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Jisclamers

» My apologies for being rather ATLAS centric
- very similar plots & conclusions do exist for other experiments

since | worked 11 weeks in CMS and 11 years on ATLAS it’s just easier for me to find information on one side :-)

- main focus here is not to show specific results for experiments but rather
demonstrate concepts & lessons

- Will try to focus also on areas where fast simulation approaches have difficulties
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~art 1 - Concepts

Tuesday, January 15, 13



[he amulation nierarchy pyramid

high |

CPU CONSUMPTION

low

HIERARCHY ACCURACY
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[he amulation nierarchy pyramid
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[he amulation nierarchy pyramid

CPU CONSUMPTION
high

(-
O/\
— O
O @
> 3
W =
>
o O
O C
o O
= O
4=
S D
>
D
low

HIERARCHY ACCURACY

physics object
creation

*the picture is quite trivial, finding the optimal working point is NOT |
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[he amulation nierarchy pyramid

A Geant3/Geant4/Flugg/Fluka

Frozen Showers/

Atlfast2(F) / GFlash /
CMS Fast Simulation

Atlfast, Delphes

Tuesday, January 15, 13



—otential speed-ups: simulation

A

< 1/1000

> This sets the simulation into the ~ Hz level regime*
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—otential speed-ups: simulation

< 1/1000

> This sets the simulation into the ~ Hz level regime*

*1 will speak about the consequences of this in my thursday contribution
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Ul smulation: GGeant4

> The state of the art detector simulation

» Concept:

- very detailed description of the detector geometry (> 10° nodes)

- precise simulation of physics processes when propagating through detector
material

- stepping through material in very fine steps
this is of course time consuming

Tuesday, January 15, 13



Ul smulation: GGeant4

» Amazing amount of validation using data of
LHC experiments & test beam setups

- remarkable modeling of physics processes

| > Geant4 validation page
can be achieved

http://sftweb.cern.ch/validation/

T hv"*"'r 140 ;100.
E 5 amnas e e R 4!120 8 |
N - RN LA - [
5 % \D;‘af‘;;g b U ~ 0.99|
e} 10:? h N ' - o' ¢
= b Jdt~19nbT E 100 g 098: )
~O| e n : |
6: - 180 % : ooy LY L .-:v;.._s.'?. :—_?_—.—f
) [ TE '_‘_‘ _'._-:
4l 160 = 0.97 Gt : IR
2f © | ‘
3 = | o
0 © 0.96
2 B ch e
| I B T L I T . I 0.95! ATLAS Preliminary
10 5 0 5 10 15 | : e
_ Non-interacting =* tracks
T T T AT | T
g 145 arias Fizg .-;.'sff;gﬁﬁfa_} , 0'94; QGSP_BERT physics list
E A - - ":‘)-‘"‘4»1 |
N 12 MC S o |
§ F o Ns=7TeV g 0.93 ... . :
g 10 i e e v Data = an*Data
3 0.92| x MC 7" MC
6 [
4 0.91
2 |
0% 0.90" ~
2 0.0 0.4 0.8 1.2 1.6 2.0
-4 | J
0 5 0 5 10 15 p, (GeV)

Local x [mm)]
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How to speed up simulation (1)
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—How tO speed up simulation (1)

{:} ~ O approximate geometry
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—How tO speed up simulation (1)

{:} ~ O approximate geometry
-714 optimise transport and navigation
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—How tO speed up simulation (1)

{:} ~ O approximate geometry
-714 optimise transport and navigation

=<3 approximate models
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—How tO speed up simulation (1)

{:} ~ O approximate geometry
-714 optimise transport and navigation

=<3 approximate models

|... | ~ |\| parameterisations
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—How tO speed up simulation (1)

{:} ~ O approximate geometry
-714 optimise transport and navigation

=<3 approximate models

|... | ~ |\| parameterisations

/ take shortcuts
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—How tO speed up simulation (1)

{:} ~ O approximate geometry
-714 optimise transport and navigation

=<3 approximate models

|... | ~ |\| parameterisations

/ take shortcuts

@ use new technologies

Tuesday, January 15, 13



How to speed up simulation (2)
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—How tO speed up simulation (2)

2222

‘0: don’t do anything

Tuesday, January 15, 13

10



—How tO speed up simulation (2)

2222

‘0: don’t do anything

on O== off work only on demand
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—How tO speed up simulation (2)

