accordingly,
resulting in in a degradation of +0.4 in the expected limit shown in Fig. 14 (top plot). The second is the
uncertainty on the photon reconstruction efficiency (which still needs to be determined from data driven
methods). As the backgrounds are estimated from the data, the systematic uncertainty on the efficiency is

18

ATLAS-CONF-2011-004 
ATLAS CONF-2011-033 

Good agreement 
found between 
data and 
simulation using 
data driven 
methods  

27 
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Candidate:  Higgs à Z Z à e+e- µ+µ-   
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Higgs Results: 4 Leptons 
Reconstruct M4l in data and compare with expectation 
•  Small Excess at M4l=125 GeV in both experiments CMS & ATLAS 

                                             +     
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Figure 13: Expected di-photon invariant mass distribution at √s= 7 TeV for an integrated luminosity of
1 fb−1. The left-hand plot has the signal contribution enhanced by a factor 10.
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√s= 10 TeV and at √s= 7 TeV and the rescaling factor from √s= 10 TeV

for each background component.
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Expected exclusion 5.8 5.0 4.6 4.4 5.2

Table 14: The mean signal cross-sections, in multiples of the standard model cross-section, that are
expected to be excluded at 95% CLwith an integrated luminosity of 1 fb−1, at√s= 7 TeV using H→ γγ .

7.4 Systematic Uncertainties in H→ γγ

In the di-photon channel, because all background properties will hopefully be estimated from the data in
side-bands, the correlations of systematic uncertainties between signal and background are typically very
small. For this reason signal and background related uncertainties will be treated separately. Systematic
errors are evaluated in this analysis using Monte Carlo toy experiments which are generated and fitted
using different parameterisations of the signal and background shapes or different numbers of events.
Three signal-related sources of systematic uncertainties are considered here by applying the varia-

tion and observing the change in results. The first is the precise knowledge of the mass resolution. In
particular the energy resolution will depend on the absolute calibration of the calorimeter using Z events.
To account for the possibility of having a constant term in the photon energy resolution increased from
0.7% to 1.1%, the limits are extracted using a degraded invariant mass distribution smeared accordingly,
resulting in in a degradation of +0.4 in the expected limit shown in Fig. 14 (top plot). The second is the
uncertainty on the photon reconstruction efficiency (which still needs to be determined from data driven
methods). As the backgrounds are estimated from the data, the systematic uncertainty on the efficiency is
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Figure 4: Distribution of the four-lepton invariant mass for the ZZ → 4� analysis. The
points represent the data, the filled histograms represent the background, and the open his-
togram shows the signal expectation for a Higgs boson of mass mH = 125 GeV, added to the
background expectation. The inset shows the m4� distribution after selection of events with
KD > 0.5, as described in the text.

Table 3: The number of selected events, compared to the expected background yields and ex-
pected number of signal events (mH = 125 GeV) for each final state in the H → ZZ analysis. The
estimates of the Z+X background are based on data. These results are given for the mass range
from 110 to 160 GeV. The total background and the observed numbers of events are also shown
for the three bins (“signal region”) of Fig. 4 where an excess is seen (121.5 < m4� < 130.5 GeV).

Channel 4e 4µ 2e2µ 4�
ZZ background 2.7 ± 0.3 5.7 ± 0.6 7.2 ± 0.8 15.6 ± 1.4
Z + X 1.2+1.1

−0.8 0.9+0.7
−0.6 2.3+1.8

−1.4 4.4+2.2
−1.7

All backgrounds (110 < m4� < 160 GeV) 4.0 ± 1.0 6.6 ± 0.9 9.7 ± 1.8 20 ± 3
Observed (110 < m4� < 160 GeV) 6 6 9 21
Signal (mH = 125 GeV) 1.36 ± 0.22 2.74 ± 0.32 3.44 ± 0.44 7.54 ± 0.78
All backgrounds (signal region) 0.7 ± 0.2 1.3 ± 0.1 1.9 ± 0.3 3.8 ± 0.5
Observed (signal region) 1 3 5 9
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Higgs Results: Events per decay mode   
Signal in different decay modes à Test of Higgs Model 
•  Coupling = mass / v  ?? 
•  Still very large errors à Needs much more data   
•  SpinH = 0 ,  CPH ???  Not yet conclusive 
    „a Higgs – like particle“      could even be Standard-Model Higgs 
    Final answer only at ILC 

30 8 Conclusions
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Figure 19: Values of σ/σSM for the combination (solid vertical line) and for individual decay
modes (points). The vertical band shows the overall σ/σSM value 0.87 ± 0.23. The symbol
σ/σSM denotes the production cross section times the relevant branching fractions, relative to
the SM expectation. The horizontal bars indicate the ±1 standard deviation uncertainties on the
σ/σSM values for individual modes; they include both statistical and systematic uncertainties.
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Precision Test of the Standard Model 
New working hypothesis: Higgs at 125 GeV 
Example:  e+e- à γ/Z à bb 
•  Higher order corrections 

                                                          +                                              +  …  
 

•  Prediction depends on Higgs, W, top mass, …. 
•  Comparison to all precise measurements at LEP 

à Indirect determination  
•  Reconstruction of masses at Tevatron and LHC 

à Direct measurement 

•  Use all data simultaneously to determine all constants of nature 
à Consistency test of the Standard Model (and others) 

16.4 Präzisions-Test des Standard-Modells
Um zu testen, ob das Standard-Modell tatsächlich mit diesen Naturkonstanten alle
experimentellen Daten beschreibt werden sogenannte “elektorschwache Fits” durch-
geführt. Ziel ist es hiermit aus den Daten gleichzeitig die Nuturkonstanten selber zu
bestimmen und zu überprüfen, ob alle Messresultate damit im Rahmen ihrer Fehler
korrekt vorhergesagt werden können.

Viele Messungen insbesondere an e+e− Beschleunigen sind so präzise, dass in den
theoretischen Rechnungen Schleifen-Diagramme berücksichtigt werden müssen (siehe
Abb. 62. Da die Rechnungen Beiträge auch der schwersten Teilchen (W,H und top)

Indirect constraints

EW precision data: Theory:
MZ,MW, sin2 θlept

eff , . . . SM, MSSM, . . .
⇓

Test of theory at quantum level: loop corrections
H

⇓
Sensitivity to effects from unknown parameters: MH, Mt̃

, . . .

Window to “new physics”
Direct and indirect bounds on Higgs bosons, Georg Weiglein, Zurich Phenomenology Workshop: Higgs search confronts theory, Zürich, 01 / 2012 – p.10

‣ Effective mixing angle:

‣ Two-loop EW and QCD correction 
to !" known, leading terms of higher 
order QCD corrections

‣ fermionic two-loop correction about 
10!3, whereas bosonic one 10!5

‣ Uncertainty estimate obtained with 
different methods, geometric 
progression:

Calculation of sin2(θleff)

21Roman Kogler The global electroweak SM fit 
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Figure 1: Genuine fermionic two-loop Zl+l− vertex diagrams contributing to sin2 θlept
eff .

contributions to the ρ parameter of O(G3
µm6

t ) and O(G2
µαsm4

t ) for large top-quark mass

[14], as well as O(G3
µM4

H) for large Higgs mass [15] have been computed.

