

Delphes

Framework for fast simulation of a generic collider experiment

Michele Selvaggi, for the Delphes Team

Université Catholique de Louvain (UCL) Center for Particle Physics and Phenomenology (CP3)

January 14, 2013

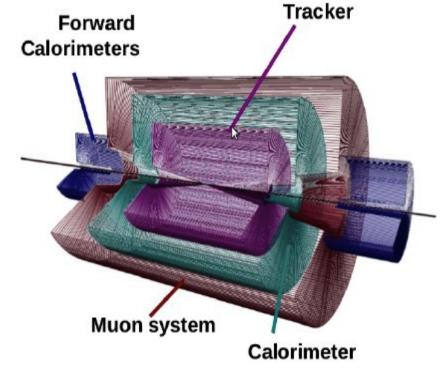
Detector simulation

• Full simulation (GEANT)

- **simulates** particle-matter interaction (including e.m. showering, nuclear int., brehmstrahlung, photon conversions, etc ...) \rightarrow 10 s /ev

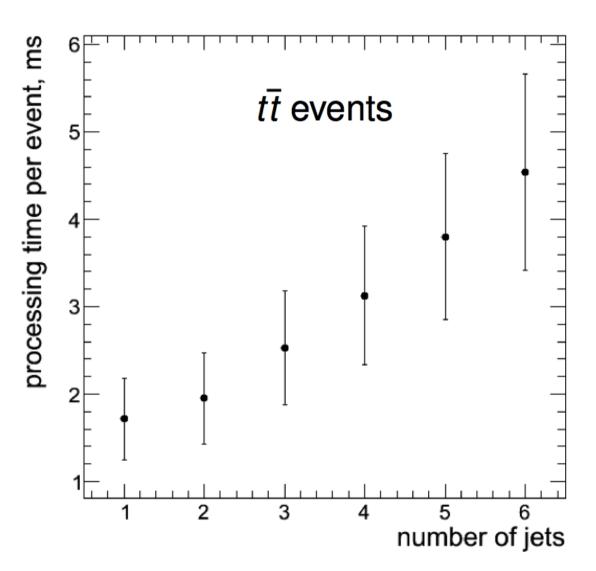
- Fast simulation (ATLAS, CMS)
 - **simplifies** and makes faster simulation and reconstruction \rightarrow 1 s /ev
- Parametric simulation (PGS, Delphes)
 - **parameterize** detector response \rightarrow 10 ms /ev
- Other (TurboSim)
 - **no detector**, build giant lookup table parton ↔ reco

Parametric simulation



- What do we expect from parametric detector simulation ?
 - fast
 - realistic enough
 - flexible detector geometry
 - user-friendly
- Who needs it ?
 - \rightarrow more advanced than parton-level studies
 - \rightarrow scan big parameter space (SUSY-like ...)
 - \rightarrow preliminary tests of new geometries/resolutions (upgrades ..)
 - → testing analysis methods (multivariate/Matrix Element)
 - \rightarrow educational purpose (master thesis)

- Delphes is a framework that simulates of the response of a multipurpose detector
- simulates:
 - charged particle propagation in magnetic field: tracking
 - electromagnetic and hadronic calorimeters
 - muon system
- reconstructs:
 - leptons (electrons and muons)
 - photons
 - jets and missing transverse energy
 - taus and b's

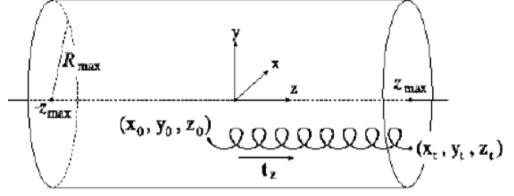


Processing time with a standard laptop

Technical features

- C++ code, uses ROOT classes
- Input
 - Pythia/Herwig output (HepMC,STDHEP)
 - LHE (MadGraph/MadEvent)
- Output
 - ROOT trees
- Configuration file
 - define geometry
 - reconstruction/selection criteria
 - output object collections

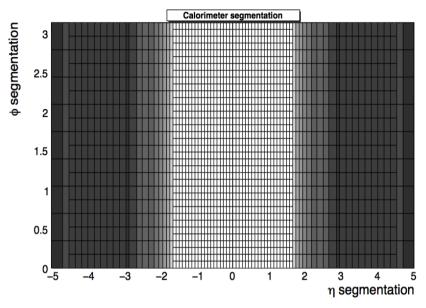
see details in tutorial ...