2222

o,

on (== off

_1€[{2DM
_2€]4DM
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—How tO speed up simulation (2)

don’t do anything

on O== off work only on demand

1€
% use look-up tables

—Q__
W throw away things
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—How tO speed up simulation (2)

2222

‘0: don’t do anything

on O== off work only on demand

1€
% use look-up tables

-Q

W throw away things
ﬂ {fﬁk ignore the truth

Tuesday, January 15, 13
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art 2 - [he past
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A look back Into the past - ATLAS (1)

> ATLAS Physics TDR (1999):

- mixture of Geant3 and ATLFAST
(detector response parameterized from Geant3)

%'4500 o § 104:_
o jé; c
N
2.12(:00 :— =
§ 10'F i
210000 |- : dk
8000 |- 1025—
6000 |-
10 = ! .ll L olel
4000 [ U LT
‘ | | i |I| I
2000 [ Nl | I|I| |I i =
Sy ,_ L AL WAL
0 ittt st X bt dt ] 0015 -001 0005 ot 0005 001 0015 0.15 -0.1 -005 ? 0.05 01 0.15
W transverse mass (GeV) do -dg™ [cm] zy -Zy " [cm]
Figure 2-25 The generated (solid) and reconstructed ' '
ashed) W transveree mass from W 1w evems ~ WIith dedicated care (lots of work) a real good
and after simple kinematical cuts. (Courtesy ' ' 3
. Gianottl) description of measured quantities could be
achieved
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A look back into the past - ATLAS (2)

~ ATLFAST ID/MS Tracking:

- even correlations have been parameterised successfully

- this Is important for upstream
reconstruction (e.g. vertexing)

Tuesday, January 15, 13
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A look back Into the past - CMS (1)

> CMS Physics TDR (2006), 7 years later than ATLAS
- based on Geant4 (+GFlash) and CMS fast simulation (FAMOS) yielding high level
objects, a simplified tracking similar to FATRAS
- similar to ATLAS, a lot of work needed to derive parameterisations
- FAMOS become the base of the new CMS Fast Simulation

| T TT7T i: 240£I—I T | T I|'\ | LU 1 LR I LB 1 T LB il wili B I I Il_-:
Yaa 7 220fF |T| =
120+ Tt 4 200 o +|l E

1 1sof || M =
100} 1 1eof | I1 3
X 140 =
8ol 1 b Pk (b) :
[ 1200 f 1l =
60l 4 100f h -
: Bo}- E
401 1 8of -
4 40'_ 4 -
20 — B E
i 20 =
'l II|!| I\“' L4 1 ISR I AATIPINEN e ST 10 Vs e PO SEOTIUTN NEUTE I U |;:;:
l:,0 1 0 20 30 40 50 60 70 80 90 100 qD 1 5 20 25 30 35 40 45 50 55 60
DO (micron) DO Error (micron)
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A look back Into the past - CMS (1)

> CMS Physics TDR (2006), 7 years later than ATLAS
- based on Geant4 (+GFlash) and CMS fast simulation (FAMOS) yielding high level
objects, a simplified tracking similar to FATRAS
- similar to ATLAS, a lot of work needed to derive parameterisations
- FAMOS become the base of the new CMS Fast Simulation

| T TT7T i: 240£I—I T | T I|\ | LU 1 LR I LB LT T LBLER il wili B I [ I\_-:
Yad T 220F |T| -
120+ Tt 4 200 o +|l E
1 1sof || M =
100} 1 1eof | I1 g
A 140~ =
so|- 1 b Pk (b) :
[ 120 1 1l =
60l 4 100f tr =
: Bo}- E
401 1 8of =
4 40'_ 4 -
20 — B E
i 20 =

'l II|!| I\“' L4 1 ISR I AATIPINEN e ST 10 Vs e PO SEOTIUTN NEUTE I U |;:;:

l)0 1 0 20 30 40 50 60 70 80 90 100 qD 1 5 20 25 30 35 40 45 50 55 60
DO (micron) DO Error (micron)

*there will be talks/contributions covering more of this during the WS
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A look pack INto the past

> ATLAS & CMS developed very similar concepts for simulation in TDR times
- Full simulation for detailed studies

- Fast simulation (mainly parametric) based on full simulation results
high level object creation as output of fast simulation

> TDR studies also showed limitations of (parametric) fast simulation

- how to model efficiencies/inefficiencies
- how to create fake objects

- usually, one needs a full simulation first to derive parameters™

Tuesday, January 15, 13
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A look pack INto the past