Higher order QCD corrections to sin2 θlept
eff have been calculated at O(ααs) [16] and for

the top-bottom contributions at O(αα2
s ) [17] and O(αα3

s ) [18]. The O(αα2
s ) contributions

with light quarks in the loops can be derived from eqs. (29)–(31) in [19] and turn out to

be completely negligible. For the electroweak two-loop contributions, only partial results

using large mass expansions in the Higgs mass [20] and top-quark mass [21 – 23] have

been known previously. Concerning the expansion in mt, the formally leading term of

O(G2
µm4

t ) [21, 22] and the next-to-leading term of O(G2
µm2

tM
2
Z) [23] were found to be

numerically significant and of similar magnitude. Therefore, a complete calculation of

electroweak two-loop corrections to sin2 θlept
eff beyond the leading terms of expansions is

desirable.

As a first step in this direction, exact results have been obtained for the Higgs-mass

dependence (i.e. the quantity sin2 θlept
eff,sub(MH) ≡ sin2 θlept

eff (MH)−sin2 θlept
eff (MH = 65 GeV))

of the two-loop corrections with at least one closed fermion loop to the precision observ-

ables [13, 24]. They were shown to agree well with the previous results of the top-quark

mass expansion [25].

This paper discusses the complete computation of all electroweak two-loop corrections

to sin2 θlept
eff . In addition to the corrections to the prediction of the W -boson mass, which

have been analyzed before [4, 5], this includes all two-loop diagrams contributing to the

Zl+l− vertex on the Z pole. The diagrams can be conveniently divided into two groups;

fermionic contributions with at least one closed fermion loop, and bosonic contributions

without closed fermion loops. The genuine fermionic two-loop vertex diagrams are repre-

sented by the generic topologies in figure 1 and some examples of bosonic two-loop diagrams

are given in figure 2.

Results for the complete two-loop corrections have been presented first in Ref. [26, 27].
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Figure 2: Examples of bosonic two-loop Zl+l− vertex diagrams contributing to sin2 θlept
eff .

The results for the fermionic contributions have been confirmed in Ref. [28] and partial

results for the bosonic contributions were also obtained in Ref. [29]. This paper describes

the computational methods and analysis in more detail.

The paper is organized as follows. In section 2, the process e+e− → l+l− is analyzed

at next-to-next-to-leading order near the Z-boson pole and the O(α2) definition of the

sin2 θlept
eff is extracted. Furthermore the general strategies for the calculation of two-loop

contributions to the form factor ∆κ are discussed. Sections 3 and 4 explain the calculation

of the fermionic and bosonic two-loop diagrams in detail. For two-loop vacuum and self-

energy diagrams, well-established techniques exist and have been used for the computation

of MW [4 – 6]. The new part in this project are the two-loop vertex topologies, which have

been treated with two conceptually independent methods. A discussion of the numerical

results and remaining theoretical uncertainties due to unknown higher orders can be found

in section 5. In addition to the effective leptonic weak mixing angle, results are given also

for the effective weak mixing angle for other final state flavors, i.e. for couplings of the Z

boson to other fermions. Finally the implementation of our new results into the program

Zfitter is described.

2. Outline of the calculation

The two-loop corrections to the effective weak mixing angle sin2 θf
eff are part of the next-

to-next-to-leading order corrections to the process e+e− → f f̄ for center-of-mass energies

near the Z-boson mass,
√

s ≈ MZ. To set the scene for this calculation, a framework

for the next-to-next-to-leading order analysis of f f̄ production needs to be established.

Furthermore it has to be checked whether sin2 θf
eff is a well-defined, i.e. gauge-invariant

and finite, quantity at this order in perturbation theory.
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using large mass expansions in the Higgs mass [20] and top-quark mass [21 – 23] have

been known previously. Concerning the expansion in mt, the formally leading term of

O(G2
µm4

t ) [21, 22] and the next-to-leading term of O(G2
µm2

tM
2
Z) [23] were found to be

numerically significant and of similar magnitude. Therefore, a complete calculation of

electroweak two-loop corrections to sin2 θlept
eff beyond the leading terms of expansions is

desirable.

As a first step in this direction, exact results have been obtained for the Higgs-mass

dependence (i.e. the quantity sin2 θlept
eff,sub(MH) ≡ sin2 θlept

eff (MH)−sin2 θlept
eff (MH = 65 GeV))

of the two-loop corrections with at least one closed fermion loop to the precision observ-

ables [13, 24]. They were shown to agree well with the previous results of the top-quark

mass expansion [25].

This paper discusses the complete computation of all electroweak two-loop corrections

to sin2 θlept
eff . In addition to the corrections to the prediction of the W -boson mass, which

have been analyzed before [4, 5], this includes all two-loop diagrams contributing to the

Zl+l− vertex on the Z pole. The diagrams can be conveniently divided into two groups;

fermionic contributions with at least one closed fermion loop, and bosonic contributions

without closed fermion loops. The genuine fermionic two-loop vertex diagrams are repre-

sented by the generic topologies in figure 1 and some examples of bosonic two-loop diagrams

are given in figure 2.

Results for the complete two-loop corrections have been presented first in Ref. [26, 27].
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from asymmetries measured at center-of-mass energies away from the Z pole, requiring

a theoretical extrapolation in order to match it to sin2 θlept
eff on the Z pole. The current

experimental accuracy, sin2 θlept
eff = 0.23147 ± 0.00017 [1], could be improved by an order

of magnitude at a future high-luminosity linear collider running in a low-energy mode at

the Z boson pole (GigaZ) [2]. This offers the prospect for highly sensitive tests of the

electroweak theory [3], provided that the accuracy of the theoretical prediction matches

the experimental precision.

Typically, the theoretical prediction of sin2 θlept
eff within the Standard Model is given in

terms of the following input parameters: the fine structure constant α, the Fermi constant

Gµ, the Z-boson mass MZ and the top-quark mass mt (and other fermion masses whenever

they are numerically relevant). The W -boson mass MW is calculated from the Fermi

constant, which is precisely derived from the muon decay lifetime. As a consequence, the

computation of sin2 θlept
eff involves two major parts: the radiative corrections to the relation

between Gµ and MW, and the corrections to the Z-lepton vertex form factors. The latter

can be incorporated into the quantity κ = 1 + ∆κ, defined in the on-shell scheme,

sin2 θlept
eff =

(

1 − M2
W/M2

Z

)

(1 + ∆κ) , (1.2)

At tree-level, ∆κ = 0 and the sine of the effective mixing angle is identical to the sine of

the on-shell weak mixing angle sin2 θW ≡ sW = 1 − M2
W/M2

Z. The quantity ∆κ is only

weakly sensitive to MW.

For the computation of the W -boson mass, the complete electroweak two-loop correc-

tions, including partial higher-order corrections, have been carried out in Ref. [4 – 7]. In

this report, the calculation of the corresponding contributions for the form factor ∆κ and

combined predictions for sin2 θlept
eff will be discussed.

The quantum corrections to sin2 θlept
eff have been under extensive theoretical study over

the last two decades. The one-loop result [8, 9] involves large fermionic contributions from

the leading contribution to the ρ parameter, ∆ρ, which is quadratically dependent on the

top-quark mass mt, resulting from the top-bottom mass splitting [10]. The correction ∆ρ

enters both in the computation of MW from the Fermi constant (for a discussion see e.g.

Ref. [4, 5]), as well as into the vertex correction factor ∆κ,

1 + ∆κ(α) = 1 +
c2
W

s2
W

∆ρ + ∆κrem(MH), (1.3)

with c2
W = M2

W/M2
Z, s2

W = 1−M2
W/M2

Z. The remainder part ∆κrem contains in particular

the dependence on the Higgs-boson mass, MH.