- Charged particles are propagated in the magnetic field until they reach the calorimeters
- Propagation parameters:
 - magnetic field B
 - radius and half-length (R_{max} , z_{max})
- Efficiency/resolution depends on:
 - particle ID
 - transverse momentum
 - pseudorapidity

# efficiency formula for muons	
add EfficiencyFormula {13} { (pt <= 0.1)	* (0.000) + \
(abs(eta) <= 1.5) * (pt > 0.1 && pt <= 1.0)	* (0.750) + \
(abs(eta) <= 1.5) * (pt > 1.0)	* (1.000) + \
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 0.1 && pt <= 1.0)	* (0.700) + \
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 1.0)	* (0.975) + \
(abs(eta) > 2.5)	* (0.000)}

- Not real tracking/vertexing !!
 - \rightarrow no fake tracks/ conversions (but can be easily implemented)
 - \rightarrow no dE/dx measurements



Calorimetry

- em/had calorimeters have same segmentation in eta/phi
- Each particle that reaches the calorimeters deposits a fraction of its energy in one ECAL cell (f_{EM}) and HCAL cell (f_{HAD}), depending on its type:

particles	f _{em}	f _{HAD}
e γ π ⁰	1	0
Long-lived neutral hadrons ($K^0_{\ s}$, Λ^0)	0.3	0.7
νμ	0	0
others	0	1

 Particle energy is smeared according to the calorimeter cell it reaches

 $E_{smeared} = gauss(f_{EM}E, \sigma_{EM}(\eta)) + gauss(f_{HAD}E, \sigma_{HAD}(\eta))$

$$\sigma^{2}(\eta) = N^{2}(\eta) + S^{2}(\eta)E + C^{2}(\eta)E^{2}$$

Leptons, photons

- Muons/photons/electrons
 - identified via their PDG id
 - inside the tracker coverage for electrons and muons
 - muons do not deposit energy in calo (independent smearing parameterized in p_{τ} and $\eta)$
 - electrons and photons smeared according to electromagnetic calorimeter resolution

Isolation: rel.Iso =
$$rac{\sum\limits_{\Delta R < 0.5} p_T^t}{p_T}$$

If rel.Iso \sim 1, the lepton is isolated

- Not taken into account:
 - fakes, punch-through, brehmstrahlung, conversions

- FastJet library used for jet clustering
 - all clustering algos supported: anti-kT, SisCone, ...
- Jets are formed with "particle-flow" like input:
 - inside tracker volume
 - \rightarrow tracks
 - $\rightarrow\,$ calorimeter towers for neutral particles
 - outside tracker volume
 - \rightarrow calorimeter towers

b and tau jets

- <u>b-jets</u>
 - if **b** parton is found in a cone $\Delta R = 0.5$ w.r.t jet direction
 - \rightarrow apply **efficiency** (40% default)
 - if **c** parton is found in a cone $\Delta R = 0.5$ w.r.t jet direction
 - \rightarrow apply **c-mistag rate** (10% default)
 - if **u**,**d**,**s**,**g** parton is found in a cone $\Delta R = 0.5$ w.r.t jet direction
 - \rightarrow apply **light-mistag rate** (0.1% default)

b-tag flag is then stored in the jet collection

- <u>tau-jets</u>
 - if tau lepton is found in a cone $\Delta R = 0.5$ w.r.t jet direction → apply **efficiency** (40% default)
 - else
 - \rightarrow apply **tau-mistag rate** (1% default)

tau jets have their own collection (no leptonic tau decays)