> ATLAS & CMS developed very similar concepts for simulation in TDR times
- Full simulation for detailed studies

- Fast simulation (mainly parametric) based on full simulation results
high level object creation as output of fast simulation

> TDR studies also showed limitations of (parametric) fast simulation

- how to model efficiencies/inefficiencies
- how to create fake objects

- usually, one needs a full simulation first to derive parameters™

*not always necessary:

- €.g. Impact parameter resolution can be rather well estimated using the 2-layer
approximation

B, r109 ., P rooc k1.7

0 2 201,z 1,271
Oy = Ay P = > .
pT ro —T1 pPT
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Part 3 - A running LHC

Tuesday, January 15, 13
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Accuracy

CPU CONSUMPTION
high

low

HIERARCHY

> What accuracy is actually needed ?

> |s it the same for every analyses/aspect ?

Tuesday, January 15, 13

ACCURACY
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| HC experiments: Calorimetry dominates

> Simulation time (CPU) consumption is dominated by calorimeter simulation

- obviously the shower simulation in dense material takes longer than propagation
through tracking devices (low material budget)

> Calorimeter simulation was the first to be fully replaced by fast components

- Frozen showers (ATLAS)
- GFlash (CMS) / FastCaloSim (ATLAS)

...........................................................

E,,, (GeV]
2,

4 6 8 10 12 14 16 18 20
r [em]

Figure 2.8: Transverse (left) and longitudinal (right) shower profiles for 50 GeV photons.
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CPU time spent In ATLAS Calorimeter

Minimum bias Simulation (with Frozen Showers) tt Simulation (with Frozen Showers)
Total CPU per event=71.7 s Total CPU per event = 346.1 s

1686-slc5-gcc4 3-opt 1686-slc5-gcc4 3-opt

i Pixel

& SCT

W TRT

i Other ID

M LAr EM Cal
K Tile Cal

K LAr Had Cal
M FCAL

L Other Cal
i Muons

L Other

Plots by Z Marshall

Oct 2011
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—How 10 Not lose accuracy

> Let’s face it

- all of these approximations/shortcuts will almost necessarily cause a loss of
accuracy

- usually this would lead to a worse data/MC compatibility

- some of them, however, will also open possibilities, e.g. tuning of

parameterisations
g | I I ] 1 ] I ] 1 | I ] I 1 I 1 | 1 I 1 I I ¥i
S 1600 ATLAS preliminary =
= 2 n =
= 1400F-Data 2010, \'s=7 TeV, |Ldt=40 pb =
§ F Zzoee ]
£ 1200 —Data - —]
L - — G492 ; ; =
1000 G4.9.4, new geo. ... =
N ° TR | -
800 —H B =
600F By 3 .
400 T A -
2 - =t 7
200F g: _ -
0: | -"I'l'm.-_'_ L | 1 1 | | 1 1 ?-'hl—‘_:
0.9 092 094 096 098 1

By

=
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—How 10 Not lose accuracy

> Let’s face it

- all of these approximations/shortcuts will almost necessarily cause a loss of
accuracy

- usually this would lead to a worse data/MC compatibility

- some of them, however, will also open possibilities, e.g. tuning of

parameterisations

g | I I 1 1 ] I ] 1 | I ] I 1 I 1 ] 1 I 1 I I ¥i
= 1600 ATLAS preliminary =
= - n ]
= 1400F-Data 2010, \'s=7 TeV, |Ldt=40 pb =
8 F Zoee :
£ 1200 —Data - —]
L - — G492 ; ; =
1000 G4.9.4, new geo. ... =
N ’ - -
800 —H B =
600F By 3 .
400 T A -
2 - =t 7
200 g: _ -
0: A | } -"I'l'm.-_'_ L | 1 1 | | 1 1 ?-.':l__j_:

0.9 0.92 0.94 0.96 0.98

By

=

*see talk of Michael tomorrow
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| HC conditions: pile-up

SO g
L T 2

> Already in Run 0 of LHC the design pile-up numbers were exceeded
- having a simulation in place that could predict this was vital for ATLAS/CMS

w2 0.09 w 0.09F i .
ED oal — 2011 c : Primary Vertices
'‘60.07 | _ s 0.07f
En ol Pileup events 2 : |
20.06] 2011A: (Np)=6.2 S 0.06} .
S0.05 2011B: (Npy)=11.1 & o005k .~ High PU
- - 011: (Npy)=9.4 L 5
0.04 | [HF ‘H‘%_L 011‘:}45- |
0.03| ol 0.03f
0.02] 2012 _—LLI_ 0.02} L
u [ |
D.DD =~V L | ] I_‘_I_.'—'—-—._. D'l.. e A PP B B B R ] rn= = 1 IR
0 20 40 0 5 10 15 20 25 30 35

CMS Simulation
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| HC conditions: plle-up

> Not only physics performance needed to be tested

- in the run-up of 2012 data taking, both CMS & ATLAS ran dedicated programs to
get CPU time of reconstruction under control

- high pile-up simulation samples were necessary for this

- this will become even more important for the HL-LHC preparations

Time Per Event

1; - —
L L — i
oo ey | | | N CMS Reco erformance 5 |
r e Aer pre e 1ok
0.8F = . - g @,
- CMS Simulation e -
07 C ' —— HighPileUpHPF g 8 &
[ = =
0_6;— —e— Summer 11 0.08} é | —
05‘ B g Sj
0_42_ 0.06:— g E
0.32_ —e— Chamonix e [;:;; 4
0.2 i ; 2| = Ty
i 0.021— . | I reliminary
0.15‘ Z—)IJIJ B H (i ﬂ H [‘””'I-l oll Simulation |
061615 26 25 30° % b—tmaz e o g 0O TR s 20 25 %0
time [s] m
# pv

> Can fast simulation provide a good pile-up handling?
- strictly speaking, pile-up is NOT a simulation issue”*
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| HC conditions: plle-up

> Not only physics performance needed to be tested

- in the run-up of 2012 data taking, both CMS & ATLAS ran dedicated programs to
get CPU time of reconstruction under control

- high pile-up simulation samples were necessary for this

- this will become even more important for the HL-LHC preparations

1
09 Vvt |,
0.8f . 2
ol CMS Simulation
0_65- —+— Summer 11
0.5
0.4
0.35_ —e=— Chamonix
0.2f
0.1f Z—UM

005 10 15 20 25 30

# pv

> Can fast simulation provide a good pile-up handling?
- strictly speaking, pile-up is NOT a simulation issue”*
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0.02F
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Reconstruction Time [s/event]

ATLAS Preliminary
Simulation |

5 10 15 20 25 30
M

*| will contradict this message in my thursday contribution ...
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TS even more complicated (1a)

> There are many parameters when you want to describe the pile-up correctl

> In-time pile-up components

- a correct modeling (in particular for tracking aspects) needs a good prediction of
the numlber of interaction per X-ing & the size of the beam-beam X-ing region

- this has been difficult in the past to get a priori from the machine

90

I ] I I ] I I ] I I [ I ] I T

E‘ :l : ":! 180: 7T ] LI L I I ] LI L l LI L T I L ]
E, - Beam Spot Size o, ATLAS Preliminary 4 2 - ATLAS Online Luminosity .
o 80 Fill 2000 \s =7 TeV - 160" 0 Vs=8TeV, [ Ldt = 20.8 fb", <u> = 20.7
N - Aug 2011 1 > 140} B Vs=7TeV, [Ldt=52f" <> = 9.1
o 70 3 ' .
> u - 8 7]
= - SNPNNNA SN T E
= 60— .”M ] 3 3
S0 -4 % =
- - O ]
- ] <D
- _ o 1
40— —_ 3
30 T N WO (N TR WO N T T SN SN Tl 0 . ]
10:00 13:00 16:00 19:00 22: 00 01:00 04:00 07 C 0 q 10 15 20 25 30 35 40 45
Time (CET) Mean Number of Interactions per Crossing
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t1s even more complicated (1)

> Vertex reconstruction is very sensitive to these parameters
- shadowing, merging, splitting effects are dependent on the vertex density

20 I I I I I I I 1 I I I 1 I I ] I I I 1 I I 1 I I ] 1 I 1 1

A - =
3 - =
S 18- ATLAS Preliminary =
0 - _ E
2 16 : \s =8 TeV -
O {4 —e— Data2012 *
o) - .
-g 12— eeeeee Quadratic extrapolation —
S = -
z 10 —
v - .
81— -

6 —

= E

2 -

O _l 1 1 | I 1 1 | 1 I 1 1 1 1 l 1 1 | 1 l | 1 1 1 l 1 1 1 1 r

5 10 15 20 25 30

1l
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ts even one complicated (2)

-800 ns

Tile Inner Detector
Calorimeter

SCT

Pixels

BCM

Bunch Crossing -32 Bunch Crossing 0 Bunch Crossing 32

> A correct treatment of the pile-up structure is quite complex

> This will become one of the most important issues for upgrade simulation

Tuesday, January 15, 13
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| 23S0NS leameo

> Fast simulation needs to be able to “emulate” pile-up

- consequence in ATLAS: initially developed fast simulation approaches now feed
In digitization

Primary Interaction, Decay, Fragmentation

4-Vector, PID II

Track Simulation
Material effects
Particle decay

ISF_Fatras* Photon conversions

Digitzation

Tuesday, January 15, 13
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| 23S0NS leameo

> Fast simulation needs to be able to “emulate” pile-up

- consequence in ATLAS: initially developed fast simulation approaches now feed
In digitization

Primary Interaction, Decay, Fragmentation

4-Vector, PID II

Track Simulation
Material effects
Particle decay

ISF_Fatras* Photon conversions

Digitzation

‘ Track i

*see talk of Elmar tomorrow
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“art 4 - \We need full smulation
We need fast smulation

Tuesday, January 15, 13
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—Ull simulation usage: detector activation
anad cavermn background

T T T
> : Da -
p i D o | 1 > There are areas where fast
g | seam dump at =0 ] simulation just won’t work that
T .
S 102 / E eaSIly
: \ 1 -In particular in the precise
: : understanding of the detector
ol \_. (including activation, aging
= AITLAS Prellmlnaryl T eﬁeCtS, etC.)
200 0 200 400 600 800 1000
# MDT Hits as a function of time after beam dump t [S]
E‘ -~ r-To Tttt
= 1207 ATLAS Preliminary 16
10— _ 1.4
> Even full simulation has A ] 12
difficulties with describing the E — 17
cavern activity oL _ B
4 - " — ] —0.6
- h o4
- MDT hit rate ratio : Data/FLUGG simulation '
% s 0 15 20 25 O
1zl [m]
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-Ull simulation usage:

Drecise getector effects

>~ Example: charged particle mu

tiplicity measurements ATLAS/CMS

> Generic track reconstruction efficiency for hadrons is determining

component

Tuesday, January 15, 13
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—Ull simulation usage: precise detector effects

> Example: track reconstruction efficiency for hadrons from MC
> Requires an excellent description of the detector & hadronic physics

> Early 2009 data: cross-checks of detector description using SCT extension

5, 1’_! T 8 3 v R rrir v vree T r7p3! I ot
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2 095K ATLAS _+_ Data =
= C Preliminary - ]
L 0.9F \'s =900 GeV Minimum Bias MC =
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. ’ g = x
materlall+ ! n 0.8F -
hadronic S T . :
interactions ~ ,* »n 0.751 -
% SCT
’ 0.7 S
; ‘
0.65} -
Y| R R PN B
-2 -1 0 1 2
: n
Pixel
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Transition: 1ast & full simulation

» Expanding the example:
ATLAS’ charged particle multiplicity measurement at 2.37 TeV

» LHC has not given “stable beam”: ATLAS SCT detector was in stand-by

ATLAS Vs = 0.9 TeV :
ny,=1,p_>500 MeV, Inl<2.5 g
Data 2009: ID Tracks ’

“ 1.1F ATLAS Vs =0.9 TeV <
N, = 1,p, > 500 MeV, Inl<2.5 8000

1 Pixel Tracks

* Data 2009 « SCT Standby

0.9 B8 SCT Nominal -
0.8 '
0.7
0.6
(2') 1.05 ) g 1.:.. -6'-“'.' ..................... ..:.“v ............ -.-1
§ ) ool oot T psemvet et 0B e W, ¥ TS
.g llllllll l lll 14 l ll 14 l ll 142 ll l -'g llllllljlljllllllllljl‘l-m-’-llllllllllllllllllllll
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Transition: 1ast & full simulation

> Developed fast model of partly depleted detector and implemented in

FATRAS
normal truth particle
hit truth QL
association _
T »
7 \
/ \
/ \
/ \

/ \
I track reduced base
! extrapolation efficiency

| nSCTHits:RecEta | htemp
Entries 22512

Mean -0.003028

8_ S Mean y 525
: o.'.. " - RMS 1.59
vertex 7 5T a5 AMSy 2178
= 4 * 4
- §
6.—
- ‘“’ '
= 4
S5t o'»" N
= .
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: }
3
= 4
20~
i FATRAS test
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3 2 1 0 1 2 3
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—ast simulation usage: precision measurement (1)

W — Vv

DPx

N .,'-: .

Qs

> m(W) measurement is one of
the most challenging precision

measurements to be done with
the LHC

> Performed by template
measurement to the transverse
mass distribution

> Needs a very well understood
MC modeling of

- energy scale

- lepton momentum scale

- missing ET

- hadronic recoill

> Can such a precise measurement be done using fast simulation ?

Tuesday, January 15, 13
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—ast simulation usage: precision measurement (2) d

. ,

Abstract

We present a measurement of the W boson mass using 2.2 fb! of CDF Run II data. With 470,126 W—ev candidates and 624,708 W—pv
candidates, we measure Mw = 80387 + 19 MeV/c?. This represents the most precise measurement of the W boson mass to date.

Measurement Technique

The W boson mass is extracted from a template fit to the transverse mass, transverse momentum and transverse missing energy distribution. We
use a fast Monte Carlo simulation to predict the lineshape of the template distribution. These lineshape predictions depend on a number of
physms and detector effects which we constrain from control cs Or | snmultlon Iortant detector effects include external brcmsstrahlung

an 1omzat10n energy loss in the dctcctor matcrlal trackcr scalc and resolutions of both detectors.

Important physics effects include internal QED radiation, the i intrinsic W boson transverse momentum and the proton parton distribution

functions.

. 300 T oo T T T T T
" energy Scale tunlng - B Runia(e) Tevatron Single Experiment Sensitivity .
, 250— % CDF ]
* momentum scale tuning - F Do .
s 200— —
> recoil calibration g p \Kxmelw -
g 150/ — —
» PDF variations g I -
= 100— —
- = [ .
>Up to 10 billion events, = Run2 (e+) - -
50_— un2 (e) =
roughly 4 M/hour throughput - 2 (e prelim) -
on a single CPU P T

Integrated Luminosity (/pb)

http://www-cdf.fnal.gov/physics/ewk/2012/wmass
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http://www-cdf.fnal.gov/physics/ewk/2012/wmass/#pscale
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—ast simulation usage: SUSY grds

> Large theoretical uncertainties

> High statistics needed to cover the SUSY phase space

> A pOSSible Strategy: 11, production Status: December 2012
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Sart 5 - Commonalities

> A CMS/ATLAS centric view ... my apologies
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—Ull simulation & first steps

> Full simulation is based on Geant4

- general improvement of Geant4 suite is in the interest of all
- place for modern computing technigques
e.g. auto-vectorization (CLHEP!), parallelism (Geant4MT), ...

this is not the scope of this workshop

> First attempt is to speed up the calorimeter

- CMS: GFlash (parameterised)
- ATLAS: FrozenShowers (library for FCAL), FastCaloSim (parameterised)

> Fast simulation started as stand-alone programs

- ATLFAST (199x) in ATLAS
- FAMOS (early 2000s) in CMS
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Towards fast simulation In LHCO experiments

» Next steps in fast simulation

- closer integration into the experiments framework:
ATLAS: FATRAS, FastCaloSim & Frozen showers (as part of Geant4)
CMS: Fast Simulation as part of CMSSW & GFlash

» Common look & feel with fully simulated events is necessary
- simple analysis aspect: one Event Data Model to serve all

» Many concepts have been developed in parallel but in very similar ways
- simplification of geometry
- implementation of material effects (EM and HI for Tracking)*
- shower shape parametrisation for calorimetry™
- outsourcing of particle decay”
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Towards fast simulation In LHCO experiments

» Next steps in fast simulation

- closer integration into the experiments framework:
ATLAS: FATRAS, FastCaloSim & Frozen showers (as part of Geant4)
CMS: Fast Simulation as part of CMSSW & GFlash

» Common look & feel with fully simulated events is necessary
- simple analysis aspect: one Event Data Model to serve all

» Many concepts have been developed in parallel but in very similar ways
- simplification of geometry
- implementation of material effects (EM and HI for Tracking)*
- shower shape parametrisation for calorimetry™
- outsourcing of particle decay”

*see talk of Andrea tomorrow
“*see talks during calorimetry session tomorrow
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—xample: Iracking simplification in Iracker (1)

CMS
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—xample: lracking simplification in lracker (2)
ATLAS
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