Beyond the one-loop order, resummations of the leading one-loop contribution ∆ρ

have been derived [11, 12]. They correctly take into account the terms of the form (∆ρ)2

and (∆α∆ρ). Here ∆α is the shift in the fine structure constant due to light fermions,

∆α ∝ log mf , which enters through the corrections to the relation between Gµ and MW,

since ∆κ = ∆κ(MW) is a function of MW. These resummation results have been confirmed

and extended by an explicit calculation of the pure fermion-loop corrections at O(α2)

(i.e. contributions containing two fermion loops) [13]. Recently, the leading three-loop
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Figure 8: Contribution of several orders of radiative corrections to the effective leptonic weak

mixing angle sin2 θlept
eff as a function of the Higgs mass MH. The tree-level value is not shown.

(a)

MH
[

∆ sin2 θlept
eff

]

ZFITTER

[

∆ sin2 θlept
eff

]

[70]

[GeV] [10−4] [10−4]

100 -0.45 -0.40

200 -0.69 -0.72

600 -1.17 -0.94

1000 -1.60 -1.28

(b)

mt,MH ∆[m4
t ] ∆[m2

t ] ∆[m−4
t ]

[GeV]

175,400 20% 4.3% 0.02%

800,1800 5% 1.9% 0.00002%

Table 3: (a) Difference between the new result of eq. (5.3) and the previous result from ref. [23],
as implemented in Zfitter (left column) and from the fitting formula in ref. [70] (right column).
(b) Convergence of the expansion in m−2

t for the two-loop diagrams with top propagators. Here
∆[mk

t ] = [sin2 θlept
eff ](α2mk

t
)/[sin2 θlept

eff ](α2exact) − 1 is the relative difference between the exact and
the expanded result at the given order.

Ref. [23] introduces higher-order terms that can be sizeable. Here it is important to note

that the OSI scheme in Ref. [23], which is the basis for the implementation of these cor-

– 20 –

JHEP11(2006)048

Geometric progression Scale dependence Leading mt terms

O(α2αs) beyond leading m4
t 3.3 . . . 2.8 × 10−5 0.8 . . . 2.1 × 10−5 1.2 . . . 4.3 × 10−5

O(αα3
s ) 1.5 . . . 1.4 0.3 . . . 0.2

O(α3) beyond leading m6
t 2.5 . . . 3.5 0.3 . . . 0.8

Sum 4.4 . . . 4.7 × 10−5

Table 4: Estimation of the uncertainty from different higher order contributions for sin2 θlept
eff , with

the quadratic sum of all error sources. Where applicable, two or three different methods for the
error estimate have been used.

the highest available perturbation order. By varying thus the scale µ of mt,MS in the

O(α2) contributions between m2
t/2 < µ2 < 2m2

t one obtains an error estimate for the

O(α2αs) contributions between 0.1 and 3.9 × 10−5, depending on the value of MH for

10 GeV < MH < 1000 GeV. Similarly, by varying αs(µ) in the O(αα2
s ) corrections between

m2
t/2 < µ2 < 2m2

t leads to an error estimate for the O(αα3
s ) contributions of less than 10−6,

see Tab. 4.

An independent third estimate of the error of the O(α2αs) and O(α3) contributions

can be obtained from the existing leading terms in the expansion for large top quark mass.

Experience from the O(α2) corrections suggests that for moderate values of MH, the leading

mt-term and the remaining non-leading terms are of similar order. These contributions are

shown in the last column of Tab. 4.

As evident from the table, all methods give results of similar order of magnitude, while

the geometric progression method tends to lead to the largest error evaluation. The total

estimated error is therefore computed by summing in quadrature the error from different

contributions obtained by this method. It is found to amount to δthsin2 θlept
eff = 4.7× 10−5.

5.3 Parametrization formulae

Following Ref. [26], the numerical results are expressed in terms of a fitting formula, which

reproduces the exact calculation with maximal and average deviations of 4.5 × 10−6 and

1.2 × 10−6, respectively, as long as the input parameters stay within their 2σ ranges and

the Higgs boson mass in the range 10 GeV ≤ MH ≤ 1 TeV. For the sake of comparability

with the result of Ref. [26], the slightly outdated central values for the experimental input

parameters used there are also kept in the formula

sin2 θf
eff = s0 + d1LH + d2L

2
H + d3L

4
H + d4(∆

2
H − 1) + d5∆α

+ d6∆t + d7∆
2
t + d8∆t(∆H − 1) + d9∆αs + d10∆Z ,

(5.5)

with

LH = log

(

MH

100 GeV

)

, ∆H =
MH

100 GeV
, ∆α =

∆α

0.05907
− 1,

∆t =
( mt

178.0 GeV

)2
− 1, ∆αs =

αs(MZ)

0.117
− 1, ∆Z =

MZ

91.1876 GeV
− 1.

(5.6)

– 22 –

Total: #sin2$leff ≈ 4.7 10!5
JHEP11(2006)048

rections in ZFITTER, uses the MS definition for ∆ρ, which is numerically larger than the

leading m2
t term, so that the resummation effects of ∆ρMS are rather large. Finally, Zfit-

ter versions before 6.40 use an outdated implementation of the QCD corrections. Since

all these contributions are non-negligible at the current level of precision, it is interesting

to study them separately.

In particular, using the results of section 3.1 the effect of the truncated top-mass

expansion is shown in Tab. 3 (b)2. It turns out that the expansion converges quite well

for realistic values of mt and MH. However, the terms beyond the order m2
t induce a

difference of 4.3% in the two-loop corrections with top-bottom loops, corresponding to a

shift of about 0.2 × 10−4 in sin2 θlept
eff , which is roughly a quarter of the total difference

reported in Tab. 3 (a). As a cross-check, also the result for very large values of mt and MH

are shown in Tab. 3 (b), to illustrate that in this case the series converges much faster.

5.2 Error estimate

While the inclusion of the fermionic two-loop corrections is a substantial improvement of

the prediction of sin2 θlept
eff in the Standard Model, uncertainties from missing higher order

contributions can still be sizeable. Here we try to give an estimate of the error induced

by these unknown contributions. The most relevant missing higher order contributions are

corrections of the order O(α2αs) beyond the leading m4
t term, O(α3) beyond the leading

m6
t term and O(αα3

s ). Since the final prediction for sin2 θlept
eff is based on Gµ as input, the

loop effects in the both quantities ∆r (for the computation of MW) and ∆κ (for the Zl+l−

vertex corrections) need to be considered.

When combining the two form factors, it turns out that there are some cancellations

between the known corrections to MW and the Z vertex. It is expected that similar

cancellations occur when adding an additional QCD loop, since QCD corrections enter

with the same relative sign in the corrections to MW and the Z vertex. Since the dominant

missing higher order effects are contributions with an additional QCD loop, it is assumed in

the following that these cancellations are natural and it is justified to study the theoretical

error of both quantities ∆r and ∆κ in conjunction.

A simple method to estimate the higher order uncertainties is based on the assumption

that the perturbation series follows roughly a geometric progression. This presumption

implies relations like

O(α2αs) =
O(α2)

O(α)
O(ααs). (5.4)

From this one obtains the error estimates in the second column of Tab. 4 for the different

higher order contributions, which are given for a range of the Higgs MH mass between 10

GeV and 1000 GeV. To account for possible deviations from the geometric series behavior,

an ad-hoc overall factor
√

2 was included in all error determined via this method.

Alternatively, the error from a higher-order QCD loop can be assessed by varying the

scale of the strong coupling constant αs or the top-quark mass mt in the MS scheme in

2As a by-product of this comparison, we found a typo in Ref. [45], where a term 3

2
m2

t/(M
2
Zs2

W) log c2
W is

missing in the expression for MH ! mt.
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[M Awramik et al., JHEP 11, 048 (2006)]‣ Calculation of sin2!eff  for b-quarks 
more involved, because of top quark 
propagators in the Z→bb vertex

‣ Investigation of known discrepancy 
between sin2!eff from leptonic and 
hadronic asymmetry measurements

‣ Two-loop EW correction only 
recently completed, effect of O(10!4)

‣ Now sin2!bbeff known at the same 
order as sin2!eff for leptons and light 
quarks

‣ Uncertainty assumed to be of same 
size as for sin2!eff :
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[M Awramik et al, Nucl. Phys. B813, 174 (2009)]

178 M. Awramik et al. / Nuclear Physics B 813 (2009) 174–187

Fig. 1. Set of Feynman diagrams required for the calculation of the fermionic two-loop corrections to the Zbb̄ vertex, but
absent in the sin2 θ

lept
eff case. Thick solid lines denote top-quark propagators, while thin lines represent light fermions.

For any two-loop problem, there are four regions to consider. Let k1 and k2 represent the internal
momenta in the loops and p stand for any external momentum, while m generically denotes all
masses that are small compared to mt , m < mt . In our case, m = MW,MZ . Then the four regions
can be identified as follows:

(1) k1 ∼ mt and k2 ∼ mt (expansions in small parameters: p and m),
(2) k1 ∼ m and k2 ∼ mt (expansions in small parameters: p, k1 and m),
(3) k1 ∼ mt and k2 ∼ m (expansions in small parameters: p, k2 and m),
(4) k1 ∼ m and k2 ∼ m (expansions in small parameters: p, k1, k2 and m).

This method allows us to represent two-loop vertex diagrams by a sum of simpler integrals,
namely two-loop propagator and vacuum integrals, plus one-loop integrals. However, higher
orders in the expansion lead to higher powers of propagator denominators in these integrals.
This is not a problem for one-loop or vacuum integrals, as analytic relations are well known;
for relations and references, see, for example, Ref. [16]. For two-loop propagator integrals, we
employ the Laporta algorithm, as proposed in Ref. [22]. This algorithm allows us to automatically
reduce complicated multi-loop integrals with non-trivial numerators to a smaller set of master
integrals with unit numerators. In addition to the well-known integration by parts relations [23],
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Abbildung 62: Beispiele für Schleifen-Diagramme mit Beiträgen vom Higgs, W und
top in NLO-Rechnungen zum Prozess e+e− → ff̄ (oben) und NNLO-Rechnungen
zum Z Zerfall in Fermionen (unten links) und speziell in bb̄-Quarks (unten rechts).

.

beinhalten lassen sich so auch indirekt die Massen MW ,Mt und MH bestimmen. Diese
indirekten Bestimmungen werden dann mit den direkten Messungen verglichen.

Allgemein wird für jede Observable Oi der theoretisch berechnete Wert Oth,i von
den Naturkonstanten cj abhängen. Die cj werden so gewählt, dass die Summe aller
Abweichungen zwischen Theorie und Messwerten Om,i ± σm,i minimal wird.

χ2(cj) =
�

i

�
Oth,i (cj)−Om,i

σm,i

�2

+ Korrelationen

Für den elektroschwachen Fits zeigt Abb. 63 für die verwendten Observablen die

192

16.4 Präzisions-Test des Standard-Modells
Um zu testen, ob das Standard-Modell tatsächlich mit diesen Naturkonstanten alle
experimentellen Daten beschreibt werden sogenannte “elektorschwache Fits” durch-
geführt. Ziel ist es hiermit aus den Daten gleichzeitig die Nuturkonstanten selber zu
bestimmen und zu überprüfen, ob alle Messresultate damit im Rahmen ihrer Fehler
korrekt vorhergesagt werden können.

Viele Messungen insbesondere an e+e− Beschleunigen sind so präzise, dass in den
theoretischen Rechnungen Schleifen-Diagramme berücksichtigt werden müssen (siehe
Abb. 62. Da die Rechnungen Beiträge auch der schwersten Teilchen (W,H und top)

Indirect constraints

EW precision data: Theory:
MZ,MW, sin2 θlept

eff , . . . SM, MSSM, . . .
⇓

Test of theory at quantum level: loop corrections
H

⇓
Sensitivity to effects from unknown parameters: MH, Mt̃

, . . .

Window to “new physics”
Direct and indirect bounds on Higgs bosons, Georg Weiglein, Zurich Phenomenology Workshop: Higgs search confronts theory, Zürich, 01 / 2012 – p.10

‣ Effective mixing angle:

‣ Two-loop EW and QCD correction 
to !" known, leading terms of higher 
order QCD corrections

‣ fermionic two-loop correction about 
10!3, whereas bosonic one 10!5

‣ Uncertainty estimate obtained with 
different methods, geometric 
progression:

Calculation of sin2(θleff)
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Figure 1: Genuine fermionic two-loop Zl+l− vertex diagrams contributing to sin2 θlept
eff .

contributions to the ρ parameter of O(G3
µm6

t ) and O(G2
µαsm4

t ) for large top-quark mass

[14], as well as O(G3
µM4

H) for large Higgs mass [15] have been computed.

Higher order QCD corrections to sin2 θlept
eff have been calculated at O(ααs) [16] and for

the top-bottom contributions at O(αα2
s ) [17] and O(αα3

s ) [18]. The O(αα2
s ) contributions

with light quarks in the loops can be derived from eqs. (29)–(31) in [19] and turn out to

be completely negligible. For the electroweak two-loop contributions, only partial results

using large mass expansions in the Higgs mass [20] and top-quark mass [21 – 23] have

been known previously. Concerning the expansion in mt, the formally leading term of

O(G2
µm4

t ) [21, 22] and the next-to-leading term of O(G2
µm2

tM
2
Z) [23] were found to be

numerically significant and of similar magnitude. Therefore, a complete calculation of

electroweak two-loop corrections to sin2 θlept
eff beyond the leading terms of expansions is

desirable.

As a first step in this direction, exact results have been obtained for the Higgs-mass

dependence (i.e. the quantity sin2 θlept
eff,sub(MH) ≡ sin2 θlept

eff (MH)−sin2 θlept
eff (MH = 65 GeV))

of the two-loop corrections with at least one closed fermion loop to the precision observ-

ables [13, 24]. They were shown to agree well with the previous results of the top-quark

mass expansion [25].

This paper discusses the complete computation of all electroweak two-loop corrections

to sin2 θlept
eff . In addition to the corrections to the prediction of the W -boson mass, which

have been analyzed before [4, 5], this includes all two-loop diagrams contributing to the

Zl+l− vertex on the Z pole. The diagrams can be conveniently divided into two groups;

fermionic contributions with at least one closed fermion loop, and bosonic contributions

without closed fermion loops. The genuine fermionic two-loop vertex diagrams are repre-

sented by the generic topologies in figure 1 and some examples of bosonic two-loop diagrams

are given in figure 2.

Results for the complete two-loop corrections have been presented first in Ref. [26, 27].
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Figure 2: Examples of bosonic two-loop Zl+l− vertex diagrams contributing to sin2 θlept
eff .

The results for the fermionic contributions have been confirmed in Ref. [28] and partial

results for the bosonic contributions were also obtained in Ref. [29]. This paper describes

the computational methods and analysis in more detail.

The paper is organized as follows. In section 2, the process e+e− → l+l− is analyzed

at next-to-next-to-leading order near the Z-boson pole and the O(α2) definition of the

sin2 θlept
eff is extracted. Furthermore the general strategies for the calculation of two-loop

contributions to the form factor ∆κ are discussed. Sections 3 and 4 explain the calculation

of the fermionic and bosonic two-loop diagrams in detail. For two-loop vacuum and self-

energy diagrams, well-established techniques exist and have been used for the computation

of MW [4 – 6]. The new part in this project are the two-loop vertex topologies, which have

been treated with two conceptually independent methods. A discussion of the numerical

results and remaining theoretical uncertainties due to unknown higher orders can be found

in section 5. In addition to the effective leptonic weak mixing angle, results are given also

for the effective weak mixing angle for other final state flavors, i.e. for couplings of the Z

boson to other fermions. Finally the implementation of our new results into the program

Zfitter is described.

2. Outline of the calculation

The two-loop corrections to the effective weak mixing angle sin2 θf
eff are part of the next-

to-next-to-leading order corrections to the process e+e− → f f̄ for center-of-mass energies

near the Z-boson mass,
√

s ≈ MZ. To set the scene for this calculation, a framework

for the next-to-next-to-leading order analysis of f f̄ production needs to be established.

Furthermore it has to be checked whether sin2 θf
eff is a well-defined, i.e. gauge-invariant

and finite, quantity at this order in perturbation theory.
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Figure 1: Genuine fermionic two-loop Zl+l− vertex diagrams contributing to sin2 θlept
eff .

contributions to the ρ parameter of O(G3
µm6

t ) and O(G2
µαsm4

t ) for large top-quark mass

[14], as well as O(G3
µM4

H) for large Higgs mass [15] have been computed.
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µm4
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µm2

tM
2
Z) [23] were found to be

numerically significant and of similar magnitude. Therefore, a complete calculation of

electroweak two-loop corrections to sin2 θlept
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from asymmetries measured at center-of-mass energies away from the Z pole, requiring

a theoretical extrapolation in order to match it to sin2 θlept
eff on the Z pole. The current

experimental accuracy, sin2 θlept
eff = 0.23147 ± 0.00017 [1], could be improved by an order

of magnitude at a future high-luminosity linear collider running in a low-energy mode at

the Z boson pole (GigaZ) [2]. This offers the prospect for highly sensitive tests of the

electroweak theory [3], provided that the accuracy of the theoretical prediction matches

the experimental precision.

Typically, the theoretical prediction of sin2 θlept
eff within the Standard Model is given in

terms of the following input parameters: the fine structure constant α, the Fermi constant

Gµ, the Z-boson mass MZ and the top-quark mass mt (and other fermion masses whenever

they are numerically relevant). The W -boson mass MW is calculated from the Fermi

constant, which is precisely derived from the muon decay lifetime. As a consequence, the

computation of sin2 θlept
eff involves two major parts: the radiative corrections to the relation

between Gµ and MW, and the corrections to the Z-lepton vertex form factors. The latter

can be incorporated into the quantity κ = 1 + ∆κ, defined in the on-shell scheme,

sin2 θlept
eff =

(

1 − M2
W/M2

Z

)

(1 + ∆κ) , (1.2)

At tree-level, ∆κ = 0 and the sine of the effective mixing angle is identical to the sine of

the on-shell weak mixing angle sin2 θW ≡ sW = 1 − M2
W/M2

Z. The quantity ∆κ is only

weakly sensitive to MW.

For the computation of the W -boson mass, the complete electroweak two-loop correc-

tions, including partial higher-order corrections, have been carried out in Ref. [4 – 7]. In

this report, the calculation of the corresponding contributions for the form factor ∆κ and

combined predictions for sin2 θlept
eff will be discussed.

The quantum corrections to sin2 θlept
eff have been under extensive theoretical study over

the last two decades. The one-loop result [8, 9] involves large fermionic contributions from

the leading contribution to the ρ parameter, ∆ρ, which is quadratically dependent on the

top-quark mass mt, resulting from the top-bottom mass splitting [10]. The correction ∆ρ

enters both in the computation of MW from the Fermi constant (for a discussion see e.g.

Ref. [4, 5]), as well as into the vertex correction factor ∆κ,

1 + ∆κ(α) = 1 +
c2
W

s2
W

∆ρ + ∆κrem(MH), (1.3)

with c2
W = M2

W/M2
Z, s2

W = 1−M2
W/M2

Z. The remainder part ∆κrem contains in particular

the dependence on the Higgs-boson mass, MH.

Beyond the one-loop order, resummations of the leading one-loop contribution ∆ρ

have been derived [11, 12]. They correctly take into account the terms of the form (∆ρ)2

and (∆α∆ρ). Here ∆α is the shift in the fine structure constant due to light fermions,

∆α ∝ log mf , which enters through the corrections to the relation between Gµ and MW,

since ∆κ = ∆κ(MW) is a function of MW. These resummation results have been confirmed

and extended by an explicit calculation of the pure fermion-loop corrections at O(α2)

(i.e. contributions containing two fermion loops) [13]. Recently, the leading three-loop
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Figure 8: Contribution of several orders of radiative corrections to the effective leptonic weak

mixing angle sin2 θlept
eff as a function of the Higgs mass MH. The tree-level value is not shown.

(a)

MH
[

∆ sin2 θlept
eff

]

ZFITTER

[

∆ sin2 θlept
eff

]

[70]

[GeV] [10−4] [10−4]

100 -0.45 -0.40

200 -0.69 -0.72

600 -1.17 -0.94

1000 -1.60 -1.28

(b)

mt,MH ∆[m4
t ] ∆[m2

t ] ∆[m−4
t ]

[GeV]

175,400 20% 4.3% 0.02%

800,1800 5% 1.9% 0.00002%

Table 3: (a) Difference between the new result of eq. (5.3) and the previous result from ref. [23],
as implemented in Zfitter (left column) and from the fitting formula in ref. [70] (right column).
(b) Convergence of the expansion in m−2

t for the two-loop diagrams with top propagators. Here
∆[mk

t ] = [sin2 θlept
eff ](α2mk

t
)/[sin2 θlept

eff ](α2exact) − 1 is the relative difference between the exact and
the expanded result at the given order.

Ref. [23] introduces higher-order terms that can be sizeable. Here it is important to note

that the OSI scheme in Ref. [23], which is the basis for the implementation of these cor-
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Geometric progression Scale dependence Leading mt terms

O(α2αs) beyond leading m4
t 3.3 . . . 2.8 × 10−5 0.8 . . . 2.1 × 10−5 1.2 . . . 4.3 × 10−5

O(αα3
s ) 1.5 . . . 1.4 0.3 . . . 0.2

O(α3) beyond leading m6
t 2.5 . . . 3.5 0.3 . . . 0.8

Sum 4.4 . . . 4.7 × 10−5

Table 4: Estimation of the uncertainty from different higher order contributions for sin2 θlept
eff , with

the quadratic sum of all error sources. Where applicable, two or three different methods for the
error estimate have been used.

the highest available perturbation order. By varying thus the scale µ of mt,MS in the

O(α2) contributions between m2
t/2 < µ2 < 2m2

t one obtains an error estimate for the

O(α2αs) contributions between 0.1 and 3.9 × 10−5, depending on the value of MH for

10 GeV < MH < 1000 GeV. Similarly, by varying αs(µ) in the O(αα2
s ) corrections between

m2
t/2 < µ2 < 2m2

t leads to an error estimate for the O(αα3
s ) contributions of less than 10−6,

see Tab. 4.

An independent third estimate of the error of the O(α2αs) and O(α3) contributions

can be obtained from the existing leading terms in the expansion for large top quark mass.

Experience from the O(α2) corrections suggests that for moderate values of MH, the leading

mt-term and the remaining non-leading terms are of similar order. These contributions are

shown in the last column of Tab. 4.

As evident from the table, all methods give results of similar order of magnitude, while

the geometric progression method tends to lead to the largest error evaluation. The total

estimated error is therefore computed by summing in quadrature the error from different

contributions obtained by this method. It is found to amount to δthsin2 θlept
eff = 4.7× 10−5.

5.3 Parametrization formulae

Following Ref. [26], the numerical results are expressed in terms of a fitting formula, which

reproduces the exact calculation with maximal and average deviations of 4.5 × 10−6 and

1.2 × 10−6, respectively, as long as the input parameters stay within their 2σ ranges and

the Higgs boson mass in the range 10 GeV ≤ MH ≤ 1 TeV. For the sake of comparability

with the result of Ref. [26], the slightly outdated central values for the experimental input

parameters used there are also kept in the formula

sin2 θf
eff = s0 + d1LH + d2L

2
H + d3L

4
H + d4(∆

2
H − 1) + d5∆α

+ d6∆t + d7∆
2
t + d8∆t(∆H − 1) + d9∆αs + d10∆Z ,

(5.5)

with

LH = log

(

MH

100 GeV

)

, ∆H =
MH

100 GeV
, ∆α =

∆α

0.05907
− 1,

∆t =
( mt

178.0 GeV

)2
− 1, ∆αs =

αs(MZ)

0.117
− 1, ∆Z =

MZ

91.1876 GeV
− 1.

(5.6)
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rections in ZFITTER, uses the MS definition for ∆ρ, which is numerically larger than the

leading m2
t term, so that the resummation effects of ∆ρMS are rather large. Finally, Zfit-

ter versions before 6.40 use an outdated implementation of the QCD corrections. Since

all these contributions are non-negligible at the current level of precision, it is interesting

to study them separately.

In particular, using the results of section 3.1 the effect of the truncated top-mass

expansion is shown in Tab. 3 (b)2. It turns out that the expansion converges quite well

for realistic values of mt and MH. However, the terms beyond the order m2
t induce a

difference of 4.3% in the two-loop corrections with top-bottom loops, corresponding to a

shift of about 0.2 × 10−4 in sin2 θlept
eff , which is roughly a quarter of the total difference

reported in Tab. 3 (a). As a cross-check, also the result for very large values of mt and MH

are shown in Tab. 3 (b), to illustrate that in this case the series converges much faster.

5.2 Error estimate

While the inclusion of the fermionic two-loop corrections is a substantial improvement of

the prediction of sin2 θlept
eff in the Standard Model, uncertainties from missing higher order

contributions can still be sizeable. Here we try to give an estimate of the error induced

by these unknown contributions. The most relevant missing higher order contributions are

corrections of the order O(α2αs) beyond the leading m4
t term, O(α3) beyond the leading

m6
t term and O(αα3

s ). Since the final prediction for sin2 θlept
eff is based on Gµ as input, the

loop effects in the both quantities ∆r (for the computation of MW) and ∆κ (for the Zl+l−

vertex corrections) need to be considered.

When combining the two form factors, it turns out that there are some cancellations

between the known corrections to MW and the Z vertex. It is expected that similar

cancellations occur when adding an additional QCD loop, since QCD corrections enter

with the same relative sign in the corrections to MW and the Z vertex. Since the dominant

missing higher order effects are contributions with an additional QCD loop, it is assumed in

the following that these cancellations are natural and it is justified to study the theoretical

error of both quantities ∆r and ∆κ in conjunction.

A simple method to estimate the higher order uncertainties is based on the assumption

that the perturbation series follows roughly a geometric progression. This presumption

implies relations like

O(α2αs) =
O(α2)

O(α)
O(ααs). (5.4)

From this one obtains the error estimates in the second column of Tab. 4 for the different

higher order contributions, which are given for a range of the Higgs MH mass between 10

GeV and 1000 GeV. To account for possible deviations from the geometric series behavior,

an ad-hoc overall factor
√

2 was included in all error determined via this method.

Alternatively, the error from a higher-order QCD loop can be assessed by varying the

scale of the strong coupling constant αs or the top-quark mass mt in the MS scheme in

2As a by-product of this comparison, we found a typo in Ref. [45], where a term 3

2
m2

t/(M
2
Zs2

W) log c2
W is

missing in the expression for MH ! mt.
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[M Awramik et al., JHEP 11, 048 (2006)]‣ Calculation of sin2!eff  for b-quarks 
more involved, because of top quark 
propagators in the Z→bb vertex

‣ Investigation of known discrepancy 
between sin2!eff from leptonic and 
hadronic asymmetry measurements

‣ Two-loop EW correction only 
recently completed, effect of O(10!4)

‣ Now sin2!bbeff known at the same 
order as sin2!eff for leptons and light 
quarks

‣ Uncertainty assumed to be of same 
size as for sin2!eff :

New Calculation of sin2(θbbeff)
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[M Awramik et al, Nucl. Phys. B813, 174 (2009)]
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Fig. 1. Set of Feynman diagrams required for the calculation of the fermionic two-loop corrections to the Zbb̄ vertex, but
absent in the sin2 θ

lept
eff case. Thick solid lines denote top-quark propagators, while thin lines represent light fermions.

For any two-loop problem, there are four regions to consider. Let k1 and k2 represent the internal
momenta in the loops and p stand for any external momentum, while m generically denotes all
masses that are small compared to mt , m < mt . In our case, m = MW,MZ . Then the four regions
can be identified as follows:

(1) k1 ∼ mt and k2 ∼ mt (expansions in small parameters: p and m),
(2) k1 ∼ m and k2 ∼ mt (expansions in small parameters: p, k1 and m),
(3) k1 ∼ mt and k2 ∼ m (expansions in small parameters: p, k2 and m),
(4) k1 ∼ m and k2 ∼ m (expansions in small parameters: p, k1, k2 and m).

This method allows us to represent two-loop vertex diagrams by a sum of simpler integrals,
namely two-loop propagator and vacuum integrals, plus one-loop integrals. However, higher
orders in the expansion lead to higher powers of propagator denominators in these integrals.
This is not a problem for one-loop or vacuum integrals, as analytic relations are well known;
for relations and references, see, for example, Ref. [16]. For two-loop propagator integrals, we
employ the Laporta algorithm, as proposed in Ref. [22]. This algorithm allows us to automatically
reduce complicated multi-loop integrals with non-trivial numerators to a smaller set of master
integrals with unit numerators. In addition to the well-known integration by parts relations [23],
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Abbildung 62: Beispiele für Schleifen-Diagramme mit Beiträgen vom Higgs, W und
top in NLO-Rechnungen zum Prozess e+e− → ff̄ (oben) und NNLO-Rechnungen
zum Z Zerfall in Fermionen (unten links) und speziell in bb̄-Quarks (unten rechts).