see tutorial for p_T and η dependent efficiency and mistag rate

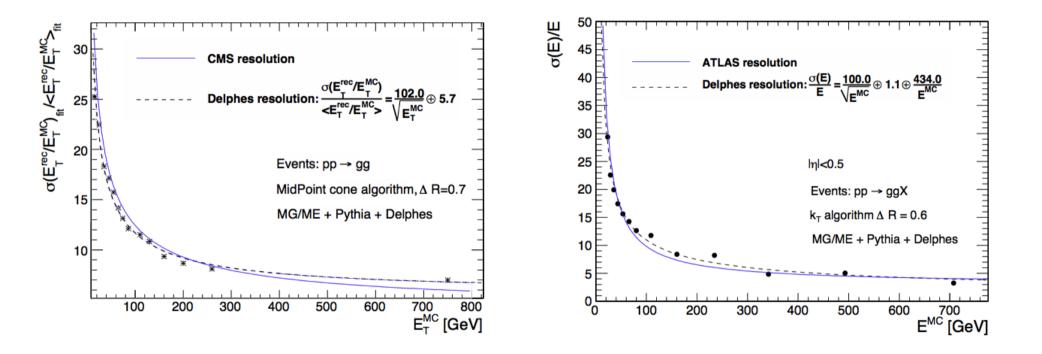
missing transverse energy is computed by default as:

$$\mathbf{E_T^{miss}} = -\sum_i \mathbf{p_T^{muons}}(i) - \sum_i \mathbf{E_T^{towers}}(i)$$

or as "particle flow":

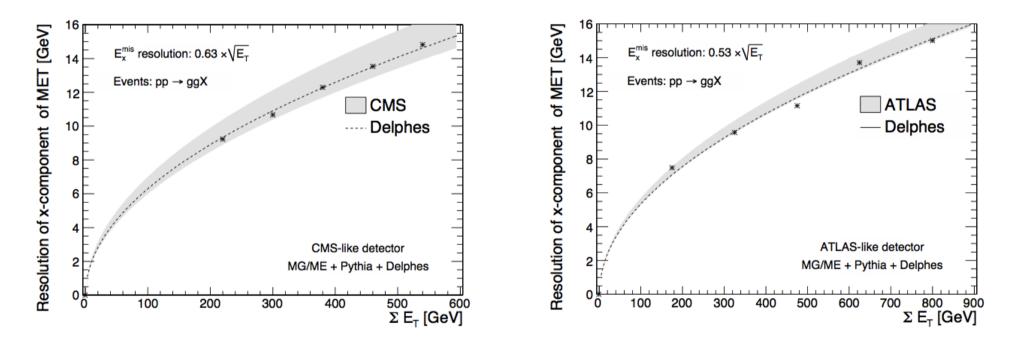
$$\mathbf{E}_{\mathbf{T}}^{\mathbf{miss}} = -\sum_{i \in barrel} \mathbf{p}_{\mathbf{T}}^{\mathbf{track}}(i) - \sum_{i \in barrel} \mathbf{E}_{\mathbf{T}}^{\mathbf{neutral towers}}(i) - \sum_{i \in endcaps} \mathbf{E}_{\mathbf{T}}^{\mathbf{towers}}(i)$$

Effects not simulated:


- cracks (can be simulated via efficiency formula)
- dead channels
- noise ...

Validation: jets

- Electrons, muons and photons are auto-validated by construction
- Jets and missing energy need to be tested:


 \rightarrow good agreement

Validation: E_{T}^{miss}

- Electrons, muons and photons are auto-validated by construction
- Jets and missing energy need to be tested:

 \rightarrow good agreement

Development

- Delphes project started back in 2007
- Since 2009, its development is community-based
 - ticketing system for improvement and bug-fixes
 - \rightarrow user proposed patches
 - Quality control and core development is done at the UCL

Widely tested and used by the community > 100 citations !!

• Major change ongoing:

- modular version of the software has been written
- \rightarrow more flexible
- \rightarrow more user-friendly
- \rightarrow faster
- we are in the **beta-testing** phase right now

Please test the beta !!!

and give us some feedback ...

https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook