Study: Improve the Tau Reconstruction

By Rejecting e+/e- Tracks from Photon Conversions

Philip Bechtle, David Côté, Michael Böhler

Outline

- 1. Photon Conversions
 - ConversionFinderTool
- τ-decay and Reconstruction
 - TauRec algorithm
- Rejection of τ-tracks
 - How we would like to implement a rejection algorithm

1. Photon Conversions

What is a Photon Conversion?

- pair creation
 - e+/e- pair
- □ high energetic photon

Vertices of all true Conversions (MC)

What we see...

м.

How does the Conversion Finder tool work?

- InDetConversionFinderTools (Version in Rel. 12 & 13)
- Collection of tracks
 - rejects all tracks coming from primary vertex
 - □ uses all possible positive negative track pairs
 - ☐ symmetric photon conversions
 - distance and momentum cuts
 - □ very asymmetric conversions
 - Have to be implemented !!
- Improvements are under construction (release 14)
 - □ Mauro Donega, Thomas Koffas, Hongbo Zhu

Sample/Tool we have used

■ CBNT ntuple:

```
005188.A3_Ztautau_filter.CBNT.RDO.
v12000605_tid00916.root
```

- Process: $Z \rightarrow \tau \tau$
- Statistic: 9950 Events
- Algorithm:
 - □ TauRec
 - InDetConversionFinderTool

Reconstructed Conversions

τ-Decay

- Leptonic
- Hadronic
 - □ 1 Prong
 - □ 3 Prong
 - □ other

$ au o e \nu_e \ \nu_{ au},$	17.8 %	35.2 %
$ au ightarrow \mu u_{\mu} u_{ au}$	17.4 %	
$ au o\pi^\pm u_ au$	11.1 %	
$ au o\pi^0\pi^\pm u_ au$	25.4 %	 46.8 %
$ au o \pi^0 \pi^0 \pi^\pm u_ au$	9.19~%	40.6 %
$ au ightarrow \pi^0 \pi^0 \pi^0 \pi^\pm u_ au$	1.08 %	
$ au o \pi^\pm \pi^\pm \pi^\pm u_ au$	8.98 %	
$ au o \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	4.30 %	13.9 %
$ au o \pi^0 \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	0.50 %	10.0 70
$ au o \pi^0 \pi^0 \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	0.11 %	
$ au o K^{\pm} X u_{ au}$	3.74 %	
$\tau \to (\pi^0) \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} \nu_{\tau}$	0.10 %	
others	0.03 %	

We intend to reconstruct 1 and 3 Prong decays

τ-Reconstruction

TauRec algorithm

- reconstructs hadronicτ-leptons
- starts from reconstructed
 TopoClusters (clusters of
 Calorimeter Cells)
- □ associates tracks within ∆R
 <0.3 of the TopoJet centre
 - tracks of τ-candidate (e.g. tr₁)

e.g.:
$$\tau^+ \to \pi^+ \pi^0 \nu_\tau \to \pi^+ \gamma \gamma \nu_\tau \to \pi^+ \gamma e^+ e^- \nu_\tau$$

 Search for tracks in τ-candidates which come from a photon conversion

Some figures from τ -Reconstruction (with TauRec)

 Number of τ–candidates per Event

Number of tracks per τ
 candidate

These τ-candidates have **no** Likelihood-cut!!

Particle ID of all τ-Tracks

As we expect the hadronic τ-decay

Leptonic Particles in τ-tracks

in % to total tracks

True e+/e- in Tau	10.4 %
From true conv	6.08 %
From reco conv	2.73 %
(New Conv.Finder	5.08 %)

in % to e+/e- in τ

Reco conv	44.8 %
(New Conv.Finder	83.5 %)

In spite of the low Efficiency

This part shows more or less what we would like to do as a next step!

Ideas of some Cuts for Rejecting Tracks

- For rejecting the tracks we plan to use:
 - Trk-number of the conversion track
 - Trk-number of the τ-track
 - Then it is easy to find the "same" track
- For this study we made some cuts to get some "nice" plots (conversion radius)
 - □ |R| > 25 mm
 - \square $\Delta R < 0.1$

- same charge
- first 3 tracks with most pt

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

$$\Delta p_{\scriptscriptstyle T} = \left| p_{\scriptscriptstyle T(\tau-track)} - p_{\scriptscriptstyle T(conv.-track)} \right|$$

Due to the purity of the conversion finder we also "reject" pions and kaons

Don't forget: Just a first study with a poorly working conversion finder tool!!

Tracks

Conclusion

- "first results:"
 - \square 10.4 % of τ -tracks are e+ or e-
 - This number will rise if we reconstruct additionally the tracks with lower p_T
 - □ Purity of the "old" ConversionFinderTool is 10.11 %
 - This tool will be modified by the EGamma-Group
- there are many things to do...
 - using new ConversionFinderTool when available
 - implement Trk-no. from Conv. Finder to TauRec
 - implement code for using additional τ-tracks
- Maybe we can apply this method to ks decays

Backup - Slides

Conversions per Event

Fluctuation from... to...

Only 3 tracks are used!!

- No improvement (at the moment)
- But we will see what we can achieve with a better Conv.finder tool

Comparison of
Number of
tracks matched
to decay mode
without and with
Likelihood-cut