.

beinhalten lassen sich so auch indirekt die Massen MW ,Mt und MH bestimmen. Diese
indirekten Bestimmungen werden dann mit den direkten Messungen verglichen.

Allgemein wird für jede Observable Oi der theoretisch berechnete Wert Oth,i von
den Naturkonstanten cj abhängen. Die cj werden so gewählt, dass die Summe aller
Abweichungen zwischen Theorie und Messwerten Om,i ± σm,i minimal wird.

χ2(cj) =
�

i

�
Oth,i (cj)−Om,i

σm,i

�2

+ Korrelationen

Für den elektroschwachen Fits zeigt Abb. 63 für die verwendten Observablen die
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Precision Test of the Standard Model 
Global fit of precision data: now with MH=125 GeV   
•  All data consistent with one set of constants of nature within 1.8 σ	


•  Most important parameters:  mass of W and top 
•  W-mass:  

à direct measurement less precise than indirect, improvement ? 
•  Top mass:  

à direct measurement most precise à must be improved !   (LHC…ILC) 
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Figure 3: ∆χ2
profiles as a function of the Higgs mass (top left), the top quark mass (top right), the W

boson mass (bottom left) and the effective weak mixing angle (bottom right). The data points placed along

∆χ2
= 1 represent direct measurements of the respective observable and their ±1σ uncertainties. The grey

(blue) bands show the results when excluding (including) the new MH measurements from (in) the fits.

For the blue bands as a function of mt, MW and sin
2θ�eff the direct measurements of the observable have

been excluded from the fit in addition (indirect determination). The solid black curves in the lower plots

represent the SM prediction for sin
2θ�eff and MW derived from the minimal set of input measurements, as

described in the text. In all figures the solid (dotted) lines illustrate the fit results including (ignoring)

theoretical uncertainties in the fit.

band) gives

sin
2θ�eff = 0.231496± 0.000030mt

± 0.000015MZ
± 0.000035∆αhad (5)

± 0.000010αS
± 0.000002MH

± 0.000047theo , (6)

= 0.23150± 0.00010tot , (7)

which is compatible and more precise than the average of the LEP/SLD measurements [9]. The

total uncertainty is dominated by that from ∆αhad and mt, while the contribution from the uncer-

tainty in MH is again very small. Adding quadratically theoretical and experimantal uncertainties

would lead to a total uncertainty in the sin
2θ�eff prediction of 0.00007.

Finally, the top quark mass, cf. Fig. 3 (top right, blue band), is indirectly determined to be

mt = 175.8+2.7
−2.4 GeV , (8)

in agreement with the direct measurement and cross-section based determination (cf. Footnote 5).
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Figure 4: Contours of 68% and 95% CL obtained from scans of fixed MW and mt. The blue (grey) areas
illustrate the fit results when including (excluding) the new MH measurements. The direct measurements
of MW and mt are always excluded in the fit. The vertical and horizontal bands (green) indicate the 1σ
regions of the direct measurements.

The measured value of MH together with the fermion masses, the strong coupling strength αS(M2
Z
)

and the three parameters defining the electroweak sector and its radiative corrections (chosen

here to be MZ , GF and ∆α(5)
had(M

2
Z
)) form a minimal set of parameters allowing one, for the

first time, to predict all the other SM parameters/observables. A fit using only this minimal
set of input measurements6 yields the SM predictions MW = 80.360 ± 0.011 GeV and sin2θ�eff =
0.23152± 0.00010. The ∆χ2 profile curves of these predictions are shown by the solid black lines
in Fig. 3 (bottom left) and (bottom right). The agreement in central value and precision of these
results with those from Eq. (4) and (7) (cf. blue bands in the plots) illustrates the marginal
additional information provided by the other observables.

Figure 4 displays CL contours of scans with fixed values of MW and mt, where the direct measure-
ments of MW and mt were excluded from the fit. The contours show agreement between the direct
measurements (green bands and data point), the fit results using all data except the MW , mt and
MH measurements (grey contour areas), and the fit results using all data except the experimental
MW and mt measurements (blue contour areas). The observed agreement again demonstrates the
impressive consistency of the SM.

Following the approach in [6] we extract from the electroweak fit the S, T, U parameters [35, 36]
describing the difference between the oblique vacuum corrections as determined from the experi-
mental data and the corrections expected in a reference SM (SMref defined by fixing mt and MH).
After the recent discovery, we change our definition of the reference SM for the S, T, U calculation

6For αS(M
2
Z) we use the result from Table 1.

Abbildung 64: Oben: Messfehler und ∆χ2 Kurven für MH , Mt,MW und sin2 θW .
Verglichen sind jeweils direkte Messungen (Fehlerbalken) und Fit-Resultate, bei de-
nen die Higgs-Masse frei gelassen oder zu 125, 7 ± 0, 4 GeV gesetzt wurde. Unten:
Korrelation zwischen Mt, MW und MH . (Gfitter Gruppe)

.

194

3 Results 7

 [GeV]HM
60 70 80 90 100 110 120 130 140

2 !
"

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

#1

#2

SM fit

 measurementHSM fit w/o M

ATLAS measurement [arXiv:1207.7214]

CMS measurement [arXiv:1207.7235]

 [GeV]tm
160 165 170 175 180 185 190

2 !
"

0

1

2

3

4

5

6

7

8

9

10

#1

#2

#3 measurementtSM fit w/o m

 measurementsH and MtSM fit w/o m

 ATLAS measurement [arXiv:1203:5755]t
kinm

 CMS measurement [arXiv:1209:2319]t
kinm

 Tevatron average [arXiv:1207.1069]t
kinm

 [arXiv:1207.0980]
tt

# obtained from Tevatron t
polem

 [GeV]WM
80.32 80.33 80.34 80.35 80.36 80.37 80.38 80.39 80.4 80.41

2 !
"

0

1

2

3

4

5

6

7

8

9

10

#1

#2

#3 measurementWSM fit w/o M

 measurementsH and MWSM fit w/o M

SM fit with minimal input

 world average [arXiv:1204.0042]WM

)l
eff!(2sin

0.231 0.2312 0.2314 0.2316 0.2318

2 "
#

0

1

2

3

4

5

6

7

8

9

10

$1

$2

$3)l
eff!(2SM fit w/o meas. sensitive to sin

 meas.
H

) and Ml
eff!(2SM fit w/o meas. sensitive to sin

SM fit with minimal input

LEP/SLD average [arXiv:0509008]

Figure 3: ∆χ2
profiles as a function of the Higgs mass (top left), the top quark mass (top right), the W

boson mass (bottom left) and the effective weak mixing angle (bottom right). The data points placed along

∆χ2
= 1 represent direct measurements of the respective observable and their ±1σ uncertainties. The grey

(blue) bands show the results when excluding (including) the new MH measurements from (in) the fits.
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2θ�eff the direct measurements of the observable have
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represent the SM prediction for sin
2θ�eff and MW derived from the minimal set of input measurements, as

described in the text. In all figures the solid (dotted) lines illustrate the fit results including (ignoring)
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band) gives
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which is compatible and more precise than the average of the LEP/SLD measurements [9]. The

total uncertainty is dominated by that from ∆αhad and mt, while the contribution from the uncer-

tainty in MH is again very small. Adding quadratically theoretical and experimantal uncertainties

would lead to a total uncertainty in the sin
2θ�eff prediction of 0.00007.
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first time, to predict all the other SM parameters/observables. A fit using only this minimal
set of input measurements6 yields the SM predictions MW = 80.360 ± 0.011 GeV and sin2θ�eff =
0.23152± 0.00010. The ∆χ2 profile curves of these predictions are shown by the solid black lines
in Fig. 3 (bottom left) and (bottom right). The agreement in central value and precision of these
results with those from Eq. (4) and (7) (cf. blue bands in the plots) illustrates the marginal
additional information provided by the other observables.

Figure 4 displays CL contours of scans with fixed values of MW and mt, where the direct measure-
ments of MW and mt were excluded from the fit. The contours show agreement between the direct
measurements (green bands and data point), the fit results using all data except the MW , mt and
MH measurements (grey contour areas), and the fit results using all data except the experimental
MW and mt measurements (blue contour areas). The observed agreement again demonstrates the
impressive consistency of the SM.

Following the approach in [6] we extract from the electroweak fit the S, T, U parameters [35, 36]
describing the difference between the oblique vacuum corrections as determined from the experi-
mental data and the corrections expected in a reference SM (SMref defined by fixing mt and MH).
After the recent discovery, we change our definition of the reference SM for the S, T, U calculation
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2
Z) we use the result from Table 1.
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Top Quark: Mass 

mt = 173.49± 0.43(stat.+ JES)± 0.98(syst.) GeV

Key parameter for the Standard-Model 
•  High mass à large coupling to the Higgs 
•  Window to new physics ? 
•  Multi-jet final state 
      à use W-mass to fix je energy scale 
 
 
 
 
 
 

•  Precision same as for Tevatron,  
     but much more statistics (to come) 
à  Improve b-Jets calibration 
     Improve understanding of colour effects 
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Search for new Interactions: Z ’ / W ’ 
Process qq à Z’ à µ+µ-,    also W’  
•  Assume couplings like in Standard-Model 
•  Events seen at Mµµ ~ 1 TeV  
    à explained by virtual  Z 

mZ ’ < 2.49 TeV  
mW ’ < 2.85 TeV 
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Supersymmetry 

• 1/2 • Leptonen (e,νe, …) 
• Quarks  (u,d) 

• 1 • Gluonen 
• W± 

• Z0 
• Photon (γ) 

• 0 
• 2 

• Higgs 
• Graviton 

• Spin • Standardteilchen 

• Sleptonen (e,νe, …) 
• Squarks  (u,d) 

• Spin • Superpartner 
• 0 

• 1/2 • Gluinos 
• Wino 

• Zino 
• Photino ( γ ) 

• 1/2 
• 3/2 

• Higgsino 
• Gravitino 

• ~ 

• ~ 

• ~ 
• ~ • ~ 

Symmetry between  
Fermions and Bosons  
•  new partner – particles 
•  Only further symmetry  
     possible 
•  As fundamentally new  
     as anti-matter 

New quantum corrections 
•  Better for Higgs mass 
•  Better for unification of interactions 
•  Candidate for dark matter (LSP) 
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Supersymmetry:  sTops 
Partners of Quarks and Gluons: 
•  Strong interaction à high rate 
•  Decays depend on models 
•  LHC: masses > 1 TeV 
•  Exception: only one sQuark is light: 
•  Theory favours sTop 
     LHC:  mass > 500 GeV (for light LSP)  

 
Partners of Higgs, W, Z, γ  and Leptons: 
•  Rate still low à needs more Luminosity 

 
Higgs:  
•  Difference in decay branching ratios 
•  Further Higgs particles predicted 
    à search at higher masses 
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Dark matter at LHC 

Observations 
•  Cosmic microwave background 
•  expansion rate of Universe 
•  Gravitational lensing 
•  Galaxy rotation curves & collision dynamics 

è  Standard Model of Cosmology 
Particle as Relic of Big Bang ? 
è  No known particle candidate 
è  Weak Interaction à  M =100…1000 GeV 
è  Special annihilation ?  

 Strong impact on particle physics 

LHC: 
•  Pair production together with 1 Jet / γ	
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Conclusion & Outlook 
Higgs 
•  New principle for laws of nature 
•  For now compatible with Standard-Model 

LHC & Experiments 
•  Need more energy and Luminosity 
     à require major rebuild  
     à research on new detectors !! 

Standard – Model: the simplest case 
•  Predictive power: anti-matter, top, W, Z, Higgs 
•  A major achievement of mankind 

Open questions: 
•  No explanation for structure of quarks and leptons 
•  Asymmetry of matter – antimatter, dark matter / energy, gravity 
•  Many extensions: Supersymmetry, GUTs, Strings 

Better answers need: 
•   LHC upgrade for direct searches 
•   A new e+e- collider !   
•   For precision Higgs and top à extrapolation to high energies. 
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The state of physics 

• A citation: 
• …it seems probable that most of the grand underlying 

principles of Physical Science have been firmly established and 
that further advances are to be sought chiefly in the rigorous 

applications of these principles to all the phenomena which 
come under our notice. 

• …  
• An eminent physicist has remarked that the future truths of 
Physical Science are to be looked for in the sixth place of 

decimals. 

• Aus: Physics Curriculum Uni. Chicago, 1898-99 

• Since then:  
• Roentgen,  discovery of the electron,  

• atom made of nucleus, Theory of Relativity,  
• Quantum mechanics, Particle Physics, Higgs, 

• soon: Supersymmetry, … 
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CMS Experiment:  Compact Muon Solenoid  
Collaboration:  http://cms.web.cern.ch 
   39 countries, 184 institutes, 2700 physicists 
German groups: RWTH Aachen, KIT Karlsruhe,  

Hamburg University, DESY Hamburg 
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Candidate: Higgs à Z Z à e+e- e+e- 
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Candidates:  Higgs à 2 Photons   
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Higgs – Results: P- values 
Probability, that other processes explain measurement  
•  ~ 5 sigma effect at MH = 125 GeV in both experiments 
•  Combination of several decay channels 
•  Consistent for both 7 TeV (2011) and 8 TeV (2012) 
 

 
•  5 sigma  ~  1 / 3.000.000 

26 7 Combined results
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function of the SM Higgs boson mass. The dashed line shows the expected local p-values for a

SM Higgs boson with a mass mH.
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a function of the SM Higgs boson mass. The dashed line shows the expected local p-values for

a SM Higgs boson with a mass mH.
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Higgs Results: Signal – Strength   
Comparison to Higgs prediction in Standard- Model 
•  As predicted within errors 
•  Needs much more data to exclude other models 
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Videos - II 
CMS:  Higgs candidates 
H à ZZ à 4 Muons       lokal  http://cdsweb.cern.ch/record/1406329 
H à ZZ à 4 Electrons  lokal    http://cdsweb.cern.ch/record/1406325 
H à γγ                            lokal   http://cdsweb.cern.ch/record/1406328 

Z 

Z 
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Videos - I 
LHC & Atlas:  Z – decay 
http://cdsweb.cern.ch/record/1309873 
lokal 
 
 
 
 
 
 
 
 
CMS:  Higgs candidates 
H-> 4 Muons      lokal  http://cdsweb.cern.ch/record/1406329 
H-> 2 Photons   lokal   http://cdsweb.cern.ch/record/1406328 
H-> 4 Electrons lokal    http://cdsweb.cern.ch/record/1406325 


